04

Моделирование распределения элктростатического поля в системе электродов устройства, формирующего высоковольтный газовый разряд

© М.А. Маркушин, В.А. Колпаков, С.В. Кричевский, А.И. Колпаков

Самарский государственный аэрокосмический университет (национальный исследовательский университет), 443110 Самара, Россия

e-mail: markushin_max@mail.ru

(Поступило в Редакцию 6 мая 2014 г. В окончательной редакции 25 июля 2014 г.)

Представлена модель распределения электрического поля в системе электродов газоразрядного устройства. Показана возможность применения метода конформного отображения функции комплексной переменной для аналитического описания характера распределения эквипотенциалей поля в области круглого отверстия в аноде газоразрядного устройства. Приведена методика получения системы параметрических уравнений для определения линий равного потенциала и силовых линий поля. Получены расчетные изображения электрического поля, позволяющие определить их связь с электрофизическими параметрами электродной системы устройства.

Введение

Внеэлектродная газоразрядная плазма, формируемая высоковольтным газовым разрядом, используется для изготовления омических контактов к полупроводниковым элементам, плазмохимического травления кварца, очистки поверхностей контактов малогабаритных реле, полупроводниковых и диэлектрических подложек [1-4]. Широкое распространение этого разряда обусловлено высокой равномерностью потока заряженных частиц в области его сечения, независимостью параметров разряда от размеров обрабатываемой площади [5,6]. Данные достоинства газового разряда определяются характером распределения электрического поля в системе электродов устройства [7-9]. Это утверждение справедливо, так как именно распределение электрического поля определяет концентрацию и длину прямолинейных участков силовых линий поля, в области которых происходит процесс ионизации атомов остаточного газа. Однако в данных работах отсутствуют сведения о взаимосвязи параметров элементов конструкции устройства и электрического поля, формируемого при подаче ускоряющего напряжения на его электроды. Процесс экспериментального исследования рассматриваемой взаимосвязи достаточно трудоемок, поэтому в настоящей работе предлагается аналитическое описание характера распределения электрического поля в системе электродов газоразрядного устройства.

 Расчет распределения электростатического поля, образуемого электродами газоразрядного устройства, методом конформных отображений

Высоковольтный газовый разряд формируется только в области отверстия в аноде [8], т.е. в области обра-

зования существенной неоднородности электрического поля. За пределами этой неоднородности конструкция газоразрядного устройства представляет собой плоский конденсатор с равномерным распределением поля. Это означает полную независимость параметров неоднородности электрического поля в области отверстия в аноде от размеров электродов плоского конденсатора. Следовательно, конструкцию газоразрядного устройства можно моделировать системой электродов, в которой области катода и анода за пределами неоднородности электрического поля удалены в бесконечность (рис. 1). Существенно неравномерный характер распределения электрического поля в области отверстия в аноде затрудняет его аналитическое описание. Поэтому для упрощения рассматриваемой задачи нахождения распределения поля необходимо ее условия свести к решению двумерной задачи. Это позволяет значительно упростить процесс расчета силовых линий и линий равного потенциала поля путем нахождения комплексного потенциала для канонической области с простой формой границ [10,11]. Другое упрощение заключается в том, что толщина анода в пределах до 0.5 mm оказывает незначительное влияние на процесс формирования электрического поля, и, поскольку указанная

Рис. 1. Схема конструкции устройства, формирующего высоковольтный газовый разряд: h — расстояние между катодом и анодом, D — радиус отверстия в аноде, V — потенциал на аноде, 0 — потенциал на катоде [6].

Рис. 2. Схема отображений электродной системы газоразрядного устройства: *а* — в плоскости *Z*; *b* — в плоскости *ω*.

Рис. 3. Схема дополнительного отображения полуплоскости $\operatorname{Im} \omega > 0$ на полосу $0 < \operatorname{Im} \xi < V$ с разрезами по соответствующим лучам.

