13

Переходной процесс в ускоряющей структуре с параллельной связью с учетом нагрузки током пучка

© А.М. Барняков,¹ А.Е. Левичев,¹ Д.А. Никифоров,¹ Ю.Д. Черноусов,² И.В. Шеболаев²

¹ Институт ядерной физики им. Г.И. Будкера СО РАН, 630090 Новосибирск, Россия ² Институт химической кинетики и горения СО РАН 630090 Новосибирск, e-mail: A.E.Levichev@inp.nsk.su

(Поступило в Редакцию 5 июня 2014 г.)

Рассмотрен переходной процесс в ускоряющей структуре с параллельной связью, состоящей из ускоряющего и возбуждающего резонаторов, с учетом нагрузки током и потерь. Получены соотношения для амплитуд колебаний в резонаторах в переходном и стационарном режимах, величины ускоряющего напряжения, критического тока. Проанализирована возможность стабилизации ускоряющего напряжения задержкой инжекции пучка относительно начала импульса генератора.

Введение

Развитие способа питания ускоряющих резонаторов сверхвысокочастотной (СВЧ) мощностью параллельным образом [1–6] привело к созданию ускоряющей структуры нового типа — с параллельной связью, представляющей собой набор ускоряющих резонаторов, возбуждаемых параллельно одним общим резонатором через индивидуальные отверстия связи [5–6]. В таком устройстве связь по электромагнитному полю между ускоряющими резонаторами практически отсутствует, поэтому для описания структуры можно использовать модель из двух связанных резонаторов, в которой первый резонатор является возбуждающим, а второй эквивалентен ускоряющим резонаторам или только одному из них. Каждый из ускоряющих резонаторов структуры возбуждается индивидуально и работает в режиме стоячей волны.

В ускоряющих структурах, использующих высокодобротные резонаторы, при импульсном возбуждении возникает переходной процесс, амплитуда ускоряющего напряжения зависит от времени, что приводит к увеличению энергетического разброса ускоряемых частиц [7,8]. Переходной процесс установления колебаний в одиночном ускоряющем резонаторе с учетом тока пучка рассмотрен в ряде работ [7–10]. При наличии двух связанных резонаторов, один из которых является ускоряющим, характер переходного процесса при ускорении пучка частиц усложняется из-за появления дополнительных параметров системы.

Описание переходного процесса в ускоряющей структуре с параллельной связью при наличии нагрузки током пучка электронов в упрощенном виде приводится в [11] на основе выражений, полученных для одиночного резонатора [9]. Для системы двух связанных резонаторов, резонансные частоты которых близки к частоте возбуждающего СВЧ-генератора, в работе [12] получены уравнения для нормированных комплексных амплитуд колебаний, описывающие переходной процесс в системе. В настоящей работе рассмотрен переходной процесс в ускоряющей структуре с параллельной связью, состоящей из ускоряющего и возбуждающего резонаторов, с учетом нагрузки током и потерь в резонаторах.

Описание переходного процесса и стационарного режима

На рисунке показана система, состоящая из двух связанных резонаторов, первый из которых — возбуждающий, а второй — ускоряющий, нагруженный током ускоряемых частиц. Для упрощения рассмотрения основных особенностей в настоящей работе при учете влияния пучка на переходной процесс в системе будем считать, что частота следования ускоряемых сгустков и частоты настройки резонаторов совпадают, СВЧ-колебания, возбуждаемые в ускоряющем резонаторе пучком и генератором, находятся в противофазе. Тогда при рассмотрении колебаний в резонаторах на резонансной частоте ω_0 , от комплексных амплитуд [12] можно перейти к реальным величинам и систему уравнений для нормированных амплитуд колебаний в резонаторах V₁ и V₂ с учетом одновременного возбуждения ускоряющей структуры независимыми источниками — СВЧ-генератором [12] и током пучка [9] записать в виде

$$\begin{cases} \frac{dV_1}{dt} = a \sqrt{\beta_1 \frac{\omega_0}{Q_{01}}} - \frac{\omega_0}{2Q_{L1}} V_1 - k_c \frac{\omega_0}{2} V_2, \\ \frac{dV_2}{dt} = k_c \frac{\omega_0}{2} V_1 - \frac{\omega_0}{2Q_{L2}} V_2 - \alpha I. \end{cases}$$
(1)

