11

Структурные и магнитные превращения в сплавах Ni_{51-x}Mn_{36+x}Sn₁₃

© Ю.В. Калетина, Е.Г. Герасимов, В.М. Счастливцев, В.С. Гавико, П.Б. Терентьев

Институт физики металлов УрО РАН, Екатеринбург, Россия E-mail: kaletina@imp.uran.ru

(Поступила в Редакцию 28 июля 2014 г.)

Исследованы структурные и магнитные фазовые переходы в сплавах на основе системы Ni–Mn–Sn. Установлены температурные зависимости мартенситных и магнитных фазовых превращений при замещении атомов никеля атомами марганца в сплавах Ni_{51-x}Mn_{36+x}Sn₁₃ ($0 \le x \le 4$). Построена концентрационная фазовая диаграмма для исследованных сплавов, на которой определены температурные области существования высокотемпературной аустенитной фазы $L2_1$ и низкотемпературной мартенситной фазы в разных магнитных состояниях.

Работа выполнена по плану РАН (тема № г.р. 01201064335), а также при частичной поддержке РФФИ (проекты № 12-03-00050-а и 13-02-96022р_урал_а).

1. Введение

Магнитоупорядоченные сплавы с эффектом памяти формы являются объектами интенсивных фундаментальных и прикладных исследований. В этих сплавах вследствие существования магнитного упорядочения эффект памяти формы может управляться внешним магнитным полем, наблюдаются магнитокалорический эффект, гигантское магнитосопротивление и другие свойства, которые позволяют применять такие сплавы для различных многофункциональных приводов, датчиков и магнитомеханических преобразователей. Наиболее изученными среди магнитоупорядоченных сплавов Гейслера с эффектом магнитной памяти формы являются сплавы на основе Ni-Mn-Ga [1-3]. В настоящее время большое внимание привлекают новые сплавы, не содержащие галлий, на основе Ni-Mn-Z (Z = In, Sn, Sb). В сплавах Ni-Mn-Z наблюдается довольно сложная последовательность структурных и магнитных переходов; присутствуют широкие области концентраций, при которых в сплавах сосуществуют магнитное упорядочение и мартенситные превращения. Впервые мартенситное превращение и магнитное упорядочение в нестехиометрических сплавах Гейслера $Ni_{50}Mn_{50-x}Z_x$ (Z = In, Sn, Sb) с $10 \le x \le 25$ было исследовано в работе [4]. Затем последовало большое число работ, посвященных исследованию магнитных и структурных свойств новых сплавов, магнитокалорического эффекта, магнитосопротивления, влияния различных обработок и микроструктуры на свойства сплавов [5-12]. Наиболее важным с практической точки зрения является поиск составов, при которых мартенситное превращение происходит вблизи комнатной температуры, а температура Кюри аустенита остается выше температуры мартенситного превращения. В связи с этим интенсивно исследуются магнитные свойства и мартенситные превращения в сплавах типа Ni₅₀Mn_{50+x} Z_x [5], Ni_{50+x}Mn_{50-x-y} Z_y [15], $Ni_{50-x}Co_xMn_{50-y}Z_y$ [9].

В наших предыдущих работах [13–15] было исследовано влияние замещения атомов никеля атомами марганца на структурные и магнитные фазовые превращения в сплавах $Ni_{47-x}Mn_{42+x}In_{11}$ ($0 \le x \le 2$). Целью настоящей работы является получение сплавов $Ni_{51-x}Mn_{36+x}Sn_{13}$ ($0 \le x \le 4$) и изучение структурных и магнитных превращений в них.

2. Методика эксперимента

Сплавы Ni_{51-x}Mn_{36+x}Sn₁₃ ($0 \le x \le 4$) выплавлены методом электродуговой плавки в атмосфере аргона. После выплавки они подвергались гомогенизирующему отжигу при температуре 1123 К в течение 168 h с последующей закалкой в воде, затем вырезались образцы для структурных исследований и магнитных измерений.

Структурные исследования выполнены на оптическом микроскопе "Neophot-30" на шлифах после травления и на сканирующем электронном микроскопе "Quanta-200" с локальным микрорентгеноспектральным анализом. Рентгеноструктурные исследования проведены на аппарате ДРОН-6 в излучении CrK_{α} .

