18

Об электронном состоянии атома, адсорбированного на эпитаксиальном графене, сформированном на металлической и полупроводниковой подложках

© С.Ю. Давыдов, А.А. Лебедев

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, Санкт-Петербург, Россия

E-mail: Sergei_Davydov@mail.ru

(Поступила в Редакцию 22 июля 2014 г.)

Предложена теоретическая схема вычисления плотности состояний и числа заполнения адатома. В рамках теории возмущений рассмотрены два предельных случая связи в адсорбционной системе адатомоднослойный графен-субстрат: случаи сильной и слабой связи графена с подложкой. С использованием простых моделей изучено влияние металлического и полупроводникового субстратов на электронное состояние адатома. Во всех рассмотренных случаях показано, что поправки первого порядка теории возмущений понижают число заполнения адатома.

Работа выполнена при поддержке гранта РФФИ (проект № 12-02-00165а) и государственной финансовой поддержке ведущих университетов РФ (субсидия 074-U01).

1. Введение

Уникальность свойств графена в настоящее время хорошо известна и в значительной степени теоретически объяснена (см., например, обзоры [1-7]). Графен, связанный с подложкой и, как правило, сформированный на ней [1,4,6,7], называется эпитаксиальным. Задача об адсорбции на эпитаксиальном графене (ЭГ) важна как в чисто теоретическом, так и в прикладном плане. В первом случае интересно выяснить, каковы "удельные веса" влияния листа ЭГ и подложки, на которой этот лист сформирован, на электронное состояние адатома. Во втором случае интерес к задаче об адсорбции, скажем, металлов на ЭГ продиктован, например, необходимостью формирования контактов для приборных структур; с другой стороны, особенности адсорбции газов представляют интерес для сенсорики. Несомненный интерес адсорбция представляет и для целей функционализации однолистного беспримесного графена.

В рамках модельного подхода задача об адсорбции на ЭГ рассматривалась в работе [8]. Здесь мы рассмотрим особенности электронного состояния атома, адсорбированного на ЭГ, в предельных случаях слабой и сильной связей листа графена с твердотельной подложкой, для чего воспользуемся теорией, развитой в работе [9].

2. Общие соотношения

Из самых общих соображений функция Грина $G_a(\omega)$ для атома, адсорбированного на ЭГ, может быть записана в виде

ŀ

$$G_a^{-1}(\omega) = \overline{\Omega}_a + i\Gamma_a(\omega). \tag{1}$$

Здесь $\overline{\Omega}_a = \omega - \varepsilon_a - \Lambda_a(\omega)$, ω — энергетическая переменная, ε_a — энергия одноэлектронного уровня адатома, "работающего" на переход заряда; функция сдвига квазиуровня

$$\Lambda_a(\omega) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\Gamma_a(\omega')d\omega'}{\omega - \omega'},$$
(2)

где P — символ главного значения, $\Gamma_a(\omega) = \pi V_{a/eg}^2 \rho_{eg}(\omega)$ — функция уширения квазиуровня адатома, где $\rho_{eg}(\omega)$ — плотность состояний (ПС) ЭГ, $V_{a/eg}$ — матричный элемент взаимодействия адатом–ЭГ. ПС на адатоме $\rho_a(\omega)$, отвечающая функции Грина (1), имеет вид

$$p_a(\omega) = \frac{1}{\pi} \frac{\Gamma_a(\omega)}{[\omega - \varepsilon_a - \Lambda_a(\omega)]^2 + \Gamma_a^2(\omega)},$$
 (3)

а число заполнения n_a уровня ε_a адатома при нулевой температуре равно

$$n_a = \int_{-\infty}^{\varepsilon_{\rm F}} \rho_a(\omega) d\omega, \qquad (4)$$

где $\varepsilon_{\rm F}$ — уровень Ферми. Таким образом, определив ПС ЭГ $\rho_{eg}(\omega)$, достаточно просто вычислить характеристики адсорбированного состояния.