Здесь $\alpha = \sqrt{\omega_0 L/2Q_{02}}$ — действительная положительная величина, характеризующая влияние пучка на колебания в резонаторе [9], $Z_e = U^2/(P_2L)$ — эффективное шунтовое сопротивление [13], P_2 — мощность потерь в стенках во втором (ускоряющем) резонаторе, U — ускоряющее напряжение, определяющее максимальную энергию, которую может набрать частица при пролете резонатора,

L — длина резонатора, I — средний ток пучка, который сгруппирован в точечные сгустки, $a = \sqrt{2P_g}$ — нормированная амплитуда волны, падающей на вход системы, P_g — мощность генератора, $Q_{01}, Q_{02}, Q_{L1} = Q_{01}/(1/\beta_1)$, $Q_{1,2} = Q_{02}/(1 + \beta_2)$ — собственные и нагруженные добротности первого и второго резонаторов соответственно, β_1 и β_2 — коэффициенты связи с линией первого и второго резонаторами определяется коэффициентом k_c [12]. Нормировка амплитуд колебаний в резонаторах V_1 , V_2 задается соотношением $W_{1,2} = |V_{1,2}|^2/2$, где $W_{1,2}$ — запасенная энергия в первом и втором резонаторах соответственно. Отметим, что в (1) амплитуда падающей волны a и ток пучка I — постоянные величины, причем генератор и ток пучка включаются одновременно.

Система (1) для амплитуд V_1 , V_2 описывает с учетом потерь переходные процессы установления вынужденных СВЧ-колебаний в возбуждающем и ускоряющем резонаторах ускоряющей структуры с параллельной связью, происходящие под действием СВЧ-генератора и тока пучка. Путем подстановки из (1) можно получить

$$\frac{d^2 V_{1,2}}{dt^2} + 2\delta \,\frac{dV_{1,2}}{dt} + \Omega_0^2 V_{1,2} = F_{1,2} \tag{2}$$

— дифференциальные уравнения второго порядка с постоянными коэффициентами [14]. Уравнения (2) характеризуют затухающие колебания осциллятора с трением под действием постоянной внешней силы с декрементом затухания δ и собственной частотой колебаний Ω_0 [15]. В нашем случае декремент затухания $\delta = 1/2\tau_{L1} + 1/2\tau_{L2}, \, \Omega_0 = \sqrt{(1+\beta_L)/(\tau_{L1}\tau_{L2})}$ — частота модуляции амплитуды колебаний в возбуждающем и ускоряющем резонаторах (частота обмена запасенной СВЧ-энергией в системе двух связанных резонаторов) при $\delta = 0$, $\tau_{L1} = 2Q_{L1}/\omega_0$ — нагруженное время возбуждения первого резонатора, $\tau_{L2} = 2Q_{L2}/\omega_0$ нагруженное время возбуждения второго резонатора, $\beta_L = k_c^2 Q_{L1} Q_{L2}$ — коэффициент, отвечающий за связь между первым и вторым резонаторами [16]. Характер решения уравнений (2) определяется корнями $\lambda_{1,2}$ характеристического уравнения: $\lambda_{1,2} = -\delta \pm \sqrt{\delta^2 - \Omega_0^2}$. Как и в системе связанных резонаторов при отсутствии тока пучка [12], переходный процесс в системе с пучком при $\delta < \Omega_0$ имеет колебательный, при $\delta = \Omega_0$ — критический, а при $\delta > \Omega_0$ — апериодический характер. Установившиеся значения амплитуд колебаний находятся из соотношений: $V_{1,2} = F_{1,2}/\Omega_0^2$, где

$$F_{1} = \tau_{L2}^{-1} (\sqrt{4P_{g}\beta_{1}/(1+\beta_{1})\tau_{L1}} + \alpha I \sqrt{\beta_{L}Q_{L2}/Q_{L1}}),$$

$$F_{2} = \tau_{L1}^{-1} (\sqrt{4P_{g}\beta_{1}\beta_{L}/(1+\beta_{1})\tau_{L2}} - \alpha I).$$

Схема системы двух связанных резонаторов, возбуждаемых генератором и пучком заряженных частиц: I — подводящий СВЧ мощность волновод, 2 — первый резонатор с нормированной амплитудой колебаний V_1 ; 3 — второй (ускоряющий) резонатор с нормированной амплитудой колебаний V_2 .