Магнитные измерения выполнены в секторе импульсных магнитных полей ИФМ УрО РАН. Измерения амплитудной магнитной восприимчивости χ_{ac} проводились с использованием метода скомпенсированного трансформатора в интервале температур 78–350 К в переменном магнитном поле, синусоидально изменяющемся с частотой 80 Hz и амплитудой 8 Ое.

Результаты исследования и обсуждение

Все полученные сплавы после отжига при температуре 1123 К имели поликристаллическую структуру (рис. 1). Размер кристаллитов незначительно изменялся

Рис. 1. Структура исследуемых сплавов: макроструктура $Ni_{48}Mn_{39}Sn_{13}$ (*a*) и микроструктура $Ni_{51}Mn_{36}Sn_{13}$ (*b*), $Ni_{50}Mn_{37}Sn_{13}$ (*c*), $Ni_{49}Mn_{38}Sn_{13}$ (*d*), $Ni_{47}Mn_{40}Sn_{13}$ (*e*).

в зависимости от состава сплавов. Средний диаметр зерна в сплавах Ni₄₉Mn₃₈Sn₁₃, Ni₄₈Mn₃₉Sn₁₃, Ni₄₇Mn₄₀Sn₁₃ составлял от 3 до 0.5 mm, в сплаве Ni₅₀Mn₃₇Sn₁₃ зерна имели меньший размер. Микроструктура исследуемых сплавов после отжига представлена на рис. 1, b-e. В сплавах Ni₄₉Mn₃₈Sn₁₃, Ni₄₈Mn₃₉Sn₁₃, Ni₄₇Mn₄₀Sn₁₃ наблюдалась высокотемпературная аустенитная структура (рис. 1, d-e). В структуре сплавов Ni₅₁Mn₃₆Sn₁₃ и Ni₅₀Mn₃₇Sn₁₃ кроме аустенитной фазы присутствуют кристаллы мартенсита (рис. 1, b, c). Мартенситные кристаллы имеют форму реек преимущественно с параллельными границами. Мартенситные рейки часто группируются в пакеты, в которых длинные оси кристаллов располагаются параллельно друг другу. Внутри отдельных мартенситных кристаллов видна внутренняя структура, подобная двойникам (рис. 1, b).

Рентгеноструктурный анализ сплавов Ni_{51-x}Mn_{36+x}Sn₁₃ ($0 \le x \le 4$) при комнатной температуре показал, что сплавы Ni_{51-x}Mn_{36+x}Sn₁₃ с $x \ge 2$ имеют аустенитную кубическую структуру типа $L2_1$ (пространственная группа $Fm\bar{3}m$) с параметром решетки a = 5.985 Å, практически не зависящим от

Рис. 2. Рентгенограммы сплавов $Ni_{51-x}Mn_{36+x}Sn_{13}$ ($0 \le x \le 4$), измеренные при комнатной температуре. Для сплавов с x = 0, 1 черточками показаны расчетные положения рефлексов модулированной кристаллической структуры ромбической симметрии (пространственная группа *Pnnm*).

концентрации x. Сплавы с x < 2 при комнатной температуре имеют наряду с кубической структурой типа $L2_1$ мартенситную фазу с кристаллической структурой, описывающейся в рамках ромбической симметрии (пространственная группа *Pnnm*) с параметрами решетки a = 4.265 Å, b = 30.151 Å и c = 5.645 Å (расчетные положения рефлексов показаны черточками на рис. 2).

На рис. З показаны температурные зависимости $\chi_{ac}(T)$ амплитудной магнитной восприимчивости сплавов, измеренные при охлаждении и нагреве. В сплаве Ni₅₁Mn₃₆Sn₁₃ (с x = 0) на зависимости $\chi_{ac}(T)$ наблюдаются две аномалии: при температурах 211 и 315 К (см. вставку). Аномалия при температуре 315 К характеризуется существованием температурного гистерезиса и соответствует температуре спонтанного мартенситного превращения в сплаве T_M . Аномалия при температуре 211 К соответствует возникновению магнитного упорядочения в мартенсите $T_{\rm CM}$. Температура Кюри аустенита в этом сплаве оказывается ниже температуры мартенситного упорядочения. С увеличением концен-

