Особенности подвижности краевых и винтовых дислокаций в *у*-облученных кристаллах LiF

© Р.П. Житару, Т.С. Дурум

Институт прикладной физики Академии наук Молдавии, 2028 Кишинев, Молдова

E-mail: mechprop@phys.asm.md

(Поступила в Редакцию 27 марта 2003 г. В окончательной редакции 5 июня 2003 г.)

> На γ-облученных кристаллах LiF исследованы пробеги ансамблей краевых и винтовых дислокаций в поле напряжений сосредоточенной нагрузки. Установлено существенное влияние дозы облучения и температуры на относительную подвижность краевых и винтовых компонент дислокаций. Полученные результаты обсуждаются с учетом дополнительного торможения винтовых дислокаций дислокационными дебрисами, возникающими при двойном поперечном скольжении.

Ранее в [1,2] было установлено, что тип примеси и ее состояние в кристаллах NaCl, легированных двухвалентными катионными примесями, существенно влияют на относительную подвижность краевых и винтовых дислокаций, а также на параметры двойного поперечного скольжения (ДПС). Полученные результаты объяснены с учетом дополнительного торможения винтовых дислокаций дислокационными "дебрисами", которые образуются в процессе ДПС. Однако в литературе существует мнение, что относительная подвижность дислокаций, возникающих при индентировании ионных кристаллов, зависит от их свободной поверхностной энергии [3,4]. В этих работах установлено существование поверхностного потенциального барьера для дислокаций винтового типа и показано, что соответствующий потенциальный барьер определяется величиной поверхностной энергии и может быть понижен под влиянием адсорбции.

Таким образом, высказаны две точки зрения: подвижность дислокаций в поле напряжений сосредоточенной нагрузки определяется объемными свойствами кристалла [1,2]; характеристики дислокационных розеток зависят от величины свободной поверхностной энергии [3,4].

В настоящей работе поставлена цель изучить влияние на подвижность дислокаций в поле напряжений индентора не поверхностной, а внутренней энергии кристалов, связанной с их дефектной структурой. Известно, что точечные дефекты и их комплексы влияют на параметры двойного поперечного скольжения дислокаций [5,6]. Поэтому можно ожидать, что их введение в кристаллы приводит к изменению торможения подвижных дислокаций дебрисами (ТД), представляющими собой дислокационные диполи и другие дефекты и возникающими при двойном поперечном скольжении винтовых дислокаций [5,7]. Это торможение может быть довольно значительным [8,9], однако оно недостаточно изучено и не всегда учитывается. Дислокационные розетки, возникающие на грани (001) щелочно-галоидных кристаллов около отпечатков индентора, состоят из лучей, сформированных ансамблями краевых и винтовых дислокационных полупетель [10], следовательно, их длина должна меняться

по-разному при изменении ТД (тормозятся в основном винтовые участки дислокационных полупетель).

С учетом этого конкретной задачей работы являлось изучение влияния устойчивых радиационных дефектов на подвижность и относительную подвижность дислокаций в краевых и винтовых лучах дислокационных розеток, возникающих в поле напряжений индентора на монокристаллах LiF. Выбор объекта связан с тем, что поверхностная энергия монокристаллов LiF слабо сказывается на длине лучей дислокационных розеток [3,4].

1. Методика эксперимента

Монокристаллы LiF, выращенные в ЛОМО (Санкт-Петербург), облучались *у*-излучением источника Co⁶⁰. Дозы облучения (D) варьировались в пределах $5 \cdot 10^4 - 5 \cdot 10^6$ Gy. После облучения образцы выдерживались при комнатной температуре (хранились в темноте) в течение ~ 30 лет, т.е. исследовались монокристаллы, содержащие устойчивые радиационные дефекты и их комплексы [11]. Последнее вытекает из работы [12], в которой установлено, что в результате выдержки у-облученных кристаллов LiF при комнатной температуре (хранение в темноте) происходит разрушение неустойчивых и образование устойчивых радиационных дефектов. Наличие в образцах LiF, исследованных в настоящей работе, устойчивых радиационных дефектов подтверждают спектры поглощения, снятые с помощью спектрофотометра в диапазоне длин волн 390-1000 nm.

Плоскость скола (001) исследуемых кристаллов деформировалась при помощи микротвердомера ПМТ-3, нагрузка (P) на алмазный индентор равнялась 10–50 g. Температура деформирования изменялась в диапазоне 77–573 К. Дислокационные розетки, возникающие вокруг отпечатков индентора и состоящие из лучей краевых и винтовых дислокационных полупетель, выявлялись методом химического избирательного травления в 10% водном растворе FeCl₃.