Для нахождения функции $\rho_{eg}(\omega)$, определяющей характеристики адсорбции $\Gamma_a(\omega)$ и $\Lambda_a(\omega)$, был использован прием, достаточно подробно описанный в работах [8,9]. Поэтому здесь мы приведем лишь конечную формулу, полученную в низкоэнергетическом

приближении, когда реальный электронный спектр однолистного графена аппроксимируется выражением $\varepsilon_{\pm}(\mathbf{q}) = \varepsilon_{\mathrm{D}} \pm (3/2) \mathrm{ta} |\mathbf{q}|$ (см., например, [1]), где ε_{D} — энергия точки Дирака свободного однослойного графена, равная энергии $|p_z\rangle$ -состояния атома углерода, \mathbf{q} — волновой вектор, отсчитываемый от волнового вектора точки Дирака **K**, причем $|\mathbf{q}| \ll |\mathbf{K}|$, t — матричный элемент взаимодействия $|p_z\rangle$ -состояний ближайших атомов графена, находящихся на расстоянии a; верхний знак относится к зоне π^* — зоне проводимости ($\Omega = \omega - \varepsilon_{\mathrm{D}} > 0$), нижний знак соответствует зоне π — валентной зоне свободного графена ($\Omega < 0$). Итак, имеем

$$\rho_{eg}(\omega) = \frac{1}{\pi\xi^2} \left[\Gamma_{eg}(\omega) \ln \frac{(\overline{\Omega}_{\rm D} \mp \xi)^2 + \Gamma_{eg}^2(\omega)}{\overline{\Omega}_{\rm D}^2 + \Gamma_{eg}^2(\omega)} + 2\overline{\Omega}_{\rm D} \left(\arctan \frac{\overline{\Omega}_{\rm D}}{\Gamma_{eg}(\omega)} - \arctan \frac{\overline{\Omega}_{\rm D} \mp \xi}{\Gamma_{eg}(\omega)} \right) \right].$$
(5)

Здесь функция уширения (полуширина) квазиуровня атома углерода есть $\Gamma_{eg}(\omega) = \pi V_{g/sub}^2 \rho_{sub}(\omega)$, где $V_{g/sub}$ — матричный элемент взаимодействия субстрат-графен; $\rho_{sub}(\omega)$ — энергетическая ПС подложки; функция сдвига квазиуровня

$$\Lambda_{eg}(\omega) = rac{1}{\pi} P \int\limits_{-\infty}^{\infty} rac{\Gamma_{eg}(\omega')d\omega'}{\omega - \omega'} d\omega';$$

 $\overline{\Omega}_{\mathrm{D}} \equiv \Omega_{\mathrm{D}} - \Lambda_{eg}(\omega); \quad \Omega_{\mathrm{D}} = \omega - \varepsilon_{\mathrm{D}};$

 $\xi \equiv 3taq_B/2$ — энергия обрезания, q_B — вектор обрезания; верхний знак относится к зоне π^* — зоне проводимости ЭГ ($\overline{\Omega}_{\rm D} > 0$), нижний знак соответствует зоне π — валентной зоне ЭГ ($\overline{\Omega}_{\rm D} < 0$).

Рассмотрим для простоты два предельных случая связи графен-подложка [9].

Режим сильной связи графена с подложкой

Будем полагать, что $\Gamma_{eg}(\omega) \gg \xi$. Такое неравенство можно трактовать как сильную связь углеродных атомов с атомами субстрата по сравнению с их (атомов углерода) связью в графеновом листе. Тогда можно показать [9], что ПС ЭГ приближенно равна

$$\rho_{eg}(\omega) \approx \rho_{eg}^{0}(\omega)[1+C(\omega)],$$

$$\rho_{eg}^{0}(\omega) = \frac{1}{\pi} \frac{\Gamma_{eg}(\omega)}{\overline{\Omega}_{D}^{2} + \Gamma_{eg}^{2}(\omega)},$$

$$C(\omega) = \frac{4}{3} \xi \frac{\left|\overline{\Omega}_{D}\right|}{\overline{\Omega}_{D}^{2} + \Gamma_{eg}^{2}(\omega)}.$$
(6)

Отметим, что $\rho_{eg}^{0}(\omega)$ есть ПС изолированных атомов углерода, связанных с подложкой, природу которой нужно в дальнейшем конкретизировать.