толщина много меньше межэлектродного расстояния катод—анод (h до 10 mm), этой величиной можно пренебречь. Рассматривая только правую часть полученной электродной системы, в силу ее симметричности, можно использовать для решения поставленной задачи метод конформного отображения, осуществляя проекцию электродов на комплексную плоскость Z. Данная проекция представлена на рис. 2, a в виде многоугольника $A_1A_2A_3A_4$.

Процесс моделирования электрического поля осуществляется поэтапно, т.е. сначала находится конформное отображение $Z = f(\omega)$ верхней полуплоскости Im $\omega > 0$ на область поля Z с электродами A_1A_2 (катод), A_3A_4 (анод) (см. рис. 2) с внутренними углами $\alpha_k \pi$ при вершинах, затем дополнительное отображение $\xi = f(\omega)$ полуплоскости ω на полосу $0 < \text{Im } \xi < V$ с внутренними углами $\beta_k \pi$ при вершинах (рис. 3).

Журнал технической физики, 2015, том 85, вып. 3

1.1. Конформное отображение области, ограниченной системой электродов, на область положительных мнимых значений, ограниченную осью действительных чисел

На данном этапе вершинам $A_1A_2A_3A_4$ плоскости Z ставятся в соответствие некоторые точки действительной оси плоскости ω . Исходя из теоремы о единственности конформного отображения при заданном соответствии трех граничных точек, выбираемых произвольно, например, 0, 1, ∞ , можно получить соответствие [11]

$$\begin{array}{cccccc} A_1 & A_2 & A_3 & A_4 \\ \textcircled{1} & \textcircled{1} & \textcircled{1} & \textcircled{1} \\ 0 & 1 & a^2 & \infty. \end{array}$$

Используя методику [10–12], можно определить углы μ_k , дополняющие внутренние углы α_k при вершинах четырехугольника $A_1A_2A_3A_4$, до π . Поэтому, рассматривая внутреннюю область четырехугольника и двигаясь в положительном направлении обхода ее границы, т.е. в направлении, противоположному вращению часовой стрелки, находим углы: $\mu_1 = 1/2$ ($\alpha_1 = 1 - \mu_1 = 1/2$), $\mu_2 = 1$ ($\alpha_2 = 1 - \mu_2 = 0$), $\mu_3 = -1$ ($\alpha_3 = 1 - \mu_3 = 2$), $\mu_4 = 3/2$ ($\alpha_4 = 1 - \mu_4 = -1/2$). Согласно [12], выполнение равенства $\sum_{i=1}^{4} \alpha_1 = 2$ подтверждает правильность полученных значений искомых углов.

Для нахождения отображающей функции области, ограниченной многоугольником $A_1A_2A_3A_4$ используется интеграл Шварца—Кристоффеля [11]. Конформное отображение верхней полуплоскости Im $\omega > 0$, ограниченной осью действительных значений на плоскость Z, будет иметь в этом случае вид

$$Z = C \int_{\omega_0}^{\omega_1} (\omega - a_1)^{\alpha_1 - 1} (\omega - a_1)^{\alpha_1 - 1} \dots (\omega - a_n)^{\alpha_n - 1} d\omega + C.$$
(1)

Подставляем в выражение (1) вместо точек $a_1 - a_n$ соответствующие точки 0, 1, a^2 , ∞ . Поскольку точка a_4 , соответствующая A_4 , равна ∞ , то относящийся к этой вершине множитель в интеграле Шварца-Кристоффеля выпадает [10] и рассматриваемое выражение упрощается

$$Z = C \int_{0}^{\omega} \omega^{-1/2} (\omega - 1)^{-1} (\omega - a^2) d\omega + C_1$$
$$= C \int_{0}^{\omega} \frac{(\omega - a^2)}{(\omega - 1)\sqrt{\omega}} d\omega + C_1.$$

Для решения данного интеграла введем новую переменную $\omega = x^2$, тогда его можно представить выражением

$$Z = C \int_{0}^{\sqrt{\omega}} \frac{(x^2 - a^2)}{(x^2 - 1)x} dx^2 + C_1$$

= $2C\sqrt{\omega} + C(a^2 - 1) \ln \frac{1 + \sqrt{\omega}}{1 - \sqrt{\omega}} + C_1.$ (2)

