05.4

Влияние водорода на эффект памяти формы и сверхэластичность в однофазных монокристаллах никелида титана

© И.В. Киреева, Ю.И. Чумляков, Ю.Н. Платонова

Сибирский физико-технический институт Национального исследовательского Томского государственного университета, Томск E-mail: kireeva@spti.tsu.ru

Поступило в Редакцию 3 октября 2014 г.

На монокристаллах сплава Ti-50.7% Ni (at.%), ориентированных вдоль [$\bar{1}11$] направления, при деформации растяжением в однофазном состоянии исследовано влияние водорода на температурную зависимость осевых напряжений $\sigma_{cr}(T)$, эффект памяти формы и сверхэластичность. Показано, что уровень напряжений $\sigma_{cr}(M_s)$, $\sigma_{cr}(B2)$ определяется состоянием водорода (в твердом растворе или в частицах гидрида титана) в исходной B2-фазе. Сверхэластичность до 2.0-2.5% имеет место, когда водород находится в твердом растворе.

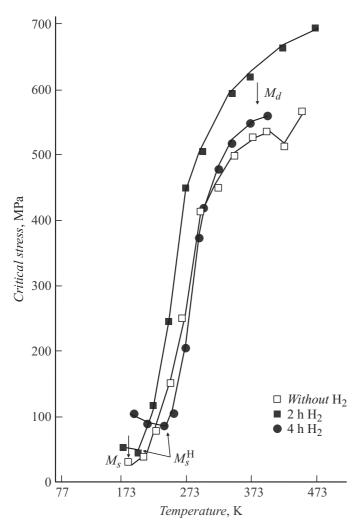
Сплавы на основе TiNi используются в технике и медицине благодаря их уникальным функциональным свойствам — эффекту памяти формы (ЭПФ) и сверхэластичности (СЭ) [1,2]. Известно [2], что составляющие элементы сплава TiNi титан и никель являются гидридообразующими металлами. Исследования влияния водорода на мартенситные превращения (МП) в поликристаллах ТіNі показали [2–5], что водород изменяет температуру начала прямого МП M_s при охлаждении, приводит к снижению стабильности кристаллической решетки В2-фазы, к уменьшению пластичности при больших концентрациях водорода, а также способствует образованию ориентированного мартенсита при наводороживании [3,4]. Целью данной работы является исследование влияния водорода на температурную зависимость осевых напряжений $\sigma_{cr}(T)$ в температурном интервале $T = 173 - 473 \, \text{K}$, ЭПФ и СЭ в монокристаллах [$\bar{1}11$] сплава Ti-50.7% Ni (at.%) при деформации растяжением в однофазном состоянии. Исследования на монокристаллах позволяют исключить неоднородность распределения водорода между

границами зерен и телом зерна. Ориентация $[\bar{1}11]$ для изучения ЭПФ и СЭ при насыщении водородом выбрана из-за максимального значения величины деформации решетки $\varepsilon_0 = 9.8\%$ при растяжении для $B2-B19'-M\Pi$ [6].

Монокристаллы сплава Ti-50.7% Ni (at.%) выращивали в атмосфере гелия методом Бриджмена. После роста монокристаллы гомогенизировали при T=1173 K 12 h в среде инертного газа с последующей закалкой в воду. Ориентацию кристаллов и фазовый анализ образцов определяли на дифрактометре "Дрон-3" с использованием FeK_{α} -излучения. Образцы вырезали в форме двойных лопаток с размером рабочей части $12 \times 2.5 \times 1$ mm. Насыщение водородом проводили электрохимическим способом в 4%-м растворе H_2SO_4 при T=295 K и плотности тока j=1400 A/m² в течение времени 2-4 h с использованием анода, изготовленного из аустенитной нержавеющей стали. Механические испытания на растяжение проводили на испытательной машине Instron-5969 при скорости деформации $4 \cdot 10^{-4}$ s $^{-1}$ в интервале температур от 173 до 473 K. Температуры МП определяли по перегибам на кривой зависимости электрического сопротивления от температуры $\rho(T)$.