ПС на адатоме $\rho_a(\omega)$ определяется выражением (3), где $\Gamma_a(\omega) = \pi V_{a/eg}^2 \rho_{eg}(\omega)$, $V_{a/eg}$ — матричный элемент взаимодействия адатом–ЭГ, и $\rho_{eg}(\omega)$ дается формулами (6). Представим $\Gamma_a(\omega)$ в виде суммы вида

$$\Gamma_a(\omega) = \Gamma_a^0(\omega) + \gamma_a(\omega), \tag{7}$$

где $\Gamma^0_a(\omega) = \pi V^2_{a/eg} \rho^0_{eg}(\omega)$ и $\gamma_a(\omega) = \pi V^2_{a/eg} \rho^0_{eg}(\omega) C(\omega)$. Аналогично запишем

$$\Lambda_a(\omega) = \Lambda_a^0(\omega) + \lambda_a(\omega), \qquad (8)$$

где $\Lambda_a^0(\omega)$ и $\lambda_a(\omega)$ вычисляются по формуле (2) с полуширинами $\Gamma_a^0(\omega)$ и $\gamma_a(\omega)$ соответственно. Отметим, что характеристики $\Gamma_a^0(\omega)$ и $\Lambda_a^0(\omega)$ относятся к адсорбции атома на подложке, содержащей невзаимодействующие атомы углерода, характеристики $\gamma_a(\omega)$ и $\lambda_a(\omega)$ описывают добавки, вносимые взаимодействием между атомами углерода.

С учетом малости отношений $\gamma_a(\omega)/\Gamma_a^0(\omega)$ и $\lambda_a(\omega)/\Lambda_a^0(\omega)$ перепишем (3) в следующем виде:

$$\rho_{a}(\omega) \approx \rho_{a}^{0}(\omega) \left(1 + \frac{\gamma_{a}(\omega)}{\Gamma_{a}^{0}(\omega)} + 2 \frac{[\Omega_{a} - \Lambda_{a}^{0}(\omega)]\lambda_{a}(\omega) - \Gamma_{a}^{0}(\omega)\gamma_{a}(\omega)}{[\Omega_{a} - \Lambda_{a}^{0}(\omega)]^{2} + [\Gamma_{a}^{0}(\omega)]^{2}}\right), \quad (9)$$

где $\Omega_a = \omega - \varepsilon_a$ и ПС адатома, адсорбированного на поверхности субстрата, содержащего невзаимодействующие атомы углерода, есть

$$\rho_a^0(\omega) = \frac{1}{\pi} \frac{\Gamma_a^0(\omega)}{[\Omega_a - \Lambda_a^0(\omega)]^2 + [\Gamma_a^0(\omega)]^2}.$$
 (10)

Сделаем некоторые оценки, учтя, что максимум $\rho_a^0(\omega)$ лежит вблизи энергии ω' , отвечающей корню уравнения

$$\omega - \varepsilon_a - \Lambda_a^0(\omega) = 0. \tag{11}$$

Перепишем выражение (9), заменив во всех величинах, входящих в скобки, ω на ω'

$$\rho_{a}(\omega) \approx \rho_{a}^{0}(\omega)(1-\overline{C}),$$

$$\overline{C} \approx \frac{4}{3} \xi \frac{|\overline{\Omega}'|}{\overline{\Omega}_{a}^{\prime 2} + \Gamma_{eg}^{2}},$$
(12)

где $\overline{\Omega}' = \omega' - \varepsilon_{\mathrm{D}} - \Lambda_{eg}(\omega')$. Тогда

$$n_a^0 \approx \frac{1}{\pi} \operatorname{arccot} \frac{\omega' - \varepsilon_{\rm F}}{\Gamma_a^0(\omega')}.$$
 (13)

Окончательно для числа заполнения получим

$$n_a \approx n_a^0 (1 - \overline{C}). \tag{14}$$

3.1. Металлическая подложка. Рассмотрим для начала металлическую подложку. Если, следуя работе Андерсона [10] (см. также [11,12]), считать плотность состояний субстрата $\rho_{sub}(\omega) = \rho_m = \text{const}$ (приближение бесконечно широкой зоны), то получаем