Значение постоянного коэффициента C_1 определяем из соответствия точек $A_1 \leftrightarrow 0$, позволяющего записать равенство:

$$Z = 2C \cdot 0 + C(a^2 - 1) \ln \frac{1 + 0}{1 - 0} + C_1 = C_1 = 0.$$

Переход с нижнего электрода на верхний, соответствующий переходу луча A_1A_2 на луч A_3A_4 (см. рис. 2, *a*), позволяет определить постоянные a^2 и *C*. В результате функция получает приращение

$$\Delta Z = ih. \tag{3}$$

С другой стороны, при таком малом приращении $\Delta \omega$ приращение первого слагаемого в (2) также будет малым ввиду непрерывности этого слагаемого в точке $\omega = 1$. Приращение же второго слагаемого с учетом того, что при обходе точки $\omega = 1$ аргумент меняется от π до 0, имеет вид

$$\ln \frac{1-\sqrt{\omega}}{1+\sqrt{\omega}} = \ln(r) - \ln(re^{i\pi}) = -i\pi.$$

Это дает право записать выражение

$$\Delta Z = \lim_{r \to 0} \left[2C\sqrt{\omega} - C(1 - a^2) \ln \frac{1 - \sqrt{\omega}}{1 + \sqrt{\omega}} \right]_{\omega = re^{i\pi}}^{\omega = r}$$
$$= C(1 - a^2)(-i\pi). \tag{4}$$

Приравнивая (3) и (4), получаем

$$ih = C(a^2 - 1)i\pi.$$

Таким образом, характер изменения коэффициента a^2 можно описать равенством

$$a^2 = \frac{h}{C \cdot \pi} + 1. \tag{5}$$

Соответствие точек a^2 и A_3 позволяет преобразовать выражение (2) к виду

$$D + ih = \frac{2ha}{(a^2 - 1)\pi} + \frac{h}{\pi} \ln\left(\frac{a+1}{a-1}\right).$$

Слагаемое *ih* в левой части данного уравнения можно опустить, так как точка a^2 на плоскости ω имеет только действительную координату, что позволяет упростить данное выражение до вида

$$\exp\left(D\frac{\pi}{h} - \frac{2a}{a^2 - 1}\right) = \frac{a+1}{a-1}.$$
 (6)

Задаваясь конкретными значениями D = 1.5 mm, h = 1.2 mm, можно получить решение трансцендентного уравнения (6) и найти величину постоянной $a^2 = 2.294$. Подставляя ее в (5), получим C = 0.295 mm.

В окончательном варианте функция, реализующая конформное отображение полуплоскости *ω* на плоскость *Z*, имеет вид

$$Z = 2C\sqrt{\omega} + \frac{h}{\pi}\ln\left(\frac{1+\sqrt{\omega}}{1-\sqrt{\omega}}\right).$$
 (7)

Таким образом, выражения (5), (6) позволяют найти постоянную C, значение которой зависит от конструктивных параметров D и h, а выражение (7) заканчивает первый этап моделирования электростатического поля, создаваемого системой электродов устройства формирования внеэлектродной плазмы.

1.2. Конформное отображение верхней полуплоскости действительных и мнимых значений на полосу, ограниченную бесконечными электродами

На втором этапе применяется дополнительное отображение полуплоскости Im $\omega > 0$ на полосу $0 < \text{Im } \xi < V$ с разрезами по соответствующим лучам (см. рис. 3). При данном отображении в плоскости имеем конденсатор с бесконечными обкладками.

В силу симметричности конструкции электродов газоразрядного устройства будем рассматривать только правый треугольник с вершинами $B_1B_2B_3$, в соответствие которым ставятся некоторые точки 0, 1, ∞ , лежащие на действительной оси ω [11]:

$$\begin{array}{cccc} B_1 & B_2 & B_3 \\ \textcircled{1} & \textcircled{1} & \textcircled{1} & \textcircled{1} \\ 0 & 1 & \infty \end{array}$$

Внутренние углы β_k при вершинах треугольника B_1, B_2, B_3 и углы μ'_k , дополняющие углы β_k до π , определяем аналогично α_k, μ_k : $\mu'_2 = 1$ ($\beta_2 = 1 - \mu' = 0$), $\mu_3 = 1/2$ ($\beta_3 = 1 - \mu'_3 = 1/2$), $\mu'_1 = 1/2$ ($\beta_1 = 1 - \mu_1 = 1/2$).

