01,12 Кристаллизация аморфных сплавов Zr–Be

© Е.А. Головкова, А.В. Сурков, Г.Ф. Сырых

НИЦ "Курчатовский институт", Москва, Россия E-mail: amorphous2014@gmail.com

(Поступила в Редакцию 13 августа 2014 г.)

Методами дифференциальной сканирующей калориметрии и дифракции нейтронов исследованы термическая стабильность и структура бинарных аморфных сплавов $Zr_{100-x}Be_x$ в широком интервале концентраций ($30 \le x \le 65$). Аморфные сплавы получены методом быстрой закалки из расплава. Исследуемая аморфная система охватывает область составов вокруг эвтектического с граничными фазами α -Zr и ZrBe₂. Установлено, что при малом содержании бериллия ("доэвтектические" сплавы с $x \le 40$) кристаллизация протекает в два этапа. Нейтронная дифракция показала, что на первом этапе кристаллизуется α -Zr, а оставшаяся аморфная фаза обогащается до эвтектического состава и на втором этапе кристаллизуется в фазы α -Zr и ZrBe₂. При большем содержании бериллия ("послеэвтектические" сплавы) наблюдается один фазовый переход аморфной фазы в смесь фаз α -Zr и ZrBe₂. Обнаружена концентрационная зависимость температуры и энергии активации процессов кристаллизации.

Работа выполнена при поддержке РФФИ (грант № 12-02-00705-а).

1. Введение

Физические и технологические свойства аморфных металлических сплавов Zr–Be по-прежнему остаются в поле зрения исследователей. Эти свойства интересны как с фундаментальной, так и с прикладной точки зрения. Металлические стекла Zr–Be состоят из несоразмерных по атомным радиусам и массам компонентов и могут быть получены в широком интервале концентраций, что облегчает исследование их атомной структуры и динамики, в частности, акустических и оптических мод [1–4].

Аморфные ленты сплава Zr–Be толщиной несколько десятков микрометров могут использоваться в качестве припоя при диффузионной сварке изделий из Zr для нужд атомной промышленности, что может служить альтернативой дорогостоящему и вредному для окружающей среды методу напыления бериллия на поверхность циркониевой детали [5].

В работе [6] термическая стабильность аморфных сплавов $Zr_{100-x}Be_x$ была исследована в ограниченном интервале концентраций 30 < x < 50 методами дифференциальной сканирующей калориметрии (ДСК) и рентгеновской дифракции. Результаты ДСК для образцов с $x \le 40$ выявили два экзотермических пика. Методом рентгеновской дифракции было показано, что на первом этапе кристаллизации образуется фаза α -Ze. В этой работе было высказано предположение, что оставшаяся аморфная фаза обогащается цирконием до состава ZrBe₂, кристаллизующегося на втором этапе. Для образцов с x > 40 происходит одновременно кристаллизация фаз α -Zr и ZrBe₂. Для температур кристаллизации и энергий активации этих реакций не выявлено зависимости от концентрации бериллия.

Методами ДСК и рентгеновской дифракции исследована также термическая стабильность ряда аморфных

сплавов металл-металлоид вблизи эвтектического состава [7,8]. "Доэвтектические" аморфные сплавы кристаллизуются в два этапа. Были сделаны аналогичные выводы о том, что вначале кристаллизуется чистый металл, а обогащение оставшейся аморфной фазы идет до состава метастабильного кристаллического соединения (система Ni-B) [7] или до состава стабильного кристаллического соединения, т.е. второй граничной фазы (система Co-B,Si) [8].

С целью дальнейшего прояснения процессов кристаллизации металлических стекол мы исследовали систему $Zr_{100-x}Be_x$ в более широком интервале концентраций ($30 \le x \le 65$) методами ДСК и дифракции нейтронов. В отличие от рентгеновских лучей амплитуды рассеяния нейтронов на Zr и Ве примерно одинаковы, что облегчает проведение фазового анализа образца после первого этапа кристаллизации.