 $\Gamma_{eg} = \Gamma_m = \pi V_{gm}^2 \rho_m = \text{const} \ \text{и} \ \Lambda_{eg}(\omega) = \Lambda_m = 0 \ (V_{gm} - Mathematical Mathematical Normalization (V_{gm}) - Mathematical Normalization (V_{gm}) = 0$ (V_{gm}) металл). В пределе сильной связи имеем $\Gamma_m \gg \xi$. Тогда в соответствии с (6) получим

$$\rho_{eg}(\omega) \approx \rho_{eg}^{0}(\omega)[1+C(\omega)],$$

$$\rho_{eg}^{0}(\omega) = \frac{1}{\pi} \frac{\Gamma_{m}}{\Omega_{D}^{2}+\Gamma_{m}^{2}},$$

$$C(\omega) = \frac{4}{3} \xi \frac{|\Omega_{D}|}{\Omega_{D}^{2}+\Gamma_{m}^{2}}.$$
(15)

Для дальнейших оценок нужно упростить полученные выражения. Заменяя функцию $C(\omega)$ ее максимальным значением в точках $|\Omega_{\rm D}| = \Gamma_m$, получим $\overline{C}_m = (2/3)(\xi/\Gamma_m)$, откуда следует, что $\overline{C}_m \ll 1$. Тогда $\gamma_a(\omega) = \overline{C}_m \Gamma_a^0(\omega)$, $\lambda_a(\omega) = \overline{C}_m \Lambda_a^0(\omega) = 0$. Вместо (9) получаем

$$\rho_a(\omega) \approx \rho_a^0(\omega)(1 - C_m),$$

$$\rho_a^0(\omega) = \frac{1}{\pi} \frac{\Gamma_a^0(\omega)}{\overline{\Omega}_a^2 + [\Gamma_a^0(\omega)]^2}.$$
(16)

Так как $\Gamma^0_a(\omega) = \pi V^2_{a/eg} \rho^0_{eg}(\omega)$, то, согласно (2), получаем

$$\Lambda_a^0(\omega) = \pi V_{a/eg}^2 \frac{\Omega_{\rm D}}{\Omega_{\rm D}^2 + \Gamma_m^2}.$$
 (17)

Максимальное значение второй поправки имеет место при $\overline{\Omega}_a = 0$ и равно $-2\overline{C}_m$, откуда

$$\rho_a(\omega) \approx \rho_a^0(\omega)(1 - \overline{C}_m) \tag{18}$$

И

$$n_{am} \approx n_{am}^0 (1 - \overline{C}_m). \tag{19}$$

Таким образом, наличие на поверхности металлической подложки монослоя углерода, т.е. графенового листа, понижает число заполнения адатома из-за увеличения вероятности ухода электрона в ЭГ с ростом отношения ξ/Γ_m .

Для качественной оценки числа заполнения n_{am}^0 положим $V_{a/eg}^2 \ll \Gamma_m^2$, что позволяет представить

$$\rho_a^0(\omega) \approx \frac{1}{\pi} \frac{\Gamma_a^0(\omega_a^*)}{(\omega - \omega_a^*)^2 + [\Gamma_a^0(\omega_a^*)]^2},$$
 (20)

где энергия $\omega_a^* \approx \varepsilon_a + \Lambda_a^0(\varepsilon_a)$ есть приближенное значение корня уравнения $\overline{\Omega}_a = 0$. Теперь легко получить

$$n_{am}^0 \approx \frac{1}{\pi} \operatorname{arccot} \frac{\omega_a^* - \varepsilon_{\rm F}}{\Gamma_a^0(\omega_a^*)}.$$
 (21)

Так как мы рассматриваем здесь режим сильной связи графена с подложкой, интересно сопоставить число заполнения n_{am} атома, адсорбированного на ЭГ, с числом заполнения того же атома \tilde{n}_{am} , но адсорбированного на чисто металлической (без графенового покрытия) поверхности. Легко показать [10–12], что в принятом выше приближении бесконечно широкой зоны получаем

$$\tilde{n}_{am} = \frac{1}{\pi} \operatorname{arccot} \frac{\varepsilon_a - \varepsilon_{\rm F}}{\tilde{\Gamma}_a},\tag{22}$$

где $\tilde{\Gamma}_{a}(\omega) = \pi V_{am}^{2} \rho_{m}$, V_{am} — матричный элемент взаимодействия адатом-металлический субстрат; функция сдвига квазиуровня $\tilde{\Lambda}_{a}(\omega) = 0$. Как следует из сравнения выражений (21) и (22), для дальнейшего сопоставления чисел заполнения n_{am} и \tilde{n}_{am} нужно конкретизировать как адатом, так и металл. Если, однако, считать, что $\omega_{a}^{*} \sim \varepsilon_{a}$ и $\tilde{\Gamma}_{m} \sim \Gamma_{a}^{0}(\omega_{a}^{*})$, то отношение $n_{am}/\tilde{n}_{am} \sim 1 - \overline{C}_{m}$ и уменьшается с ростом ξ/Γ_{m} .