За меру подвижности дислокаций в поле напряжений индентора принималась длина пробега дислокацион-

ных анамблей в краевых $\{110\}_{90}$ и винтовых $\{110\}_{45}$ плоскостях скольжения (l_e и l_s соответственно). Для сравнения подвижностей краевых и винтовых дислокационных ансамблей был выбран параметр $\xi = l_e/l_s$. Ошибка измерений l_e и l_s составляла 10%.

Экспериментальные результаты и их обсуждение

На рис. 1 показаны дислокационные розетки возле отпечатков индентора на плоскости (001) при двух температурах для исходных и облученных монокристаллов LiF. Видно, что как облучение, так и понижение температуры индентирования приводят к изменению структуры этих розеток, в частности, длины их дислокационных лучей.

Количественные данные о влиянии γ -облучения на длину указанных лучей для краевых и винтовых компонент при 293 К и разных нагрузках представлены в табл. 1 в виде отношения этих длин до (l_0) и после (l_{ir}) облучения. Видно, что γ -облучение при всех исследованных нагрузках и дозах приводит к уменьшению длины лучей обоих типов, причем этот эффект для винтовых компонент больше, чем для краевых (при всех *P* цифры вторых колонок в табл. 1 больше, чем первых).

Некоторые результаты измерения относительной подвижности краевых и винтовых дислокаций в γ -облученных образцах LiF приведены на рис. 2. Видно, что при 293 К (кривые 1–3) после введения радиационных дефектов параметр ξ , характеризующий относительное изменение длины краевых и винтовых лучей дислокационных розеток, увеличивается. Этот эффект обнаруживается уже при самой малой дозе облучения $(D = 5 \cdot 10^4 \text{ Gy})$ и имеет место при всех исследованных нагрузках, несколько уменьшаясь с ростом *P*. При дальнейшем увеличении *D* параметр ξ меняется мало и незакономерно. В случае индентирования при 77 К параметр ξ после облучения, напротив, не возрастает, а уменьшается (кривая *4* на рис. 2).

Таким образом, полученные рензультаты свидетельствуют о том, что эффект естественного укорочения длин лучей дислокационных розеток (в условиях P = const) в облученных кристаллах LiF при 293 K оказывается более значительным для винтовых компонент

Таблица 1. Эффект уменьшения длины лучей дислокационных розеток (l_0/l_{ir}) при γ -облучении монокристаллов LiF; T = 293 K

D, Gy	$P = 10 \mathrm{g}$		$P = 30 \mathrm{g}$		$P = 50 \mathrm{g}$	
	краевые	винтовые	краевые	винтовые	краевые	винтовые
$5\cdot 10^4$	1.6	2.2	1.9	2.5	2.3	2.5
$2\cdot 10^5$	2.2	4.0	2.3	3.1	_	_
$5\cdot 10^5$	2.6	5.3	3.6	4.2	6.0	6.3
10^{6}	3.0	5.7	3.7	4.7	4.0	4.2
$5\cdot 10^6$	3.0	4.0	4.1	5.3	4.0	5.0

Рис. 1. Вид дислокационных розеток на плоскости (001) монокристаллов LiF (200×) *T*, K: *a, b, c* — 293; *a', b', c'* — 77. *a* и *a'* — необлученные образцы; *b, b'* и *c, c'* — γ -облученные образцы LiF. *D*, Gy: *b, b'* — $5 \cdot 10^4$, *c, c'* — $5 \cdot 10^5$, *P* = 50 g.

Рис. 2. Зависимость относительной подвижности (ξ) краевых и винтовых дислокаций в кристаллах LiF от дозы облучения при 293 (1-3) и 77 К (4). *P*, g: 1 - 10, 2 - 30 и 3, 4 - 50. Размеры отпечатков микротвердости в случае (1) и (4) одинаковы.

дислокаций, чем для краевых. Иначе говоря, введение радиационных дефектов приводит к увеличению ξ , т.е. усиливает торможение винтовых полупетель в большей степени, чем краевых. Связано это обстоятельство, скорее всего, с тем, что радиационные дефекты интенсифицируют двойное поперечное скольжение винтовых дислокаций, которое приводит к образованию дислокационных ступенек и диполей, создающих дополнительное торможение самих дислокаций [5,6]. Влияние свободной поверхностной энергии на пробег лидирующих дислокаций в поле напряжений индентора в винтовых и краевых лучах дислокационной розетки вряд ли является ощутимым для исследованных в данной работе γ -облученных кристаллов LiF, что согласуется с заключением работ [7,13].