В однофазных монокристаллах Ті-50.7% Ni (at. %) реализуется одностадийное В2-В19'-МП соответственно, с температурами начала и конца прямого при охлаждении и обратного при нагреве МП: $M_s = 175 \,\mathrm{K}, \; M_f = 133 \,\mathrm{K}, \; A_s = 192 \,\mathrm{K}, \; A_f = 233 \,\mathrm{K}. \; \mathrm{Ha} \; \mathrm{рис.} \; 1 \; \mathrm{пред-}$ ставлена температурная зависимость осевых напряжений $\sigma_{cr}(T)$ при деформации растяжением в кристаллах без водорода и при насыщении водородом. Видно, что в обоих случаях на зависимости $\sigma_{cr}(T)$ обнаружены три стадии, которые обычно наблюдаются в сплавах, испытывающих МП под нагрузкой [1]. Для кристаллов без водорода сопоставление температур начала и конца прямого и обратного МП M_s , M_f , A_s , A_f , определенных по кривой ho(T), со стадийностью кривых $\sigma_{cr}(T)$ показывает, что первая стадия при 173 К < $T < M_s$ характеризуется нормальной температурной зависимостью $\sigma_{cr}(T)$, которая связана с термически-активируемым движением межвариантных и двойниковых границ В19'-мартенсита [1]. Минимальные напряжения σ_{cr} на зависимости $\sigma_{cr}(T)$ наблюдаются при $T=M_s$, которая совпадает с M_s , определенной по кривой $\rho(T)$. Максимальные σ_{cr} на зависимости $\sigma_{cr}(T)$ соответствуют температуре M_d , при которой напряжения для начала МП под нагрузкой равны напряжениям пластического течения высокотемпературной В2-фазы. На второй стадии при $M_s < T < M_d$

Механические и функциональные характеристики B2—B19′-МП в монокристаллах $[\bar{1}11]$ сплава Ti-50.7% Ni (at. %) при воздействии водородом


Механические и функциональные характеристики В2—В19'-МП	Без Н2	2 h H ₂	4 h H ₂
$M_s,$ K при $\sigma=0$ MPa	175	200	223
Температуры МП при $\sigma = 75\mathrm{MPa}$:			
M_s^{σ} , K	214	207	231
M_f^{σ} , K	178	117	145
A_s^{σ} , K	235	216	243
A_f^{σ} , K	272	268	275
Δ_1/Δ_2 под σ , К	36/37	90/52	86/32
Γ_1/Γ_2 , K	58/57	61/99	44/98
$\sigma_{cr}(M_s)/\sigma_{cr}(400)$, MPa	25/530	40/650	80/560
$\alpha = d\sigma_{cr}/dT$, MPa/K	4.26	4.6	4.6

обнаружена аномальная температурная зависимость $\sigma_{cr}(T)$, которая обусловлена зарождением кристаллов В19'-мартенсита под нагрузкой [1]. Зависимость $\sigma_{cr}(T)$ на этой стадии описывается соотношением Клапейрона—Клаузиуса

$$\frac{d\sigma_{cr}}{dT} = -\frac{\Delta H}{\varepsilon_0 T_0}.$$
(1)

Здесь ΔH — изменение энтальпии при B2—B19′-MП; ε_0 — деформация решетки при B2—B19′-МП, которая зависит от ориентации кристалла; T_0 — температура химического равновесия B2- и B19′-фаз. При $T>M_d$ на кривой $\sigma_{cr}(T)$ наблюдается третья стадия, связанная с пластической деформацией высокотемпературной B2-фазы.

Анализ данных, представленных на рис. 1 и в таблице, позволяет сделать следующие выводы. Во-первых, водород повышает температуру M_s относительно кристаллов без водорода: при насыщении водородом в течение $2 \text{ h } \Delta M_s = M_s^{\text{H}} - M_s(0) = 25 \text{ K } (M_s^{(\text{H})}, M_s 0)$ соответственно, температура M_s в кристаллах с водородом и без водорода), а в течение

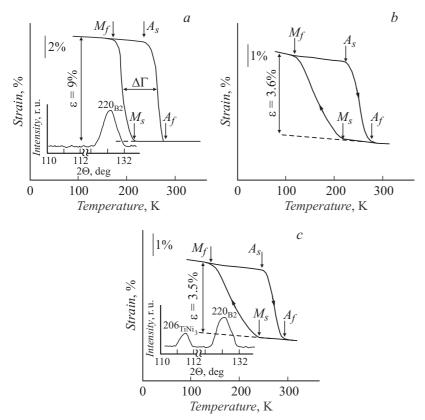
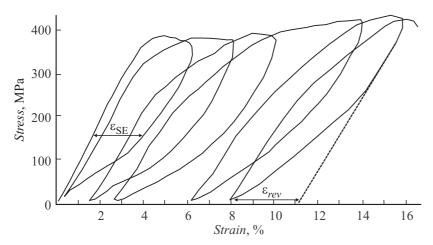


Рис. 1. Температурная зависимость осевых напряжений σ_{cr} в однофазных монокристаллах [$\bar{1}11$] сплава Ti-50.7% Ni (at. %) при деформации растяжением.