Решение системы уравнений (2) можно представить в общем виде

$$V_{1}(t) = \frac{\tau_{L1}}{(1+\beta_{L})} \left(\sqrt{\frac{4P_{g}}{\tau_{L1}}} \frac{\beta_{1}}{(1+\beta_{1})} + \alpha I \sqrt{\beta_{L}} \frac{Q_{L2}}{Q_{L1}} \Psi_{1}(t) + \sqrt{\frac{4P_{g}}{\tau_{L1}}} \frac{\beta_{1}}{(1+\beta_{1})} \right) \Psi_{2}(t),$$

$$V_{2}(t) = \frac{\tau_{L1}}{(1+\beta_{L})} \left(\sqrt{\frac{4P_{g}}{\tau_{L2}}} \frac{\beta_{1}\beta_{L}}{(1+\beta_{1})} - \alpha I \right) \Psi_{1}(t) - \alpha I \Psi_{2}(t).$$
(3)

Вид функций $\Psi_{1,2}(t)$ зависит от характера решения уравнений (2)

$$\Psi_1(t) = 1 - \exp(-\delta t) - \delta t \exp(-\delta t),$$

 $\Psi_2(t) = t \exp(-\delta t)$

— при критическом режиме, $\delta = \Omega_0$,

$$\Psi_1(t) = 1 + rac{\lambda_1 \exp(\lambda_2 t) - \lambda_2 \exp(\lambda_1 t)}{\lambda_2 - \lambda_1},$$
 $\Psi_2(t) = rac{\exp(\lambda_2 t) - \exp(\lambda_1 t)}{\lambda_2 - \lambda_1}$

— при апериодическом режиме, $\delta > \Omega_0$,

$$\Psi_{1}(t) = 1 - \exp(-\delta t) \cos\left(\sqrt{\Omega_{0}^{2} - \delta^{2}t}\right)$$
$$- \exp(-\delta - t) \frac{\delta}{\sqrt{\Omega_{0}^{2} - \delta^{2}}} \sin\left(\sqrt{\Omega_{0}^{2} - \delta^{2}t}\right),$$
$$\Psi_{2}(t) = \exp(-\delta t) \frac{\sin\left(\sqrt{\Omega_{0}^{2} - \delta^{2}t}\right)}{\sqrt{\Omega_{0}^{2} - \delta^{2}}}$$

— при колебательном режиме, $\delta < \Omega_0$.

Журнал технической физики, 2015, том 85, вып. 1

Функции $\Psi_{1,2}(t)$ удовлетворяют следующим граничным условиям:

$$\Psi_1(0)=0, \quad \Psi_1(\infty)=1, \quad \Psi_2(0)=\Psi_2(\infty)=0. \quad (4)$$

Из уравнения для V_2 системы (3) следует, что в установившемся режиме колебаний в резонаторах пучок частиц будет набирать энергию в том случае, если $\sqrt{4P_g\beta_1\beta_L/[\tau_{L2}(1+\beta_1)]} > \alpha I$, откуда следует выражение для критического тока I_c :

$$I_c^2 = \frac{4P_g}{Z_e L} \frac{\beta_1 \beta_L (1 + \beta_2)}{(1 + \beta_1)}.$$
 (5)

Из определения для шунтового сопротивления $Z_e = U^2/(P_2L)$, выражения для добротности второго резонатора $Q_{02} = \omega_0 W_2/P_2$ и условия нормировки $W_2 = |V_2|^2/2$ следует соотношение между ускоряющим напряжением U и нормированной амплитудой колебаний в ускоряющем резонаторе V_2 :

$$U = |V_2| \sqrt{\frac{\omega_0 Z_e L}{2Q_{02}}}.$$
 (6)

Амплитуды колебаний в резонаторах ускоряющей структуры с параллельной связью определяются как мощностью генератора, так и током ускоряемого пучка. Поле излучения пучка в ускоряющем резонаторе влияет на поле в возбуждающем резонаторе с учетом коэффициента β_L . Из (5), (6), (3), (4) и соотношения для величины α следует выражение для напряжения, определяющего энергию частиц в ускоряющем резонаторе с труктуры с параллельной связью в установившемся режиме

$$U = Z_e L \frac{I_c - I}{1 + \beta_L}.$$
 (7)

