06

Низкотемпературное нанолегирование протонированных кристаллов LiNbO₃ одновалентными ионами

© Ю.В. Бородин

Национальный исследовательский Томский политехнический университет, 634050 Томск, Россия e-mail: uryborodin@tpu.ru

(Поступило в Редакцию 22 апреля 2014 г.)

В развиваемой нанокомпозиционной модели кристаллы рассматриваются как соподчиненная совокупность протонно выделенных структурных элементов, их блоков и разделяющих их протонсодержащих квантовых сверхрешеток с предпочтительным протеканием в них явлений переноса. Образование слоисто-подобных обратимых гексагональных структур сопровождается протонированием и формированием плотной сетки H-связей, обеспечивающих нанокомпозиционные свойства. Нанолегирование ионами H⁺ происходит при обработке кристаллов и стекол как в расплавах, так и водных растворах солей Ag, Tl, Rb и Cs. Изотопный обмен H⁺ \leftrightarrow D⁺ и ионный обмен H⁺ \leftrightarrow M⁺ приводит к нанолегированию протонированных материалов ионами D⁺ и M⁺. Особенно наглядно это проявляется в обедненных Li неравновесных кристаллах LiNbO₃ и LiTaO₃. Низкотемпературное протонно-ионное нанолегирование по сверхрешеткам является принципиально новым подходом при изучении структуры и свойств крайне неравновесных материалов.

Одним из проявлений низкотемпературного приповерхностного нанолегирования является изотопный обмен в протонированных слоях. Обмен $H^+ \leftrightarrow D^+$, например, не только уменьшает затухание волноводного света в кварцевых оптических волокнах, но и способствует изучению природы водородносвязанных центров и инвариантных свойств слоев [1]. При рассмотрении возможности протонирования LiNbO₃ и LiTaO₃ в воде частичное добавление $D_2O(H_2O:D_2O=9:1)$ приводит к появлению полосы 2590 сm⁻¹, обусловленной валентными колебаниями примесных O–D-связей. Добавление D_2O в расплавы органических кислот также способствовало изотопному обмену $H^+ \leftrightarrow D^+$ в протонированных слоях [2,3].

При выдержке протонированного LiNbO₃ при 25°C в течение 100 h в 20 ml D₂O полоса 3506 cm⁻¹ практически полностью исчезает и появляется ИК поглощение от объемных протон содержащих (ПС) центров с максимумом 3484 cm⁻¹ и O–D-связей в слоях (рис. 1) [4,5]. Это дает основание говорить о полном изотопном обмене H⁺ \leftrightarrow D⁺ в протонированных слоях, причем изотопное соотношение равно $\nu_{OH}/\nu_{OD} = 1.355$ и соответствует теоретическому (~1.37) [5–7]. Обработка в жидкой D₂O LiNbO₃ (104) дает полное исчезновение полосы ~ 3280 cm⁻¹ и появление широкой полосы ~ 2440 cm⁻¹ [8,9]. Изотопный обмен, таким образом, приводит к снижению концентраций в протонированных слоях как устойчивых, так и подвижных ПС-центров.

В [10,11] показано, что обработка TiO₂ при 600°C и давлении 0.4 at D₂O в течение 5 h приводит к поглощению с полосой ~ 2439 cm⁻¹, соответствующими O–D-связям. При обработке же в токе O₂ и добавках Cu₂O при 1073 K состав TiO₂ (рутил) восстанавливается до стехиометрического. Из изотопного сдвига полос O–D- и O–T-связей можно оценить включение локальной моды и определить ее приведенную массу. Может быть также получена модельная функция потенциальной энергии локальной моды. Отношения приведенных масс в TiO_2 после реакций $H^+ \leftrightarrow D^+$ и $H^+ \leftrightarrow T^+$ имеют

Рис. 1. ИК пропускание LiNbO₃ *x*-среза после протонирования в C_6H_5OOD и парах $H_2O(a)$ и в C_6H_5COOH и парах $D_2O(b)$ и временах выдержки в парах H_2O : 0 (1), 10 (2), 26 дней (3) и парах D_2O : 0 (4), 50 (5), 190 (6), 1232 min (7).

значения $v_{OH}/v_{OD} = 1.374$ и $v_{OH}/v_{OT} = 1.638$. Разупорядочение водородной пары может быть охарактеризовано эффективной приведенной массой.