2. Эксперимент

Образцы аморфных сплавов $Zr_{100-x}Be_x$ (x = 30, 40, 50, 55, 60 и 65) были приготовлены методом быстрой закалки из расплава на вращающемся медном диске в атмосфере очищенного аргона. Аморфное состояние было подтверждено методом нейтронной дифракции на установке ДИСК, расположенной на реакторе ИР-8 в НИЦ "Курчатовский институт". Полученные структурные факторы S(Q) показаны на рис. 1. Наблюдается систематическое смещение пиков в сторону увеличения переданного импульса с увеличением концентрации бериллия. Это является следствием того, что парциальные структурные факторы $S(Q)_{Zr-Zr}$, $S(Q)_{Zr-Be}$ и $S(Q)_{Be-Be}$ заметно различаются в связи с большой разницей ионных радиусов циркония и бериллия [1,2]. Таким образом, нейтронные дифракционные данные

Рис. 1. Структурные факторы S(Q) аморфной системы $Zr_{100-x}Be_x$ (x = 30, 40, 50, 55, 60, 65). Для удобства кривые смещены по оси ординат.

Рис. 2. Данные дифференциальной сканирующей калориметрии для аморфной системы $Zr_{100-x}Be_x$ (x = 30, 40, 50, 55, 60, 65). Для удобства кривые смещены по оси ординат.

Рис. 3. Структурные факторы S(Q). 1 — образец $Zr_{70}Be_{30}$ после первого этапа кристаллизации, 2 — исходный аморфный образец $Zr_{60}Be_{40}$, 3 — исходный аморфный образец $Zr_{35}Be_{65}$. Для удобства кривые смещены по оси ординат.

Рис. 4. Графики Киссинджера для аморфной системы $Zr_{100-x}Be_x$ (x = 30, 40, 50, 60, 65). a — первый этап кристаллизации, b — второй этап кристаллизации.

весьма чувствительны к составу образца. Следует отметить, что рентгеновские дифракционные данные для этих образцов слабо зависят от концентрации в силу преимущественного рассеяния рентгеновских лучей на цирконии.

Процессы кристаллизации этих образцов были исследованы методом ДСК на приборе STA 449 С фирмы NETZSCH. Измерения проводились при четырех скоростях нагрева: 10, 20, 30 и 40 К/min. На рис. 2 показаны результаты для образцов при скорости нагрева 20 К/min. Для образцов $Zr_{100-x}Be_x$ (x = 30 и 40) наблюдаются два экзотермических пика, а для образцов Zr_{100-x}Be_x (x = 50, 55, 60 и 65) — один экзотермический пик, причем положения этих пиков систематически меняются с концентрацией бериллия. Мы провели измерение структурного фактора для образца Zr₇₀Be₃₀, который был быстро охлажден после первого этапа кристаллизации (рис. 3). Наблюдаются пики, отвечающие кристаллическому состоянию циркония и обогащенной цирконием аморфной фазе. Для оценки ее состава на рис. 3 приведены также структурные факторы образцов Zr₆₀Be₄₀ и Zr₃₅Be₆₅.

Рис. 5. *а*) Концентрационная зависимость температуры кристаллизации первого (1) и второго (2) этапов "доэвтектических" и "послеэвтектических" (3) составов. Штриховыми линиями показана условная фазовая диаграмма Zr–Be. *b*) Концентрационная зависимость энергии активации кристаллизации первого (1) и второго (2) этапов "доэвтектических" и "послеэвтектических" (3) составов. x — концентрация Ве.

Энергии активации (ΔE_x) реакций кристаллизации определены по методу Киссинджера [9]

$$d\ln(n/T_x)/d(1/T_x) = -\Delta E_x/R,$$

где *n* — скорость нагрева, *T_x* — температура пика на кривой ДСК, *R* — универсальная газовая постоянная. Графики Киссинджера для первой и второй реакций кристаллизации показаны на рис. 4.

На рис. 5, *а* представлены зависимости температуры кристаллизации (там же штриховыми линиями схематически показана часть фазовой диаграммы системы Zr-Be [10]), а на рис. 5, *b* приведены энергии активации в зависимости от содержания *x* бериллия в сплаве.

3. Обсуждение результатов

Согласно [11], кристаллизация аморфной фазы в зависимости от концентрации может происходить по одному из следующих сценариев: преимущественная кристаллизация одной из фаз и обогащение оставшейся аморфной фазы; полиморфная (без всякого изменения концентрации) кристаллизация; эвтектическая (одновременная) кристаллизация двух фаз.