Полученные значения $\beta_1 = 1/2$, $\beta_2 = 0$, $\beta_3 = 1/2$ обеспечивают равенство $\sum_{i=1}^{3} \beta_i = 1$, что, согласно [11], подтверждает правильность значений искомых углов.

Рассматриваемое дополнительное конформное отображение также определяется с помощью интеграла Шварца-Кристоффеля [10]

$$\xi = C_2 \int_0^{\omega} \omega^{-1/2} (\omega - 1)^{-1} d\omega = C_2 \int_0^{\omega} \frac{d\omega}{(\omega - 1)\sqrt{\omega}} + C_3.$$

Введение новой переменной $\omega = u^2$ позволяет получить решение данного интеграла

$$\xi = 2C_2 \int_{0}^{\sqrt{\omega}} \frac{u du}{(u^2 - 1)u} + C_3 = -C_2 \ln \frac{1 + \sqrt{\omega}}{1 - \sqrt{\omega}} + C_3. \quad (8)$$

Журнал технической физики, 2015, том 85, вып. 3

Из соответствия точек $B_1 \leftrightarrow 0$ по методике, изложенной выше, находится постоянная C_3

$$egin{aligned} \xi &= -C_2 \ln rac{1+\sqrt{0}}{1-\sqrt{0}} + C_3 = 0 + C_3, \ C_3 &= 0. \end{aligned}$$

Постоянная C_2 определяется аналогично постоянной C на первом этапе, а именно, при обходе точки $\omega = 1$ получаем приращение

 $\Delta \xi = iV.$

Поскольку приращение аргумента при обходе указанной выше точки меняется от π до 0, то приращению функции ξ соответствует выражение

$$\Delta \xi = \lim_{r \to 0} \left[-C_2 \ln \frac{1 + \sqrt{\omega}}{1 - \sqrt{\omega}} \right]_{\omega = re^{i\pi}}^{\omega = 1} = -C_2(-i\pi) = C_2 i\pi,$$
позволяющее получить равенство

$$iV = C_2 i\pi.$$

Решая это равенство, определим C_2

$$C_2 = \frac{V}{\pi}.$$

Окончательная функция, конформно отображающая полуплоскость ω на полосу $0 < \text{Im } \xi < V$, имеет вид

$$\xi = \frac{V}{\pi} \ln \frac{1 + \sqrt{\omega}}{1 - \sqrt{\omega}} = \frac{2V}{\pi} \operatorname{arcth} \sqrt{\omega}.$$
 (9)

Используя (7) и (9), получаем систему уравнений

$$\begin{cases} Z = 2C\sqrt{\omega} + \frac{h}{\pi}\ln\left(\frac{1+\sqrt{\omega}}{1-\sqrt{\omega}}\right), \\ \xi = \frac{2V}{\pi}\operatorname{arcth}\sqrt{\omega}. \end{cases}$$
(10)

Из (10) находим

$$Z = 2C \cdot \operatorname{th} \frac{\xi \pi}{2V} + \frac{h}{\pi} \ln \left(\frac{1 + \operatorname{th} \frac{\xi \pi}{2V}}{1 - \operatorname{th} \frac{\xi \pi}{2V}} \right)$$
$$= 2C \cdot \operatorname{th} \frac{\xi \pi}{2V} + \frac{h}{V} \xi. \tag{11}$$

Параметрические уравнения линий равного потенциала и силовых линий поля находятся из выражения (11) путем разделения действительных и мнимых частей уравнения. После разделения получаем систему уравнений, описывающую координаты распределения электрического поля в системе электродов газоразрядного устройства:

$$\begin{cases} x = \frac{hu}{V} + 2C \frac{\mathrm{sh} \frac{u\pi}{V}}{\mathrm{ch} \frac{w\pi}{V} + \mathrm{cs} \frac{v\pi}{V}}, \\ y = \frac{hv}{V} + 2C \frac{\mathrm{sin} \frac{v\pi}{V}}{\mathrm{ch} \frac{w\pi}{V} + \mathrm{cs} \frac{v\pi}{V}}. \end{cases}$$
(12)