Предложенное выше объяснение роли торможения дебрисами в подвижности винтовых дислокаций и сам эффект увеличения ξ на облученных образцах LiF хорошо согласуется с данными изменения длины краевых и винтовых дислокационных лучей под влиянием у-облучения (табл. 1). Из табл. 1 видно, что эффект уменьшения длины лучей при введении радиационных дефектов значительнее для винтовых полупетель, чем для краевых. Он четко проявляется при всех исследованных нагрузках и дозах облучения. При каждой нагрузке и дозе облучения винтовые дислокации по сравнению с краевыми оказываются чувствительнее к введению радиационных дефектов — их сокращение больше, чем краевых. Таким образом, результаты, приведенные в табл. 1, свидетельствуют о том, что с введением радиационных дефектов торможение винтовых дислокаций значительнее краевых. Эффект имеет место при всех P, но особенно ярко проявляется при P = 10 g (рис. 2).

Состояние точечных дефектов и эффективные напряжения влияют на параметры ДПС. В зависимости от величины внешнего воздействия Р в области под индентором формируется различное напряженное состояние [14]. Поэтому в поле одних и тех же дефектов, но при разных эффективных напряжениях поведение дислокаций, возникающих при индентировании, будет различным, что соответственно скажется на относительной подвижности краевых и винтовых компонент дислокаций, т.е. на величине ξ. Из рис. 2 видно, что при 293 К для облученных и необлученных кристаллов LiF величина ξ при 50 g (ξ_{50}) отличается от величины ξ при 10 g (ξ_{10}). Введение радиационных дефектов приводит к изменению знака этого различия: $\xi_{10} < \xi_{50}$ — для необлученных кристаллов и, наоборот, $\xi_{10} > \xi_{50}$ — для у-облученных кристаллов LiF. Выявленный эффект, повидимому, связан с интенсификацией ДПС в облученных образцах LiF в отличие от необлученных. Однако тот факт, что $\xi_{10} \neq \xi_{50}$ для одного и того же типа образцов LiF определяется, скорее всего, различием напряженного состояния при 10 и 50 g. При P = 50 g эффективные напряжения под индентором на необлученных и *у*-облученных кристаллах LiF являются более значительными, чем при P = 10 g [15].

В то же время состояние радиационных дефектов в поле напряжений индентора также может меняться; соответствено изменяется характер ДПС и его влияние на подвижность дислокаций, особенно винтовых. Эти процессы протекают по разному в зависимости от внешних напряжений, т.е. в зависимости от величины нагрузки на индентор. Следовательно, создаются различные условия поведения дислокаций при 50 и 10 g. Это, возможно, и является одной из причин того, что

Таблица 2. Относительная подвижность краевых и винтовых дислокаций $(l_e/l_s = \xi)$ в поле напряжений индентора; P = 10 g

D, Gy	$T = 293 \mathrm{K}$	$T = 373 \mathrm{K}$	$T = 423 \mathrm{K}$	$T = 473 \mathrm{K}^*$
0	1.1	0.9	0.8	
$5\cdot 10^4$	2.0	1.1	0.8	0.8
$2 \cdot 10^5$	2.1	1.3	1.3	0.7
$5\cdot 10^5$	2.3	1.4	1.5	1.2
10 ⁶	2.2	1.2	1.9	1.3
$5\cdot 10^6$	1.5	1.3	1.6	1.0

* При T > 473 К измерения длины лучей не приведены; лучи четко не сформированы из-за большой подвижности дислокаций.

на облученных образцах LiF ξ_{50} становится меньше ξ_{10} . Полученные данные позволяют также заключить, что радиационные дефекты в большей степени определяют поведение винтовых дислокаций, а деформационные напряжения в поле радиационных дефектов, наоборот, значительнее сказываются на подвижности краевых дислокаций. Первый эффект четко проявляется при 10 g, второй — при 50 g.