Толщинное распределение Н чаще всего оценивается ядерными методами, где для предотвращения заряжения поверхности ионным пучком поверх оксидов наносятся слои золота толщиной ~ 100 Å. Профиль глубинного распределения Н определяется бомбардировкой дейтрированного $LiNbO_3$ ионами He^+ с энергией 950 KeV для возбуждения ядерной реакции He+DHe + p и возможности анализа распределения Не-реакционных частиц. Полученные профили дейтерия в слоях дейтерированного LiNbO3 z-среза не соответствовали гауссовой и обратной функциям, характерным при диффузии, и из сравнения с профилями $n_e = f(x)$ установлено, что значение Δn_e возрастает нелинейно с увеличением концентрации Н, а при низких температурах приближается к линейной. Высокая подвижность ионов Н⁺ в пределах приповерхностных протонированных слоев обусловлена легкостью уже при 25°С перехода одного вида ПС-центров в другой. При высоких значениях х в Li_{1-x}H_xNbO₃ взаимное влияние протонов способствует их эстафетному переносу и обеспечивает высокий уровень обмена $H^+ \leftrightarrow D^+$ в LiNbO₃ и чуть ниже в LiTaO₃. При температуре отжига > 290°С полный изотопный обмен в протонированном LiNbO3 не наблюдается, а при 350°С наступает разрушение в слоях водородносвязанных цепочек. Вовлеченные в Н-связь ПС-центры становятся компенсаторами вакансий $V_{\mathrm{Li}^+}^-$, дополнительно возникающих в результате обмена $H^+ \leftrightarrow Li^+$ на внутренней границе с объемом в LiNbO3 и LiTaO3. Коэффициент диффузии дейтерия в легированном MgO: Li имеет значение $150 \exp(1.9 \,\mathrm{eV}/RT) \,\mathrm{cm/c}$ и больше, чем лития [12]. Такие же результаты получены для кристаллических СаО и SnO₂ с добавками Li ($\leq 3 \cdot 10^{-2}$ %), подвергнутых горячей обработке в парах D₂O [13].

Приповерхностное нанолегирование можно проводить не только протонированных оксидов, но и при обработке в ПС-средах с добавками солей вводимых элементов. В последнем случае введение легирующих добавок непосредственно связано с образованием в протонированных слоях плотной сетки Н-связей. О сопутствующем протонировании LiNbO3 при проведении обменных реакций $\mathrm{Li}^+ \leftrightarrow \mathrm{Ag}^+$ и $\mathrm{Li}^+ \leftrightarrow \mathrm{Tl}^+$ при 270°С в расплавах AgNO₃ и ТІNO₃ соответственно сообщалось в [14,15]. Добавление в расплавы органических кислот солей Mg²⁺ и Cu⁺ используется для увеличения в 2 раза порога оптического разрушения LiNbO₃ y-среза [16]. Обработкой КТіОРО₄ в расплавах RbNO₃ достигается увеличение стойкости в 10² раз по отношению к слоям LiNbO₃: Ti. Впервые возможность низкотемпературного приповерхностного протонно-ионного нанолегирования LiNbO₃, LiTaO₃ и $YBa_2Cu_3O_{7-x}$ элементами различных размеров и валентности показана авторами [17-19]. Обработка LiNbO₃ в расплавах органических кислот с добавлением солей щелочных элементов при 240°С, как и при механической обработке, приводит к увеличению их содержания в протонированных слоях (таблица) [9,14,20,21].

Спектры масс-вторичных ионов легированного LiNbO3 x-среза

Массовое число	Элемент	Нормированные интенсивности массовых чисел, arb. units добавки в расплаве C ₆ H ₅ COOH, mol.%					
			LiNO ₃ (6.0)	NaNO ₃ (4.5)	KNO ₃ (3.5)	Cu ₂ O (0.1)	TINO ₃ (2.0)
1	N^+	5.1	3.2	4.8	2.1	7.1	5.5
7	Li ⁺	0.5	240	13.1	22	0.6	309
23	Na ⁺	55		122	68	25	28
39	\mathbf{K}^+	44	52	24	140	100	48
40	Ca^+	48	64	102	40	55	82
83	Cu^+	0	0	0	0	54	1
93	Nb^+	1.0	6.4	5.2	15.2	0.9	129
109	NbO^+	0.1	1.8	2.8	4.2	0.4	48
125	NbO_2^+	2.4	2.2	2.4	0.9	0.7	3.8
131	NbO_3^+	2.9	6.1	12.2	8.4	100	15.5
205	Tl ⁺	0	0	0	0	0	210