Подставляя в выражения (5), (6) и систему (12) соответствующие параметры h, V, D и меняя с необходимым шагом значения переменных v и u, можно определить координаты силовых линий и линий равного потенциала (рис. 4). Таким образом, система уравнений (12) позволяет расчетным путем, варьируя параметрами h, V, D, получить систему электродов для формирования необходимого электрического поля.

Рис. 4. Распределение силовых линий и эквипотенциалей поля в системе электродов газоразрядного устройства, полученного с помощью системы уравнений (15), при h = 1.2 mm, D = 1.5 mm, V = 1200 V.

Анализ распределения электростатического поля устройства формирования внеэлектродной плазмы

Анализ распределения силовых линий поля, описываемого системой (12), показывает, что при задании значений $u = u_0$ и $v_0 = 0$, можно определить начальную координату ($x = x_0, y = y_0 = 0$) прямолинейного участка силовой линии. Далее осуществляем перебор всех значений $v = v_1 - v_n$, при которых координата $x = x_0$ постоянная, а у изменяется в пределах $y_1 - y_n$. Затем, сравнивая полученное максимальное значение у_n с длиной свободного пробега электрона $k\lambda_e$ (k = 1, 2, 3) и значение потенциала в данной точке с энергией ионизации атома (молекулы) рабочего газа E_i , осуществляется проверка выполнения условия возникновения внеэлектродного разряда $\gamma Q \ge 1$ по методике, изложенной в работе [8], где у — число электронов, выбиваемых одним ионом из катода (*γ*-процесс), *Q* — количество положительных ионов, образованных электроном на траектории своего движения за счет ударной ионизации атомов и молекул рабочего газа (α-процесс). Проверка заключается в том, что энергия, набираемая электроном на длине свободного пробега, должна быть больше энергии ионизации атома рабочего газа, а энергия иона, бомбардирующего катод, должна быть достаточна для эмиссии необходимого для поддержания самостоятельного разряда количества электронов. Аналогичным образом, меняя значения $u = u_1 - u_n$ при $v_0 = 0$, определяем соответствующие им $x = x_1 - x_n$. Затем, перебирая для каждого *x* все значения $v = v_1 - v_n$ (смотри выше), находим $y = y_1 - y_n = 0 - k\lambda_e$, т.е., повторяя процесс сравнения, можно найти все силовые линии с начальными координатами $x_0, \ldots, x_{\lambda_e}$, на прямолинейных участках которых происходит процесс ионизации (α -процесс), и соответственно длину участка катода $\Delta x = 2x_{\lambda_e}$, где осуществляется процесс эмиссии электронов из катода (у-процесс) [13].

Для сравнения максимального значения y_n с $k\lambda_e$ необходимо найти длину свободного пробега электрона. Воспользовавшись выражением $\lambda_e = \frac{1}{N\sigma_i}$ [14], получим значение 0.203 сm, которое позволяет определить $\Delta x = 318 \,\mu$ m. Расчетное значение Δx хорошо коррелирует с экспериментальными данными, полученными в работе [9], а именно размер участка поверхности катода, где наблюдается его интенсивное распыление положительными ионами, равен 300 μ m, сравним с размером участка Δx , на котором прямолинейные отрезки силовых линий соответствуют по длине $k\lambda_e$, и соблюдается условие возникновения внеэлектродного разряда.