4h $\Delta M_s=48~\mathrm{K}$, что согласуется с данными на поликристаллах TiNi близкого состава [3]. Во-вторых, водород приводит к росту напряжений при $T=M_s~\Delta\sigma_{cr}(M_s)=\sigma_{cr}(M_s)-\sigma_{cr}^{\mathrm{H}}(M_s)$ и высокотемпературной В2-фазы $\Delta\sigma_{cr}^{\mathrm{B2}}(400~\mathrm{K})=\sigma_{cr}^{\mathrm{B2}(\mathrm{H})}(400~\mathrm{K})$ по сравнению с кристаллами без водорода. В-третьих, водород приводит к росту величины $\alpha=d\sigma_{cr}/dT$.


На рис. 2 представлены результаты по исследованию ЭПФ при охлаждении/нагреве под растягивающей нагрузкой 75 МРа в интервале температур испытания от 77 до 400 K, а на рис. З $\sigma - \varepsilon$ -кривая при деформации растяжением после насыщения водородом в течение 2 h. Из рис. 2 видно, что при $\sigma = 75 \mathrm{MPa}$ в кристаллах без водорода и с водородом реализуется одностадийное В2-В19'-МП, которое при нагреве полностью обратимо, и наблюдается ЭПФ. Величина ЭПФ ε_{SME} в кристаллах без водорода равна 9% и оказывается близкой к теоретически рассчитанной величине деформации решетки $\varepsilon_0 0 = 9,\,8\%$ в [111] ориентации при растяжении для В2-В19'-МП [6]. При насыщении водородом $\varepsilon_{\rm SME}$ при $\sigma=75\,{\rm MPa}$ оказывается в 2.5 раза меньше, чем в исходных кристаллах. Этих напряжений оказывается недостаточно для разрушения самоаккомодирующей структуры В19'-мартенсита в наводороженных кристаллах. Следовательно, водород повышает сопротивление движению межвариантных и двойниковых границ в мартенсите по сравнению с состоянием без водорода, что согласуется с ростом $\sigma_{cr}(M_s)$, и для достижения теоретически рассчитанных значений деформации решетки ε_0 в кристаллах с водородом необходимо увеличить внешние напряжения. В монокристаллах [111] без водорода СЭ в температурном интервале от A_f до M_d не наблюдается. При заданной деформации в первом цикле $\varepsilon_{exp} = 2.5\%$ при $T = 274\,\mathrm{K}$ обратимая деформация $\varepsilon_{rev} = 1\%$ и совершенной петли СЭ нет; ε_{rev} возрастает до 2.5% при $\varepsilon_{exp}=35\,\%$. Кристалл при $\varepsilon_{exp}>35\%$ не разрушается. При насыщении водородом в течение 2 h СЭ, равная 2.5%, имеет место в температурном интервале от 262 до 274 K, и ε_{rev} становится равной 3% с увеличением ε_{exp} до 12.5% (рис. 3). При $\varepsilon_{exp} > 12.5\%$ наводороженные кристаллы разрушаются. После насыщения водородом в течение 4 h $\varepsilon_{rev}=1\%$ и при $\varepsilon_{exp}>4\%$ образцы разрушаются.

В кристаллах без водорода, как видно из рис 2, a, величины переохлаждения $\Delta_1 = M_1 - M_s$ и перегрева $\Delta_2 = A_f - A_s$, а также величины термического гистерезиса $\Gamma_1 = A_f - M_s$ и $\Gamma_2 = M_f - A_s$ оказываются равными друг другу (см. таблицу) и, таким образом, петля терми-

Рис. 2. Величина эффекта памяти формы под постоянными растягивающими напряжениями $\sigma=75\,\mathrm{MPa}$ и фазовый состав (вставка) монокристаллов [$\bar{1}11$] сплава $\mathrm{Ti}-50.7\%\,\mathrm{Ni}$ (at.%) при деформации растяжением: a — без водорода; b — после насыщения водородом при $T=295\,\mathrm{K}$ и плотности тока $j=1400\,\mathrm{A/m^2}$ в течение $2\,\mathrm{h}$; c — в течение $4\,\mathrm{h}$.

ческого гистерезиса имеет симметричный вид. Насыщение водородом приводит к увеличению Δ_1 , Δ_2 и Γ_2 по сравнению с состоянием без водорода (см. таблицу). В результате после насыщения водородом петля термического гистерезиса имеет несимметричный вид: $\Gamma_1 < \Gamma_2$. Ранее несимметричный вид петли гистерезиса наблюдали в монокристал-

Рис. 3. Кривая "напряжение—деформация" при растяжении монокристаллов [$\bar{1}11$] сплава Ti-50.7% Ni (at. %) после насыщения водородом при T=295 К и плотности тока j=1400 A/m² в течение 2 h; температура испытания 262 К.

