## Исследование кристаллической структуры наноостровков кремния на сапфире

## © Н.О. Кривулин<sup>¶</sup>, А.В. Пирогов, Д.А. Павлов, А.И. Бобров

Нижегородский государственный университет им. Н.И. Лобачевского, 603950 Нижний Новгород, Россия

(Получена 23 мая 2014 г. Принята к печати 16 июня 2014 г.)

В работе представлены результаты исследований кристаллической структуры наноразмерных островков кремния на сапфире. Показано, что основными дефектами в наноостровках кремния на сапфире являются дефекты двойникования. В результате формирования таких дефектов в островках кремния на сапфире формируются различные кристаллографические ориентации. На начальных стадиях молекулярно-лучевой эпитаксии кремния на сапфире присутствуют две основные ориентации — (001) параллельно поверхности и (001) под углом 70° к поверхности.

Нанокристаллический кремний интересен тем, что, в отличие от обычного кристаллического кремния, способен эффективно излучать свет в видимой и ближней инфракрасной областях спектра [1]. Ранее нами была показана возможность формирования плотных массивов наноостровков кремния на *r*-срезе сапфира (01 $\overline{1}2$ ) и построена модель их роста [2,3]. Поверхностная плотность наноостровков может достигать величин  $\sim 10^{11}\,{
m cm^{-2}},$ что сравнимо с результатами, получаемыми в системе кремний-германий [4,5]. При этом размеры островков измеряются единицами нанометров. Нанокристаллический кремний на сапфире представляет собой совершенно новую, мало изученную разновидность самоорганизованных структур на основе кремния, и любая информация о ней представляется актуальной, в первую очередь с фундаментальной точки зрения. В данной работе приводятся результаты исследования кристаллической структуры наноостровков кремния на сапфире.

Для получения наноостровковых структур кремния на сапфире использовался метод сублимационной молекулярно-лучевой эпитаксии, подробно описанный в [2,6]. Исследование поперечного среза полученных образцов проводилось в просвечивающем электронном микроскопе JEM-2100F (JEOL, Япония) в режиме высокого разрешения, ускоряющее напряжение составляло 200 кВ.

Согласно данным просвечивающей электронной микроскопии (ПЭМ) на начальных стадиях молекулярнолучевой эпитаксии (МЛЭ) в островках не содержится никаких дефектов. При этом по форме наноостровки представляют собой сегмент сферы. Когда высота островка достигает 8 нм, он начинает расти преимущественно в латеральных направлениях. Начиная с этого момента островок по форме становится похожим на усеченный купол. На некоторых островках шириной 25 нм и более были обнаружены дефекты двойникования. На рис. 1 представлен типичный островок кремния на сапфире с таким дефектом. Двойники ориентированы под углом 70° по отношению к подложке сапфира — это двойники по плоскости (111), типичные для эпитаксиального слоя кремния с ориентацией (001) [7]. При этом непонятно, являются ли данные дефекты крупных островков следствием коалесценции более мелких островков, или это ростовые дефекты, которые возникают в них при укрупнении. Таким образом, мы можем предположить, что при коалесценции двух и более островков дефекты формируются в местах их соприкосновения, либо наличие таких дефектов можно объяснить релаксацией напряжений в кремниевых островках. Так как постоянная решетки кремния больше, чем постоянные решетки сапфира в плоскости *r*-среза, кремниевый островок оказывается сжатым. При росте островка напряжения, образующиеся в результате сжатия, накапливаются, и в какойто момент происходит релаксация этих напряжений с образованием дефекта. Второй механизм образования дефектов на самых ранних стадиях более вероятен, так как расстояния между островками составляют в среднем 10-15 нм. К тому же этот механизм считается основным в системе кремний-сапфир [8,9].



**Рис. 1.** ПЭМ-снимок высокого разрешения поперечного среза островка кремния с дефектом двойникования.



**Рис. 2.** Быстрое фурье-преобразование от островка кремния с дефектом двойникования. Двойными квадратными скобками обозначены индексы плоскостей Si.

Следует обратить внимание на то, что кристаллографическая ориентация сплошных слоев кремния на *r*-срезе сапфира есть (001). Доля других кристаллографических ориентаций незначительна [10]. На рис. 1 видно, что даже в пределах одного островка практически в равных долях присутствуют по крайней мере две ориентации. Для выявления кристаллографических ориентаций и оценки объемной доли каждой ориентации, мы использовали фурье-преобразование.

Преобразование Фурье — это операция, сопоставляющая одной функции другую функцию. Новая функция описывает коэффициенты ("амплитуды") при разложении исходной функции на элементарные составляющие — гармонические пространственные колебания с различными пространственными частотами. Таким образом, представляя распределение интенсивности на любом изображении размерами x, y в виде некоторой функции  $I(\mathbf{r})$ , где  $\mathbf{r}$  — двумерный вектор, описывающий положение на изображении, можно представить его в виде набора периодических функций. Если применять фурьепреобразование к ПЭМ-снимку высокого разрешения, то получится картина, идентичная картине дифракции. Данный метод широко применяется и подробно описан в литературе (см., например, [11,12]). На рис. 2 представлена картина, получившаяся в результате быстрого фурье-преобразования от островка кремния на сапфире с дефектом двойникования, изображенного на рис. 1. Точно так же выглядела бы и электронограмма от этого участка. Преимущество фурье-преобразования перед электронографией в том, что картину дифракции можно получать от участков, размеры которых ограничены единицами нанометров. В случае наноразмерных островков (рис. 1), мы проводили фурье-преобразования отдельно для каждой части каждого островка относительно дефекта двойникования и для сапфировой подложки. Всего было исследовано 3 образца. На каждом образце проводились такие операции для 8–10 островков. На рис. 2 белыми окружностями отмечены рефлексы, принадлежащие правой области островка относительно двойника, черными — левой, а квадратами — рефлексы от подложки из сапфира.