Кроме того, в каждой точке силовой линии $y_{ni} = \lambda_e$, $2\lambda_e$, $3\lambda_e$ соответствующий участок эквипотенциали хорошо апроксимируется с помощью окружности. Причем центры данных окружностей смещены относительно катода устройства, что предопределяется разной длиной прямолинейных участков силовых линий: линии с максимальной длиной прямолинейного участка сгущаются к центру. Если провести кривую, проходящую по точкам пересечения касательной к окружностям в точках $y_{ni} = \lambda_e, 2\lambda_e, 3\lambda_e$ на участках силовых линий $x_0, \ldots, x_{\lambda_e},$ то получится кривая параболической формы, подобная кривой, ограничивающей концы прямолинейных участков на изображении распределения электрического поля в области электродов газоразрядного прибора, приведенном в работе [9]. Именно параболическая форма данной кривой обусловливает параболическую форму профиля ямок травления на поверхности катода, образованных положительными ионами, представленного в той же работе.

Заключение

Полученные в настоящей работе результаты позволяют методом конформного отображения осуществить моделирование распределения силовых линий и эквипотенциалей электрического поля в электродной системе устройства, формирующего направленный поток внеэлектродной плазмы по таким конструктивным и физическим параметрам как расстояние анод-катод, диаметр отверстия в аноде, напряжение на электродах. Кроме того, с помощью отмеченных результатов проведена оценка длины прямолинейных участков силовых линий, на которых выполняется условие $y_{ni} = k\lambda_e$, размера катодного пятна Δx , в пределах которого осуществляется у-процесс. Причем расхождение полученного расчетным путем значения Δx с экспериментальным составляет не более 6%. Возможность получения расчетных графических зависимостей распределения силовых линий и эквипотенциалей электрического поля в электродной системе позволяют оптимизировать конструкцию устройства формирования внеэлектродной плазмы, не проводя затратных экспериментальных исследований.

Работа выполнена при поддержке гранта Российского фонда фундаментальных исследований (проект № 15-32-20005 мол_а_вед).

Список литературы

- [1] Комов А.Н., Колпаков А.И., Бондарева Н.И., Захаренко В.В. // ПТЭ. 1984. № 5. С. 218–220.
- [2] Казанский Н.Л., Колпаков А.И., Колпаков В.А. // Микроэлектроника. 2004. Т. 33. № 3. С. 218–233.
- [3] Колпаков В.А., Колпаков А.И., Кричевский С.В. // Электронная промышленность. 1996. № 2. С. 41-44.
- [4] Колпаков В.А., Колпаков А.И., Кричевский С.В. // Компьютерная оптика. 2005. № 28. С. 80-86.
- [5] Колпаков В.А., Колпаков А.И. // Компьютерная оптика. 2003. № 25. С. 112–117.
- [6] Казанский Н.Л., Колпаков В.А., Колпаков А.И., Кричевский С.В. // Научное приборостроение. 2012. Т. 22. № 1. С. 13–18.
- [7] Пат. № 2333619 РФ. Сойфер В.А., Казанский Н.Л., Колпаков В.А., Колпаков А.И. 2008. Бюл. № 24. 5 с.
- [8] Казанский Н.Л., Колпаков В.А. Формирование оптического микрорельефа во внеэлектродной плазме высоковольтного газового разряда. М.: Радио и связь, 2009. 220 с.
- [9] Колпаков В.А., Колпаков А.И., Подлипнов В.В. // ЖТФ. 2013. Т. 83. Вып. 4. С. 41–46.
- [10] Миролюбов Н.Н., Костенко М.В., Левинитейн М.Л., Тиходеев Н.Н. Методы расчета электростатических полей. М.: Высшая школа, 1963. 415 с.
- [11] Лавреньтьев М.А., Шабат Б.В. Методы теории функции комплексного переменного. М.: Наука, 1973. 736 с.
- [12] Новгородцев А.Б., Фетхиев А.Р., Фетхиева И.С. Применение функции комплексного переменного к расчету электростатических полей электродов сложной конфигурации. Уфа: Уфимский ордена Ленина авиац. ин. им. Серго Орджоникидзе, 1986. 82 с.
- [13] Райзер Ю.П. Физика газового разряда. М.: Наука, 1987. 592 с.
- [14] Кудрявцев А.А., Смирнов А.С., Цендин Л.Д. Физика тлеющего разряда: Учебное пособие. СПб.: Лань, 2010. 512 с.