3.2. Полупроводниковая подложка. Для описания ПС полупроводниковой подложки воспользуемся моделью Халдейна–Андерсона [11–13]: $\rho_{sub}(\omega) = \rho_s$ = const при $|\omega| \ge E_g/2$ и $\rho_{sub}(\omega) = 0$ при $|\omega| < E_g/2$, где E_g — ширина запрещенной зоны, центр которой принят за начало отсчета энергии. Теперь функция уширения $\Gamma_{eg}(\omega)$ становится равной $\Gamma_s(\omega) = \pi V_{gs}^2 \rho_s(\omega)$ при $|\omega| \ge E_g/2$ и 0 при $|\omega| < E_g/2$ (V_{gs} — матричный элемент взаимодействия атом углерода-полупроводник); функция сдвига $\Lambda_{eg}(\omega)$ принимает вид $\Lambda_s(\omega) = (\Gamma_s/\pi) \ln |(\omega - E_g/2)/(\omega + E_g/2)|$, где Γ_s = const. В пределе сильной связи имеем $\Gamma_s \gg \xi$.

ПС ЭГ $\rho_{tg}(\omega)$ для энергий $|\omega| \ge E_g/2$ обращается в

$$\rho_{s}(\omega) \approx \rho_{s}^{0}(\omega)[1 + C_{s}(\omega)],$$

$$\rho_{s}^{0}(\omega) = \frac{1}{\pi} \frac{\Gamma_{s}}{\overline{\Omega}_{D}^{2} + \Gamma_{s}^{2}},$$

$$C_{s}(\omega) = \frac{4}{3} \xi \frac{|\overline{\Omega}_{D}|}{\overline{\Omega}_{D}^{2} + \Gamma_{s}^{2}}.$$
(23)

Для области щели $|\omega| < E_g/2$ получим

$$\rho_s^0(\omega) = \delta(\overline{\Omega}_{\rm D}),$$

$$C_s(\omega) = 4\xi/3|\overline{\Omega}_{\rm D}|.$$
(24)

ПС на адатоме $\rho_a(\omega)$ по-прежнему задается выражением (3), где $\Gamma_a(\omega) = \pi V_{a/eg}^2 \rho_s(\omega)$, $\rho_s(\omega)$ определяется формулами (23), (24), $\Lambda_a(\omega)$ — интегралом (2). Для дальнейшего анализа вновь прибегнем к упрощениям, введя энергию $\omega_{\rm D}^* \approx \varepsilon_{\rm D} + \Lambda_s(\varepsilon_{\rm D})$ и положив для энергий $|\omega| \ge E_g/2$.

$$\rho_s^0(\omega) = \frac{1}{\pi} \frac{\Gamma_s}{(\omega - \omega_{\rm D}^*)^2 + \Gamma_s^2},$$

$$C_s(\omega) = \frac{4}{3} \xi \frac{|\omega - \omega_{\rm D}^*|}{(\omega - \omega_{\rm D}^*)^2 + \Gamma_s^2}.$$
(25)

Далее, аппроксимируем функцию $C_s(\omega)$ постоянными значениями $\overline{C}_{s1} = 4\xi |\omega_D^*|/3[(\omega_D^*)^2 + \Gamma_s^2]$ для $|\omega| \ge E_g/2$ и $\overline{C}_{s2} = 4\xi/3|\omega_D^*|$ для $|\omega| < E_g/2$. Тогда можем записать $\gamma_a(\omega) = \overline{C}_{s1}\Gamma_a^0(\omega)$ для $|\omega| \ge E_g/2$ и $\gamma_a(\omega) = \Gamma_a^0(\omega) = 0$ для $|\omega| < E_g/2$; $\lambda_a(\omega) = \overline{C}_{s1}\Lambda_a^0(\omega)$ для $|\omega| \ge E_g/2$ и

 $\lambda_a(\omega) = \overline{C}_{s2} \Lambda_a^0(\omega)$ для $|\omega| < E_g/2$. При $|\omega| \ge E_g/2$ вместо (10) получаем выражение (16), но с заменой \overline{C}_m на \overline{C}_{s1} , откуда $\rho_{a1}(\omega) \approx \rho_a^0(\omega)(1-\overline{C}_{s1})$, где $\rho_a^0(\omega)$ дается формулой (16).