При масс-спектроскопии вторичных ионов распыление легированных оксидов проводилось пучком ионов $(N_2)^+$ с энергией 4.5 KeV и плотностью тока на мишени 10⁻⁶ A/cm. В таблице не представлены слабые линии ионов B⁺, C⁺, CH⁺, N⁺, NH⁺, O⁺, OH⁺, H₂O⁺, Cl⁺, P⁺, Ti⁺, Cr⁺, а линии с массовыми числами 20, 26, 27, 28, 68 и 72 не идентифицированы. При обработке протонированного LiNbO₃ в расплаве LiNO₃ при 350°C наблюдается обратный ионный обмен, позволяющий широко варьировать параметры световодных слоев вплоть до создания многослойных структур.

Протонно-ионный характер легирования LiNbO3 медью при 350°С в расплавах KCl-CuCl не обеспечивает получение однородных по толщине слоев и высоких концентраций ионов Cu⁺ и Cu₂₊ [22]. Это связано с фазовыми изменениями в LiNbO3 при температурах 290°С и устраняется с понижением температуры легирования. Более низкотемпературный режим достигается при добавках к расплавам органических кислот до 0.1 mol.% Cu₂O (таблица) [18,19]. Установлены кинетические закономерности формирования легированных слоев, природа образующихся ПС-центров и условия формирования внутренней инвариантной границы с объемом. Шлифованные кристаллы LiNbO3 окрашиваются в таком расплаве в течение 1 min, а полированные пластины с плоскостью (104) после 6 h взаимодействия имели буро-красную окраску, переходящую в светложелтую после отжига при 490°С. Изменение окраски связывается с переходом $Cu^+ \leftrightarrow Cu^{2+}$ в легированных слоях и подтверждается исследованиями спектров электронного парамагнитного резонанса (ЭПР). В [23] зелено-голубая окраска достигалась при имплантации ионами Cu^+ с энергией 30 KeV и дозой $5.7 \cdot 10^{16} \text{ cm}^{-2}$ и отжигом при 200°С 30 min и связывалась с изменением 3д-электронного состояния меди. Окрашивание кристаллов LiTaO₃ происходит в таких условиях значительно медленнее.

Действие C₆H₅COOCu аналогично таковому расплава C₆H₅COOH. С добавлением солей лития приповерхностные слои обогащаются медью с образованием фазы $Li_{1-x-y}H_xCu_yNbO_3$:

$$\operatorname{LiNbO_3} + x\mathrm{H}^+ + y\mathrm{Cu}^+ + z/2\mathrm{Cu}^{2+} \leftrightarrow$$

$$\leftrightarrow \operatorname{Li}_{1-x-y-z/2}(\mathrm{OH})_x\mathrm{Cu}^+ y\mathrm{Cu}_{z/2}^{2+}\mathrm{NbO_3} + (x+y+z)\mathrm{Li}.$$
(1)

Продувка расплавов воздухом поддерживает постоянным ионное отношение Cu^+/Cu^{2+} для обеспечения реакции Li⁺ \leftrightarrow Cu⁺/Cu²⁺. Приповерхностное протонноионное нанолегирование медью LiNbO₃, как и объемное, сопровождается заметным ухудшением волноводных свойств сформированных слоев и часто наблюдается нарушение условий генерации мод [18,19,24].