трации марганца происходит понижение температуры мартенситного превращения Т_М и увеличение температуры магнитного упорядочения в мартенсите ТСМ. Уже в сплаве $Ni_{50}Mn_{37}Sn_{13}$ (с x = 1) T_M становится близка к температуре Кюри аустенита, и на зависимости $\chi_{\rm ac}(T)$ появляется аномалия, соответствующая температуре Кюри аустенита ТСА. При дальнейшем повышении концентрации марганца происходит дальнейшее уменьшение температуры Т_М, значительно более слабое уменьшение T_{CA} и увеличение температуры T_{CM} . В сплаве $Ni_{48}Mn_{39}Sn_{13}$ (с x = 3) температура мартенситного превращения совпадает с температурой магнитного упорядочения в мартенсите: $T_M \approx T_{CM}$, а в сплаве $Ni_{47}Mn_{40}Sn_{13}$ (с x = 4) $T_M < T_{CM}$, и аномалии, связанной с изменением магнитного состояния мартенсита, уже не наблюдается. Структурное состояние сплавов при комнатной температуре, определяемое по температурным зависимостям амплитудной магнитной восприимчивости $\chi_{ac}(T)$, согласуется с данными рентгеноструктурного анализа (рис. 2). В целом зависимость $\chi_{ac}(T)$ оказывается похожей на аналогичные зависимости в сплавах $Ni_{47-x}Mn_{42+x}In_{11}$ [15].

Рис. 3. Температурные зависимости амплитудной магнитной восприимчивости χ_{ac} для сплавов Ni_{51-x}Mn_{36+x}Sn₁₃ ($0 \le x \le 4$), измеренные при нагреве и охлаждении. На вставке показано изменение магнитной восприимчивости сплава с x = 0 в увеличенном виде.

Рис. 4. Температура мартенситного превращения T_M в зависимости от e/a для сплавов Ni_{51-x}Mn_{36+x}Sn₁₃ ($0 \le x \le 4$) (темные символы) и данные для сплавов Ni-Mn-In из работы [13] (светлые символы).

Рис. 5. Концентрационная фазовая диаграмма магнитного и структурного состояния сплавов $Ni_{51-x}Mn_{36+x}Sn_{13}$ $(0 \le x \le 4)$.

Зависимость температуры мартенситного превращения T_M от электронной концентрации e/a сплавов представлена на рис. 4. С увеличением соотношения e/a, т. е. при замещении атомов марганца атомами никеля, наблюдается повышение температуры мартенситного превращения. Подобные закономерности наблюдались для сплавов Ni_{2+x}Mn_{1-x}Ga, Ni_{50+x}Mn_{50-x-y}In_y, Ni_{0.50}Mn_{0.50-x}In_x [2,13,16].

Проведенные исследования суммированы на рис. 5, где представлена концентрационная фазовая диаграмма x-T, описывающая изменение магнитного и структурного состояния сплавов Ni_{51-x}Mn_{36+x}Sn₁₃ (0 $\le x \le 4$) в зависимости от концентрации марганца x и температу-

ры. На диаграмме обозначены температурные области, в которых аустенитная и мартенситная фазы находятся в разных магнитных состояниях. В настоящее время тип магнитного упорядочения в мартенсите остается неизвестным. Магнитный момент марганца в мартенситном состоянии оказывается намного меньше, чем в аустенитном, что позволяет предполагать существование ферримагнитного упорядочения в мартенсите при $T < T_{\rm CM}$. При температурах $T_{CM} < T < T_M$ в мартенсите отсутствует спонтанная намагниченность, что позволяет предполагать, что он находится в парамагнитном или антиферромагнитном состоянии [15].

Влияние концентрации марганца прежде всего сказывается на температуре мартенситного превращения. При увеличении его содержания от 36 до 40 аt.% температура T_M снижается аналогично тому, как это наблюдается в сплавах на основе железа—никеля. В то же время для исследованных составов сплавов температуры Кюри аустенитной и мартенситной фаз в меньшей степени зависят от концентрации марганца. Наблюдается незначительное снижение температуры Кюри аустенита T_{CA} с ростом концентрации марганца. Температура Кюри мартенситной фазы T_{CM} , наоборот, слабо повышается с увеличением содержания марганца с 36 до 38 аt.%.