Опыты, проведенные в широком интервале температур 293-573 К и при 77 К, показали, что ряд выявленных эффектов наблюдается при индентировании уоблученных кристаллов LiF не только при комнатной, но и при других температурах. Из табл. 2 видно, что для *T* > 293 К относительная подвижность дислокаций выше на *у*-облученных образцах LiF, т.е. на образцах, содержащих радиационные дефекты, $\xi_{ir} > \xi_0$. Эффект наиболее ярко выражен при 293 К, а с повышением температуры он уменьшается, т.е. параметр ξ при T > 293 К меньше значений ξ при T = 293 К. В табл. 2 приведены данные для $P = 10 \, \text{g}$. Однако отмеченное явление еще более четко выражено для $P = 50 \, \text{g}$, но из-за большой распространенности лучей измерения выполнены в более узком интервале температур. Из табл. 2 также видно, что четкой зависимости ξ от дозы облучения не наблюдается. Однако следует отметить, что для $T > 293 \,\mathrm{K} \,\xi$ при максимальной дозе облучения $(5 \cdot 10^8 \, \text{Gy})$ больше, чем при минимальной $(5 \cdot 10^5 \, \text{Gy})$, тогда как при T = 293 К наблюдается противоположный эффект. Этот факт свидетельствует о том, что влияние дозы облучения на изменения ξ зависит от температуры.

Наблюдаемые при T > 293 К эффекты также хорошо согласуются с учетом дополнительного торможения винтовых дислокаций дефектами, образующимися при поперечном скольжении. Известно, что повышение температуры приводит к диспергированию комплексов, агрегатов точечных дефектов. Следовательно, при T > 293 К радиационных дефектов в γ -облученных LiF становится больше, но их преодолению движущимися дислокациями способствуют термические напряжения: чем выше T, тем существеннее термоактивация, тем длиннее пробег дислокаций в основной плоскости скольжения. А увеличенное количество центров торможения за счет рассеяния радиационных комплексов приводит также к уве-

Рис. 3. Относительное изменение длины краевых (1) и винтовых (2) дислокационных лучей при понижении температуры от 293 до 77 К. P = 10 g.

личению числа актов ДПС. При высоких температурах сдвиговые напряжения в основной плоскости скольжения и в поперечных плоскостях отличаются мало. Это приводит к тому, что в результате ДПС происходит интенсивное размножение дислокаций, винтовые дислокации при этом испытывают слабое ТД, *l*_s удлиняется, а $\xi = l_e/l_s$ уменьшается (табл. 2), причем чем выше температура, тем меньше торможение винтовых дислокаций дебрисами, так как при высоких Т сами дебрисы (дислокационные диполи) становятся источниками размножения дислокаций. Этот процесс сказывается на структуре дислокационной розетки, возникающей вокруг отпечатка индентора. Винтовые лучи существенно расширяются и распространяются далеко от места индентирования (укола), что коррелирует с уменьшением торможения винтовых дислокаций дебрисами. В области температур $T \ge 573 \, {\rm K}$ такое торможение практически отсутствует.

Интересными являются изменения ξ при низкой температуре (77 К): с введением радиационных дефектов ξ не увеличивается как для T > 293 К, а, наоборот, уменьшается и при этом слабо зависит от дозы облучения (рис. 2). Видно также, что понижение температуры от 293 до 77 К по-разному влияет на относительную подвижность краевых и винтовых дислокаций для необлученных и γ -облученных кристаллов LiF: параметр ξ увеличивается для первых образцов и уменьшается для вторых. При этом $\xi_{77} > \xi_{293}$ для необлученных образцов и, наоборот, $\xi_{77} < \xi_{293}$ для облученных (на рис. 2 кривая 4 расположена ниже кривой 1).

Известно, что понижение температуры от 293 до 77 К для ряда щелочно-галоидных кристаллов приводит к аномальной подвижности дислокаций в поле напряжений сосредоточенной нагрузки [14–17]. Особенно чувствительными к понижению температуры являются дислокационные полупетли краевых лучей дислокационных розеток. В частности, на необлученных кристаллах LiF, исследованных в данной работе (рис. 3) и в работах [16,17], краевые лучи удлиняются при понижении температуры от 293 до 77 К, а длина винтовых лучей практически не изменяется.

При введении радиационных дефектов эффект удлинения лучей при 77 К также имеет место, но при этом удлиняются не только краевые, но и винтовые лучи (рис. 3), причем эффект удлинения le и ls за счет понижения температуры приблизительно одинаков. Это означает, что при 77 К присутствие радиационных дефектов слабо изменяет подвижность краевых полупетель и увеличивает подвижность винтовых. Последнее, по-видимому, определяется уменьшением дополнительного торможения винтовых дислокаций дебрисами. Подвижность краевых полупетель проявляет некоторую чувствительность к наличию радиационных дефектов, но определяющим для нее является понижение температуры. Только при очень больших дозах облучения $(D \ge 10^6 \, \mathrm{Gy})$ наблюдается уменьшение эффекта удлинения l_e ; зависимость l_s от дозы облучения выражена слабо.