Масс-спектрометрические исследования вторичных ионов при распылении ионами (N2)⁺ и H⁺ дают качественную и количественную картину легирования медью протонированных слоев в LiNbO₃ (таблица) [21,24]. Поток протонов с энергией 2.5 MeV направлялся под углом 90° к поверхности слоев и концентрация меди оценивалась по сигналу K_{α} и при добавках 0.2 mol.% Cu₂O в расплав C_6H_5 СООН составляла $(2-4) \cdot 10^{20}$ сm⁻³. При исследовании полированных обменно легированных медью ($\sim 0.3 \text{ mol.}\%$) кристаллов LiNbO₃ *z*-среза такие оценки дают значение $0.8 - 2 \cdot 10^{20} \text{ cm}^{-3}$. Таким образом, при протонно-ионном нанолегировании в слое до 4 µm возможно более высокое содержание Си, что способствует повышению эффективности голографической записи информации. Из ИК спектроскопических исследований установлено, что ионы Cu⁺ и H⁺ замещают в кристаллах LiNbO3 и LiTaO3 равные количества ионов Li⁺; тем самым в легированных слоях снижается концентрация ПС-центров и можно предположить замещение ионами H^+ образующихся вакансий $V^-_{\mathrm{Li}^+}$ в литиевых октаэдрах [23].

Низкотемпературное нанолегирование одновалентными ионами в присутствии кислорода отмечается для широкого круга полупроводниковых материалов [25,26]. Наблюдается недиффузионный характер внедрения легирующих элементов на глубину до 4 µm и формирование инвариантной границы с объемом. В случае легирования медью максимум концентрационной зависимости утоплен на глубину 0.2 µm, что связано, как и при дейтрировании, с определенным количеством микротрещин и пустот [8,14,23]. При обработке кристаллов *p*-GaAs (100) в расплавах C₆H₅COOH с добавкой до 0.2 mol.% Cu₂O в течение 20 min при 200°С концентрация ионов Cu+ увеличивается в 10² раз. Сопутствующее нанолегирование GaAs ионами Cu⁺ наблюдается также при обработке в расплавах C₆H₅COOH с добавками солей Mn, Ni и других элементов.

Отжиг приповерхностно легированных медью кристаллов LiNbO3 в атмосфере D_2 при температурах $\geq 300^\circ C$ сопровождается изменением окраски до яркожелтой и связан с частичным окислением ионов Cu^+

до Cu²⁺ без заметных фазовых изменений [19]. Изучение окисления меди дает возможность определения мест локализации ионов Cu⁺ и Cu²⁺, перераспределения протонов и представляет интерес при записи плоских голограмм в таких обладающих высокой фоторефрактивностью слоях [27]. Это позволяет также раскрыть характер термической фиксации при записи голограммы в объемно-легированных кристаллах LiNbO₃: M (M = Fe, Cu, Mn), которая тесно связана с перераспределением примесных ионов H⁺, компенсирующих наведенный пространственный заряд, и не связана с фоторефрактивной чувствительностью центров Cu²⁺.

Изучению состояния ионов Cu^{2+} в LiNbO₃ и YBa₂Cu₃O_{7-x} при объемном легировании посвящено большое количество исследований и значительно меньше в легированных слоях [18,19,21]. На ЭПРспектрах, подвергнутых протонно-ионному нанолегированию в расплавах C₆H₅COOH + Cu₂O (0.1 mol.%), наблюдается относительно слабый бесструктурный синглет (рис. 2) [18,19]. После отжига при 300 и 400°C интенсивность поглощения возрастает с появлением сверхтонкой структуры, что указывает на существенное возрастание концентрации ионов Cu²⁺. Сверхтонкая структура полос ЭПР-поглощения также связана с превращением водородно-связанных подвижных ПСцентров в устойчивые [9].

Отжигом протонированных и нанолегированных оксидов при температурах $\geq 623\,K$ снижается интенсивность широкой ИК полосы с максимумом при $\sim 3300\,cm^{-1}$

Рис. 2. ЭПР спектр LiNbO₃ с плоскостью (104) после протонирования (1) и дополнительного отжига: zT, K: 473 (2), 573 (3), 673 (4), $g_1 = 2.1315$, $g_2 = 2.1458$, $g_3 = 2.1623$, $g_4 = 2.1756$, 77 K, $H \parallel Z$.

и увеличивается узкая полоса 3506 cm^{-1} с расщеплением вершин на три компоненты. Такие спектральные изменения вызваны переходом части ионов H⁺ с ребер октаэдров NbO₆ в места $V_{\text{Li}^+}^-$ между $(\ldots)O_6$ и LiO₆ октаэдрами, сопровождающимся увеличением межкислородных расстояний (~ 0.3 nm) и снижением влияния *H*-связи на их подвижность в слоях. При этом на внутренней границе сформированных слоев при отжиге для компенсации избыточного положительного заряда и изменения катионного окружения иона Cu²⁺ появляется дополнительное количество $V_{\text{Li}^+}^-$ с выходом ионов Li⁺ в междоузлия.