Из представленной диаграммы (рис. 5) хорошо видно, что температуры T_{CA} и T_M близки для сплава Ni₅₀Mn₃₇Sn₁₃. Совпадение температур мартенситного превращения и магнитного превращения аустенита может приводить к единому магнитоструктурному переходу. Кроме того, в этом сплаве мартенсит может находиться в разных магнитных состояниях: как в антиферромагнитном или парамагнитном состоянии, так и в ферро- или ферримагнитном состоянии. Построенная концентрационная фазовая диаграмма позволяет прогнозировать и создавать сплавы определенного структурномагнитного состояния.

4. Заключение

Показано, что во всех исследованных сплавах $Ni_{51-x}Mn_{36+x}Sn_{13}$ ($0 \le x \le 4$) наблюдается мартенситное превращение. С ростом концентрации марганца в сплавах и уменьшением соотношения e/a температура мартенситного превращения понижается.

Установлено, что в сплавах $Ni_{51-x}Mn_{36+x}Sn_{13}$ (где $1 \le x \le 4$) температура Кюри аустенита незначительно снижается с ростом x, а температура магнитного упорядочения в мартенсите несколько повышается с ростом x от 0 до 3.

Построена концентрационная фазовая диаграмма для сплавов Ni_{51-x}Mn_{36+x}Sn₁₃ (где $0 \le x \le 4$), на которой обозначены температурные области существования высокотемпературной аустенитной фазы $L2_1$ в парамагнитном или ферромагнитном состоянии и низкотемпературной мартенситной фазы в разных магнитных состояниях.

Композиционные зависимости температур структурных и магнитных фазовых превращений имеют важное значение для эффективного применения исследуемых материалов в практических целях.

Список литературы

- А.Н. Васильев, В.Д. Бучельников, Т. Такаги, В.В. Ховайло, Э.И. Эстрин. УФН 173, 577 (2003).
- [2] В.Д. Бучельников, А.Н. Васильев, В.В. Коледов, В.В. Ховайло, С.В. Таскаев, В.Г. Шавров. УФН 176, 900 (2006).
- [3] В.М. Счастливцев, Ю.В. Калетина, Е.А. Фокина. Мартенситное превращение в магнитном поле. УрО РАН, Екатеринбург (2007). 322 с.
- [4] Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa. Appl. Phys. Lett. 85, 4358 (2004).
- [5] T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes. Phys. Rev. B 72, 014412 (2005).
- [6] T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes. Natire Mater. 4, 450 (2005).
- [7] P.J. Brown, A.P. Gandy, K. Ishida, R. Kainuma, T. Kanomata, K.U. Neumann, K. Oikata, B. Ouladdiaf, K.R.A. Ziebeck. J. Phys.: Cond. Matter 18, 2249 (2006).
- [8] K. Koyama, K. Watanabe, T. Kanomata, R. Kainuma, K. Oikawa, K. Ishida, Appl. Phys. Lett. 88, 132 505 (2006).
- [9] V. Khovaylo, V. Koledov, V. Shavrov, M. Ohtsuka, H. Miki, T. Takagi, V. Novosad. Mater. Sci. Eng. A 481–482, 322 (2008).
- [10] Z.D. Han, D.H. Wang, C.L. Zhang, H.C. Xuan, B.X. Gu, Y.W. Du. Appl. Phys. Lett. 90, 042 507 (2007).
- [11] J.D. Santos, T. Sanchez, P. Alvarez, M.L. Sanchez, J.L. Sánchez Llamazares, B. Hernando, Ll. Escoda, J.J. Suñol, R. Varga. J. Appl. Phys. **103**, 07B 326 (2008).
- [12] V.D. Buchelnikov, V.V. Sokolovskiy. Phys. Met. Metallogr. 112, 633 (2011).
- [13] В.М. Счастливцев, Ю.В. Калетина, Е.А. Фокина, В.А. Казанцев. ФММ **112**, 64 (2011).
- [14] Ю.В. Калетина, В.М. Счастливцев, А.В. Королев, Е.А. Фокина. ФММ 113, 1086 (2012).
- [15] Ю.В. Калетина, Е.Г. Герасимов, В.М. Счастливцев, Е.А. Фокина, П.Б. Терентьев. ФММ 114, 911 (2013).
- [16] T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes. Phys. Rev. B 73, 174413 (2006).