Стабилизация ускоряющего напряжения задержкой инжекции пучка

Во время переходного процесса амплитуда колебаний во втором резонаторе переменна, поэтому выходная энергия ускоренного пучка также будет зависеть от времени, что приведет к дополнительному увеличению ширины энергетического спектра ускоренных частиц. В линейных ускорителях известным методом стабилизации средней энергии пучка является задержка инжекции тока относительно импульса генератора [7-10]. К моменту инжекции пучка в ускоряющем резонаторе устанавливаются СВЧ-колебания, амплитуда которых определяется генератором. При правильно выбранном моменте инжекции амплитуда равна своему стационарному значению при включенном токе и в дальнейшем при включении пучка уже не меняется. Таким способом при включении тока пучка с определенной задержкой относительно момента включения генератора можно достичь стабилизации ускоряющего напряжения и соответственно стабилизации среднего значения энергии ускоренного пучка. Величина времени задержки инжекции является функцией параметров системы, в том числе зависит от величины тока пучка. Исходя из уравнений для амплитуд колебаний в резонаторах (3) определим для ускорителя электронов на основе ускоряющей структуры с параллельной связью, какого эффекта стабилизации ускоряющего напряжения можно достичь задержкой инжекции.

Если пучок включается с задержкой в момент времени t_b , то можно считать, что в этот момент генератор выключается и включается вновь вместе с пучком. Тогда при $t \ge t_b$ с учетом (3) и (5) амплитуда колебаний во втором резонаторе складывается из спадающей амплитуды после выключения генератора

$$V_{2\text{dec}}(t-t_b) = \frac{\alpha \tau_{L2}}{(1+\beta_L)} I_c \Psi_1(t_b) (1-\Psi_1(t-t_b))$$

и возрастающей амплитуды после одновременного включения генератора и пучка

$$V_{2in}(t - t_b) = \frac{\alpha \tau_{L2}}{(1 + \beta_L)} (I_c - I) \Psi_1(t - t_b) - \alpha I \Psi_2(t - t_b),$$

T.e.

. .

$$V_2(t - t_b) = V_{2dec}(t - t_b) + V_{2in}(t - t_b).$$
 (8)

Из приведенных соотношений следует

$$V_{2}(t-t_{b}) = \frac{\alpha \tau_{L2}}{(1+\beta_{L})} I_{c} \Psi_{1}(t_{b}) + \frac{\alpha \tau_{L2}}{(1+\beta_{L})} I_{c} \Psi_{1}(t-t_{b}) \\ \times \left[1 - \frac{I}{I_{c}} - \Psi_{1}(t_{b})\right] - \alpha I \Psi_{2}(t-t_{b}).$$
(9)

Для стабилизации напряжения во втором резонаторе током пучка необходимо, чтобы выполнялось условие $V_2(t = t_b) = V_2(t = \infty)$, где $V_2(t = t_b)$ — амплитуда колебаний в момент включения инжекции, $V_2(t = \infty)$ — стационарное значение амплитуды при включенном генераторе и токе пучка. Тогда с учетом граничных условий (4) из выражений (9) и (3) получаем

$$\begin{aligned} V_2(t=t_b) &= \frac{\alpha \tau_{L2}}{(1+\beta_L)} I_c \Psi_1(t_b) \\ &= V_2(t=\infty) = \frac{\alpha \tau_{L2}}{(1+\beta_L)} I_c \left[1 - \frac{I}{I_c}\right], \end{aligned}$$

откуда следует соотношение, определяющее момент включения пучка:

$$\Psi_1(t_b) = 1 - \frac{I}{I_c}.$$
 (10)

Отметим, что при $I \rightarrow I_c$, $t_b \rightarrow 0$ и соответственно при $I \rightarrow 0$, $t_b \rightarrow \infty$. Время инжекции пучка t_b в соответствии с (10) определяется функцией $\Psi_1(t)$, вид которой определяется характером решения уравнения (3).

С учетом (10) из (9) получаем, что после включения пучка амплитуда колебаний определяется уравнением

$$V_2(t-t_b) = \frac{\alpha \tau_{L2}}{(1+\beta_L)} \left(I_c - I \right) - \alpha I \Psi_2(t-t_b).$$
(11)

Журнал технической физики, 2015, том 85, вып. 1

При включении пучка с задержкой в момент времени, определяемом из соотношения (10), амплитуда колебаний во втором резонаторе при $t = t_b$ достигает своего стационарного значения

$$V_2 = \frac{\alpha \tau_{L2}}{(1 + \beta_L)} (I_c - I),$$
(12)

далее падает в соответствии с (11) и затем возвращается к этому своему стационарному значению (12). Включение пучка с задержкой в соответствии с условием (10) не приводит к полной стабилизации амплитуды и пропорционального ей ускоряющего напряжения, а лишь к уменьшению модуляции амплитуды в соответствии с уравнением (11). Степень стабилизации амплитуды во втором резонаторе и энергии пучка определяется функцией $\alpha I \Psi_2(t - t_b)$ и может быть найдена для конкретного случая в зависимости от параметров резонаторов и вида решения (3).