Таким образом, можно отметить различную чувствительность при 77 К краевых и винтовых компонент дислокаций к наличию стабильных радиационных дефектов, введенных при γ -облучении кристаллов LiF. Ярко выраженный эффект удлинения l_s и слабое изменение l_e при понижении температуры от 293 до 77 К является причиной уменьшения параметра ξ для γ -облученных кристаллов LiF по сравнению с необлученными и приводит к тому, что при 77 К $\xi_{ir} < \xi_0$ (кривая 4 на рис. 2).

Очевидно, что важную роль в наблюдаемых при 77 К эффектах играет интенсивность поперечного скольжения винтовых дислокаций [18]. При понижении температуры процесс поперечного скольжения тормозится, причем это торможение является более существенным на облученных образцах, где вероятность поперечного скольжения выше. Следовательно, и торможение винтовых дислокаций дебрисами при низких температурах будет меньше. Зависимость подвижности краевых полупетель в меньшей степени определяется двойным поперечным скольжением. В результате это приводит к тому, что параметр $\xi = l_e/l_s$ при понижении температуры от 293 до 77 К должен уменьшиться в большей степени для γ -облученных образцов, чем для исходных, что и наблюдается на опыте.

Итак, в настоящей работе показано, что введение радиационных дефектов в матрицу кристаллов LiF существенно влияет на относительную подвижность винтовых и краевых дислокаций. Результаты радиационного изменения параметра ξ , полученные в широком интервале температур (77-473 К), объясняются изменением характера ДПС и возникающего при этом дополнительного торможения винтовых дислокаций дислокационными дебрисами. Полученные результаты позволяют заключить, что параметр ξ дает возможность оценивать роль вторичных дефектов, возникающих при поперечном скольжении винтовых дислокаций, в деформационном упрочнении кристаллов. При этом по изменениям параметра ξ в зависимости от внешних и внутренних факторов можно судить о характере двойного поперечного скольжения.

Список литературы

- Ю.С. Боярская, Р.П. Житару, М.А. Линте. Кристаллография 41, 4, 737 (1996).
- [2] Р.П. Житару, Н.А. Палистрант. ФТТ 41, 6, 1041 (1999).
- [3] Е.Д. Щукин, В.И. Савенко, Л.А. Кочанова. ДАН СССР 200, 2, 406 (1971).
- [4] В.И. Савенко, Л.А. Кочанова, Е.Д. Щукин. Кристаллография 17, 3, 995 (1972).
- [5] Б.И. Смирнов. Дислокационная структура и упрочнение кристаллов. Наука, Л. (1981). 235 с.
- [6] Р.П. Житару, О.В. Клявин, Б.И. Смирнов, А.В. Степанов. Физические процессы пластической деформации при низких температурах. Наук. думка, Киев (1974). С. 112.
- [7] F. Appel, H. Grube, U. Messerschmidt, B.I. Smirnov. J. Crystal Lattice Defect 7, 65 (1977).
- [8] J.J. Gilman. J. Appl. Phys. 33, 9, 2703 (1962).
- [9] W.J. Johnston, J.J. Gilman. J. Appl. Phys. 31, 632 (1960).
- [10] А.А. Предводителев, В.Н. Рожанский, В.М. Степанова. Кристаллография 7, 418 (1962).
- [11] Yu.S. Boyarskaya, R.P. Zhitaru. Phys. Stat. Sol. 42, 29 (1970).
- [12] М.П. Абрамишвили, З.Г. Ахвледиани, Т.Л. Калабегишвили. ФТТ **42**, *10*, 1794 (2000).
- [13] F. Appel, U. Messerschmidt. Phys. Stat. Sol. 35, 2, 1003 (1969).
- [14] Ю.С. Боярская, Д.З. Грабко, М.С. Кац. Физика процессов микроиндентирования. Штиинца, Кишинев (1986). 291 с.
- [15] Ю.С. Боярская. Деформирование кристаллов при испытаниях на микротвердость Штиинца, Кишинев (1972). 235 с.
- [16] Ю.С. Боярская, С.С. Шутова, Р.П. Житару, Е.И. Пурич. Деформирование кристаллов при действии сосредоточенной нагрузки. Штиинца, Кишинев (1978). 127 с.
- [17] Ю.С. Боярская, Д.З. Грабко, Р.П. Житару. Псевдоподвижность дислокаций в чистых и примесных щелочногалоидных кристаллах. Штиинца, Кишинев (1986). 27 с.
- [18] О.В. Клявин. Физика пластичности кристаллов при гелиевых температурах. Наука, М. (1987). 255 с.