При протонно-ионном нанолегировании реакция $Li^+ \leftrightarrow H^+$ в LiNbO₃ дополняется обменом $Li^+ \leftrightarrow Cu^+/Cu^{2+}$, причем наиболее вероятным местом локализации ионов Cu⁺ и Cu²⁺ на этой стадии является система (...)О6 октаэдров. После окислительного отжига происходит перемещение ионов Cu²⁺ в LiO₆ октаэдры на места $V_{\mathrm{Li}^+}^-$ и структура LiNbO₃ в приповерхностном слое становится аналогичной объемно легированному медью оксиду [27]. Это соответствует восстановлению структуры $Li_{1-x-y-z}(OH)_x Cu_y^+ Cu_y^{2+} NbO_{3-x}$, несмотря на значительное количество ионов H⁺ и Cu²⁺ в слоях LiNbO3: Си. Подтверждением изменения места локализации меди при отжиге является отсутствие сопутствующего разрушения оксидов и снижение интенсивности полосы $\sim 118\,\mathrm{cm}^{-1}$ на КР-спектрах, что связывается в [23] с дополнительным упорядочением в слоях.

Если деформации, вносимые подвижными ПСцентрами и ионами Cu⁺, взаимно друг друга компенсируют при протонно-ионном нанолегировании LiNbO₃, то с присутствием ионов Cu²⁺ появляется деформация, связанная с эффектом Яна-Теллера [28]. Происходит сжатие вакантных октаэдров вдоль одного направления Cu-O и растяжение вдоль двух других. Это также способствует самопроизвольному перемещению ионов Cu²⁺ в пустые литиевые октаэдры. Ян-теллеровская неустойчивость ионов Cu⁺ и Cu²⁺ в Cu-O и Ba⁻O плоскостях исследована в слоистых металлооксидных соединениях YBa₂Cu₃O_x. Ухудшение волноводных и инвариантных свойств легированных медью слоев Li_{1-x}H_xNbO₃ связано с уменьшением из-за эффекта Яна-Теллера наведенного Δn_e , так как ионы Cu²⁺ снижают деформационное искажение NbO₆ октаэдров.

В литийсодержащих оксидах обменной реакцией $Li^+ \leftrightarrow H^+$ достигается регулируемый уровень неравновесности кристаллов и областей с квантово-размерной структурой. Введение нанолегирующих добавок связано с образованием непосредственно в нанокомпозиционных (HK) структурах плотной сетки водородносвязанных фрагментов O-H...O. Изотопный эффект $H^+ \leftrightarrow D^+$ в протонированных кристаллах LiNbO₃ наблюдается уже при 20°C при обработке в парах D₂O с близким к теоретическому значением ν_{OH}/ν_{OD} . При обработке таких кристаллов среза (104), близкого к плоскости спайности, наблюдается замена O-H- на O-D-связи не только в устойчивых, но и подвижных ПС-центрах. Массспектрометрией вторичных ионов исследованы уровни нанолегирования кристаллов LiNbO₃ и LiTaO₃ из расплавов солей Li, Na, K, Cu, Tl. Показана возможность введения многовалентных катионов в оксиды путем HKмеханизма переноса сложных состояний из разнозаряженных дефектов. С развитием такого протонно-ионного HK-легирования открываются новые пути низкотемпературного направленного синтеза сложных оксидных соединений и керамики. На примере окислительной реакции $Cu^+ \leftrightarrow Cu^{2+}$ показана возможность низкотемпературного дозированного нанолегирования объема кристалла, что не достигается термодиффузией.