Заключение

Представление переходного процесса в ускоряющей структуре с параллельной связью при ускорении пучка заряженных частиц в виде двух независимых процессов, происходящих соответственно под действием только генератора и только пучка, позволяет описать режим установления колебаний в системе, получить соотношения для амплитуд полей в резонаторах в переходном режиме, величины ускоряющего напряжения, критического тока. Генератор и пучок возбуждают в системе электромагнитные поля, амплитудное значение каждого из которых зависит от времени. Суперпозиция этих полей в ускоряющем резонаторе дает суммарное поле, в котором происходит ускорение частиц. В отличие от одиночного резонатора в ускоряющей структуре с параллельной связью возбуждение ускоряющего резонатора происходит через возбуждающий резонатор. Это усложняет процесс формирования колебаний во втором резонаторе, добавляя зависящий от времени дополнительный фактор, связанный с обменом запасенной энергии между резонаторами. В связи с этим невозможно полностью остановить переходной процесс в ускоряющем резонаторе включением пучка с задержкой относительно импульса генератора. Частота обмена энергией между ускоряющим и возбуждающим резонаторами и декремент затухания возникающих колебаний во время переходного процесса не зависят от тока пучка и определяются добротностями резонаторов и коэффициентами связи. Установившееся значение амплитуды ускоряющего поля в рассматриваемой системе не зависит от времени задержки включения пучка.

Работа поддержана грантом РФФИ мол_а 12-02-31018

Список литературы

- Sundelin R.M., Kirchgessner J.L., Tiger M. // Trans. on Nucl. Sci. 1977. Vol. NS-24. N 3. P. 1686–1688.
- [2] Иванников В.И., Черноусов Ю.Д., Шеболаев И.В. // ЖТФ. 1986. Т. 56. Вып. 12. С. 2407-2409.
- [3] Brezhnev O. N., Logatchev P.V., Pavlov V.M. et al. // Proc. of LINAC. 2002. P. 213–215.
- [4] Neilson J., Tantawi S., Dolgashev V. // Proc. of LINAC. 2010.
 P. 235–237.
- [5] Levichev A.E., Pavlov V.M., Ivannikov V.I., Shebolaev I.V., Chernousov Yu.D. // Proc. of LINAC 2012. P. 282–284.
- [6] Черноусов Ю.Д., Иванников В.И., Шеболаев И.В., Левичев А.Е., Павлов В.М. Ускоряющая структура с параллельной связью. Пат. № 247 2244. Б.И.10.01.2013. № 1.
- [7] Wilson P.B. // SLAC-PUB-2884.
- [8] Wangler Th.P. WILEY-VCH. 2008. P. 354–360.
- [9] Иванников В.И., Павлов В.М., Черноусов Ю.Д., Шеболаев И.В. // ЖТФ. 2004. Т. 74. Вып. 6. С.134–136.
- [10] Викулов В.Ф., Заворотыло В.Н., Рузин В.В., Шилов В.К. // ЖТФ. 1982. Т. 52. Вып. 11. С. 2188–2191.
- [11] Levichev A.E., Pavlov V.M., Ivannikov V.I., Shebolaev I.V., Chernousov Yu.D. // Proc. of RuPac. 2012. P. 164–166.
- [12] Иванников В.И., Черноусов Ю.Д., Шеболаев И.В. // РЭ. 2000. Т. 45. Вып. 2. С.180–184.
- [13] Милованов О.С., Собенин Н.П. Техника сверхвысоких частот. М.: Атомиздат, 1980. С. 464.
- [14] Бронштейн И, Семендяев К. Справочник по математике для инженеров и учащихся вузов. 10-е издание. М.: Наука. 1964. С. 449–453.
- [15] Ландау Л.Д., Лившиц Е.М. Механика. М.: ГИФМЛ. 1958. С. 97–103.
- [16] Черноусов Ю.Д., Иванников В.И., Шеболаев И.В., Левичев А.Е., Павлов В.М. // РЭ. 2010. Т. 55. Вып. 8. С. 923–929.