Как следует из рис. 3, на первом этапе идет преимущественная кристаллизация фазы α -Zr, а состав обогащенной аморфной фазы ближе к эвтектическому составу (Zr₆₀Be₄₀), нежели к составу второй граничной фазы ZrBe₂, как это утверждалось в работе [6]. Обогащенная аморфная фаза на втором этапе кристаллизуется в фазы α -Zr и ZrBe₂ по эвтектическому типу.

Анализ концентрационной зависимости энергии активации кристаллизации (рис. 5, b) показывает, что для "доэвтектических" сплавов энергия активации кристаллизации фазы α-Zr меньше (первый этап), чем энергия активации кристаллизации аморфной фазы эвтектического состава (второй этап): 63.1 и 83.5 kcal/mol соответственно. При этом температура и энергия активации кристаллизации фазы *α*-Zr растут при приближении к эвтектическому составу, что можно объяснить уменьшением числа вмороженных центров кристаллизации фазы α-Zr. Аморфный образец Zr₃₅Be₆₅ близок по составу к кристаллической фазе ZrBe2. Следовательно, кристаллизация этого образца является полиморфной с высокой энергией активации и температурой кристаллизации (187.1 kcal/mol и 796 К соответственно) по сравнению с аналогичными величинами для эвтектического состава (83.5 kcal/mol и 714 K). Эти параметры для сплавов Zr₅₀Be₅₀ и Zr₄₀Be₆₀ имеют промежуточные значения, что можно объяснить количественным соотношением в них эвтектики и фазы ZrBe2. Обращает на себя внимание "зеркальная корреляция" температуры кристаллизации аморфной системы и температуры кристаллизации жидкой фазы для "доэвтектических" сплавов (рис. 5, *a*). И в том и в другом случае вначале кристаллизуется чистый металл, при этом аморфная и жидкая фазы обогащаются до эвтектического состава, который кристаллизуется на втором этапе.

4. Заключение

Таким образом, при использовании метода нейтронной дифракции показано, что на первом этапе кристаллизации "доэвтектических" аморфных сплавов Zr–Be происходит преимущественная кристаллизация с выделением фазы α -Zr и обогащением оставшейся аморфной фазы до эвтектического состава. На втором этапе обогащенная аморфная фаза кристаллизуется в фазы α -Zr и ZrBe₂.

Для "послеэвтектических" сплавов преимущественная кристаллизация второй граничной фазы $ZrBe_2$ не наблюдается, поскольку она может существовать в аморфном состоянии с высокой энергией активации процесса кристаллизации. Поэтому кристаллизация этих сплавов протекает одновременно в смеси граничных фаз α -Zr и ZrBe₂.

Можно предположить, что аналогичный характер кристаллизации присущ и системам металл-металлоид.

Список литературы

- А.М. Братковский, С.Л. Исаков, С.Н. Ишмаев, И.П. Садиков, А.В. Смирнов, Г.Ф. Сырых, М.Н. Хлопкин, Н.А. Черноплеков. ЖЭТФ 100, 1392 (1991).
- [2] M. Maret, C.N.J. Wagner, G. Etherington, A. Soper, L.E. Tanner. J. de Phys. 47, 863 (1986).
- [3] G.F. Syrykh, A.S. Ivanov, N.A. Klimenko, Yu.V. Lisichkin, H. Mutka, J.A. Stride. J. Phys.: Cond. Matter 20, 104241 (2008).
- [4] Г.Ф. Сырых, Н.В. Ситуха, Н.А. Клименко, Дж.А. Страйд. Поверхность. Рентгеновские, синхротронные и нейтронные исследования 5, 3 (2011).
- [5] J. Amato, F. Baudrocco, M. Ravizza. Welding J. 51, 341 (1972).
- [6] C.H. Park, Y.S. Han, Y.K. Kim, K.J. Jang, J.Y. Lee, C.B. Choi, K.S. Sim. J. Nucl. Mater. 254, 34 (1998).
- [7] M. Vatsuura. Solid State Commun. 30, 231 (1979).
- [8] E. Jakubszyk, Z. Mandecki, M. Jakubczyk. J. Non-Cryst. Solids 232–234, 453 (1998).
- [9] H.E. Kissinger. Anal. Chem. 29, 1702 (1957).
- [10] М. Хансен, К. Андерко. Структуры двойных сплавов. Металлургиздат, М. (1962). С. 324.
- [11] U. Koster, P. Weiss. J. Non-Cryst. Solids 17, 359 (1975).