Список литературы

- [1] Колесов В.А., Семенов А.Е., Черкасов Е.В. // Опт. и спектр. 1981. Т. 50. Вып. 5. С. 1004–1007.
- [2] Верещагин В.И., Сутулин С.Н., Сергеев А.Н. // Физика диэлектриков. Диэлектрики в экстремальных условиях. 1988. Т. 5. С. 163–164.
- [3] Павлов О.Г., Родичев И.И., Хасанов О.Л. Свойства малых частиц и островковых металлических пленок. Киев, 1985. С. 7–9.
- [4] Loni A., Keys R.W., De La Rue R.M. et al. // J. EE Proc. J. 1989. N 6. P. 297–300.
- [5] Loni A., De La Rue R.M., Winfield I.M. // J. Appl. Phys. 1987.
 Vol. 61. N 1. P. 64–67.
- [6] Gonzalez R., Clen Y., Abraham N.M. // Phys. Rev. B. 1988. Vol. 37. N 11. P. 1431–1439.
- [7] Forster A., Kapphan S., Wohlecke M.O. // Phys. Stat. Sol. B. 1987. Vol. 143. N 2. P. 755–764.
- [8] Сергеев А.Н., Швейкин Г.П., Сутулин С.Н. и др. Обзоры по электронной технике. Сер. 6. Материалы. 1989. № 3. 54 с.
- [9] Сергеев А.Н., Бамбуров В.Г., Швейкин Г.П. Низкотемпературное протонное модифицирование оксидов в тонком слое. Свердловск: УрО АН СССР, 1989. 74 с.
- [10] Bates I.B., Wong I.C., Perkins R.A. // Phys. Rev. B. 1979. Vol. 319. N 8. P. 4130–4139.
- Bates I.B., Perkins R.A. // Phys. Rev. B.: Solid State. 1977.
 Vol. 16. N 8. P. 3713–3722.
- [12] Chen Y. // Phys. Rev. B.: Condens. Matter. 1987. Vol. 35. N 15.
 P. 8202–8206
- [13] Park I.L., Jonsoles R. // J. Matter. Res. 1989. Vol. 4. N 1. P. 224–231.
- [14] Jackel J.L., Rico C.E. // Appl. Phys. Lett. L. 1982. Vol. 1. N 6. P. 508–510.
- [15] Rice C.E., Jackel I.L., Brown W.L. // J. Appl. Phys. 1985. Vol. 5. N 9. P. 4437–4440.
- [16] Bremer T., Hertal P., Celtshig S. et al. // Thin Solid Films. 1983. Vol. 175. P. 235–239.
- [17] Сергеев А.Н. Обзоры по электронной технике. Серия 6. Материалы. 1990. Вып. 4 (1428). С. 68.
- [18] Didenko A.N., Khasanov O.L., Ryabchikov A.I. Abstracts of Int. Conf. "Modification of properties of surface layers of nonsemiconducting materials using particle beams" (MPSL) — Summy, 1993. P. 442.
- [19] Сергеев А.Н., Бамбуров В.Г., Швейкин Г.П. и др. Приповерхностное протонно-ионное легирование оксидов. Свердловск: УрО АН СССР, 1990. 90 с.
- [20] Lagos M., Mahanty I., Slusarenko V. // Surface Sci. 1987.
 Vol. 191. N 1–2. P. 806–812.

- [21] Плеханов В.П., Шакалов Ф.Е., Сутулин С.Н. и др. Обзоры по электроной технике. Серия 6. Материалы. 1988. № 1. С. 62.
- [22] Коркишко Ю.Н., Ганьшин В.А. // ФТФ. 1988. Т. 58. № 4. С. 692–700.
- [23] Шакалов Ф.Е., Осадчев Л.А., Руднев С.В. и др. Обзоры по электронной технике. Серия 6. Материалы. 1991. № 5. 58 с.
- [24] Бородин Ю.В., Верещагин В.А. Протонно-ионное легирование оксидов в тонком слое. Деп. в ОНИИТЭХИМ. № 180-ХІІ 91. Черкассы, 1991. С. 56.
- [25] Тюрин Ю.И., Борисов В.П., Гришин А.Н. и др. Водород в полупроводниках Деп. в ВИНИТИ 23.04.90. № 2144. В. 90. Томск, 1990. 39 с.
- [26] Skowronski M., Kromer R.E. // J. Appl. Phys. 1991. Vol. 69. N 11. P. 7825–7830.
- [27] Kobayashi T., Muto K., Kai J. et al. // J. of Magn. Res. 1979. Vol. 34. N 3. P. 459–466.
- [28] Уэллс А. Структурная неорганическая химия. М.: Мир, 1987. Т. 1. С. 191–192.