лах сплава Ti-51 at.% Ni при B2 $-R-B19'-M\Pi$ при выделении частиц Ti $_3$ Ni $_4$ [7]. Как видно из рис. 2 и таблицы, в исходных кристаллах обратное МП начинается при $A_s>M_s$, а при насыщении водородом 4 h температуры A_s и M_s становятся близкими друг к другу за счет сильного влияния водорода на M_s и слабого на A_s [8].

Рентгеновский фазовый анализ показал, что в состоянии без водорода при комнатной температуре на рентгенограммах обнаруживаются пики от В2-фазы, в то время как в наводороженных в течение 4 h образцах наблюдаются пики от В2-фазы и частиц ТiNi₃ (рис. 2, вставка). При исследовании тонких фольг кристаллов после насыщения водородом в течение 4 h обнаружена фаза гидрида титана ТiH. Следовательно, водород вследствие своей высокой диффузионной подвижности может способствовать образованию стабильной фазы TiNi₃ при комнатной температуре, которая, как правило, в неэквиатомных сплавах TiNi появляется в результате длительных отжигов при температуре порядка 850 К [1]. Это согласуется с ранее полученными данными на моно- и поликристаллах сплава TiNi, насыщенных водородом [5,8]. Образование частиц TiNi₃ и TiH при насыщении водородом приводит к уменьшению

концентрации Ni в матрице и появлению внутренних напряжений за счет различия в атомных параметрах частиц и матрицы, что, согласно [9,10] является причиной повышения температуры M_s и резкого снижения пластичности. Взаимодействие B19'-мартенсита с частицами TiNi3 и TiH увеличивает $\sigma_{cr}(M_s)$, Γ_2 при обратном B19'-B2-МП и не создает условия для СЭ [1]. В кристаллах при насыщении водородом в течение 2 h электронно-микроскопически и рентгенографически фазы TiH и TiNi3 не обнаружены. Следовательно, водород при насыщении в течение 2 h находится в твердом растворе. Это подтверждается значительным ростом напряжений B2-фазы, небольшим ростом $\sigma_{cr}(M_s)$, появлением СЭ и высокой пластичностью в мартенсите по сравнению с наводороживанием в течение 4 h.

Итак, на монокристалллах $[\bar{1}11]$ сплава Ti-50.7% Ni (at. %) установлено, что насыщение водородом электрохимическим способом повышает температуру M_s , $\sigma_{cr}(M_s)$, уменьшает пластичность и приводит к появлению СЭ, и это определяется влиянием водорода на фазовые изменения сплава TiNi при наводороживании (образование частиц TiNi $_3$ и TiH).

Результаты получены в рамках выполнения государственного задания Минобрнауки России № 16.1346.2014/К.

Список литературы

- [1] Otsuka K., Wayman C.M. Shape memory materials. Cambridge University Press, 1998. 284 p.
- [2] Спивак Л.В. // УФН. 2008. Т. 178. № 9. С. 897–922.
- [3] Степанов И.А., Фломенблит Ю.М., Займовский В.А. // ФММ. 1983. Т. 55. В. 3. С. 612–614.
- [4] Шоршоров М.Х., Степанов И.А., Фломенблит Ю.М., Травкин В.В. // ФММ. 1985. Т. 60. В. 2. С. 326–333.
- [5] Pelton B.L., Slater T., Pelton A.R. // SMST-97. 1997. P. 395-400.
- [6] Sehitoglu H., Hamilton R., Canadic D., Zhang X.Y., Karaman I., Chumlyakov Yu., Maier H.J. // Metall. and Mat. Trans. A. 2003. V. 34. N 5. P. 6–13.
- [7] Панченко Е.Ю., Чумляков Ю.И., Киреева И.В., Овсянников А.В., Сехитоглу Х., Караман И., Майер Г. // ФММ. 2008. Т. 106. № 6. С. 597–603.
- 5 Письма в ЖТФ, 2015, том 41, вып. 6

- [8] Чумляков Ю.И., Киреева И.В., Панченко Е.Ю., Кириллов В.А., Тимофеева Е.Е., Кретинина И.В., Данильсон Ю.Н., Кагатап I., Maier H., Cesari E. // Известие вузов. Физика. 2011. Т. 54. № 8. С. 96–108.
- [9] Hornbogen E., Mertinger V., Wurzel D. // Scripta Mater. 2001. V. 44. P. 171–178.
- [10] Hornbogen E. // Acta metal. 1985. V. 33. N 4. P. 595–601.