Как видно из рис. 2, симметрия рефлексов обеих частей островка одинакова, однако ориентация различна, т. е. рефлексы повернуты друг относительно друга на угол 70°. Таким образом, в плоскости среза ориентация обеих частей островка одна — (110). В направлении же роста ориентация (001) одной из частей островка повернута относительно [110] на угол 70.6°.

Далее можно выделить отдельные семейства рефлексов на картине дифракции и провести обратное фурьепреобразование. Таким образом, можно выделить отдельные семейства плоскостей на ПЭМ-снимке островка кремния и вычислить объемную долю каждой ориентации.

На рис. 3 показана картина пространственных частот после наложения маски, соответствующей положению рефлексов правой части островка. После обратного фурье-преобразования получаем картину распределения семейств плоскостей на снимке (рис. 4). То же самое сделано и для левой части островка, а также для сапфировой подложки.

В обеих частях островка имеется одно семейство плоскостей типа {111}, остальные же семейства располагаются под углом друг к другу. Выявляя различные семейства плоскостей, определяли кристаллографические направления различных частей наноостровков. На рис. 1 показаны эти направления. Справа от границы двойникования мы видим 2 семейства плоскостей



**Рис. 3.** Наложение маски рефлексов правой части островка на картину пространственных частот.



Рис. 4. Фильтрация картины высокого разрешения по рефлексам правой части островка.

типа {111}. Угол между ними составляет 70.6°. Направление [001] этой части островка совпадает с нормалью к поверхности. Слева от границы двойникования также присутствует 2 семейства плоскостей типа {111}, угол между ними тот же. Однако направление типа [001] для данной области уже не совпадает с нормалью, а отклоняется от нее на угол 70.6°. Такие исследования проведены для серии образцов. При этом на каждом образце вычислялись объемные доли каждой ориентации. Было получено соотношение: 60% — ориентация (001), 40% — ориентация (001) под углом 70.6° к поверхности.

Таким образом, на начальных стадиях молекулярнолучевой эпитаксии кремния на сапфире, присутствуют две основные ориентации — (001) параллельно поверхности ( $\sim 60\%$ ) и (001) под углом 70.6° к поверхности ( $\sim 40\%$ ).

## Список литературы

- [1] L.T. Canham. Appl. Phys. Lett., 57 (10), 1046 (1990).
- [2] Д.А. Павлов, Е.В. Коротков, П.А. Шиляев, Н.О. Кривулин. Письма ЖТФ, **36** (12), 16 (2010).
- [3] Н.О. Кривулин, Д.А. Павлов, П.А. Шиляев. ФТП, 47 (12), 1621 (2013).
- [4] A. Portavoce, K. Hoummada, I. Berbezier, A. Ronda, D. Mangelinck. Appl. Phys. Lett., 100, 164 105 (2012).
- [5] A.I. Nikiforov, V.A. Timofeev, S.A. Teys, A.K. Gutakovsky, O.P. Pchelyakov. Thin Sol. Films, **520**, 3319 (2012).
- [6] Д.А. Павлов, П.А. Шиляев, Н.О. Кривулин и др. Вестник ННГУ им. Н.И. Лобачевского. Физика твердого тела, № 4 (1), 38 (2013).
- [7] П.Д. Браун, Ю.Ю. Логинов, У.М. Стоббс, К. Дж. Хамфрейс. ФТТ, 38 (1), 284 (1996).

- [8] M.S. Abrahams, V.L. Hutchison, G.R. Booker. Phys. Status Solidi A, 63 (1), K3 (1981).
- [9] M.E. Twig, E.D. Richmond, J.G. Pellegrino. Appl. Phys. Lett., 54 (18), 1766 (1989).
- [10] С.А. Денисов, С.П. Светлов, В.Ю. Чалков и др. Вестник ННГУ им. Н.И. Лобачевского. Физика твердого тела, 1 (9), 185 (2006).
- [11] M.J. Hytch, E. Snoeck, R. Kitaas. Ultramicroscopy, 74, 131 (1998).
- [12] M. Takeda, J. Suzuki. J. Opt. Soc. Am. A, 13, 1495 (1996).

Редактор Л.В. Шаронова

## The crystal structure of silicon-on-sapphire nanoisland

N.O. Krivulin, D.A. Pavlov, A.V. Pirogov, A.I. Bobrov

N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia

**Abstract** The paper presents the results of study of the crystal structure of nanoscale silicon islands on sapphire. It is shown that the main defects in silicon-on-sapphire nanoislands are twinning defects. As a result of such defects in the silicon islands on sapphire different crystallographic orientations are formed. At the initial stages of molecular-beam epitaxy of silicon on sapphire, there are two main orientations — (001) parallel to the surface and (001) at an angle of 70° to the surface.