Аппроксимируя $\Gamma_a^0(\omega)$ постоянным значением $\Gamma_a^0(0) = V_{a/eg}^2 \Gamma_s / [(\omega_D^*)^2 + \Gamma_s^2]$, согласно (2), получаем

$$\Lambda_a^0(\omega) = \Gamma_a^0(0) \ln \left| \frac{\omega - E_g/2}{\omega + E_g/2} \right|.$$
(26)

В случае полупроводниковой подложки число заполнения адатома n_{as} удобно представить в виде суммы $n_{as} = n_{as}^b + n_{as}^l$, где n_{as}^b является зонным вкладом (вклад валентной зоны), а n_{as}^l — локальным вкладом n_{as}^l уровня ω_l , лежащего в области запрещенной зоны (т.е. $-E_g/2 \le \omega_l \le E_g/2$) [11–13]. Зонный вклад в суммарное число заполнения адатома равен

$$n_{as}^{b} = \int_{-\infty}^{-E_{g}/2} \rho_{a1}(\omega) d\omega, \qquad (27)$$

или

$$n_{as}^{b} \approx (1 - C_{s1}) n_{as}^{b0},$$

$$n_{as}^{b0} = \int_{-\infty}^{-E_{g}/2} \rho_{a}^{0}(\omega) d\omega.$$
 (28)

По аналогии с [12], можно показать, что

$$n_{as}^{b0} \approx \frac{1}{\pi} \operatorname{arccot} \frac{\varepsilon_a + R_a}{\Gamma_a^0(0)},$$
$$R_a = \sqrt{\frac{E_g^2}{4} + \frac{\Gamma_a^0(0)E_g}{\pi}}.$$
(29)

Отметим, что в случае адсорбции на чистом (без графена) полупроводнике зонный вклад в суммарное число заполнения адатома равен [12]

$$\tilde{n}_{as}^{b} \approx \frac{1}{\pi} \operatorname{arccot} \frac{\varepsilon_{a} + R}{\Gamma_{s}},$$

$$R = \sqrt{\frac{E_{g}^{2}}{4} + \frac{\Gamma_{s}E_{g}}{\pi}}.$$
(30)

Если вновь предположить, что $\Gamma_s \sim \Gamma_a^0(0)$, то $n_{as}^{b0}/\tilde{n}_{as}^b \sim 1 - \overline{C}_{s1}$.

Локальный вклад в число заполнения адатома есть

$$n_{as}^{l} = \vartheta(\varepsilon_{\rm F} - \omega_{l}) \left| 1 - \left(1 + \overline{C}_{s2} \right) \frac{d\Lambda_{a}^{0}(\omega)}{d\omega} \right|_{\omega_{l}}^{-1}, \qquad (31)$$

где функция Хевисайда $\vartheta(\varepsilon_{\rm F} - \omega_l)$ гарантирует, что этот вклад отличен от нуля и равен единице лишь при условии $\varepsilon_{\rm F} > \omega_l$. Отметим, что ω_l является решением уравнения $\omega - \varepsilon_a - \Lambda_a(\omega) = 0$ в области щели, так что

$$\omega_l = \varepsilon_a + \left(1 + \overline{C}_{s2}\right) \Lambda_a^0(\omega_l). \tag{32}$$

При $\xi = 0$ имеем

$$\omega_l^0 = \varepsilon_a + \Lambda_s^0(\omega_l^0). \tag{33}$$

Тогда для $\delta \omega_l \equiv \omega_l - \omega_l^0$ получим приближенно

$$\delta\omega_l \approx \overline{C}_{s2} \Lambda^0_a(\omega^0_l).$$
 (34)

В нулевом приближении локальный вклад есть

$$n_{as}^{l0} = \vartheta(\varepsilon_{\rm F} - \omega_l^0) \left| 1 - \frac{d\Lambda_a^0(\omega)}{d\omega} \right|_{\omega_l^0}^{-1}.$$
 (35)

Используя (26), получим (см., например, [11])

$$n_{as}^{l0} = \vartheta(\varepsilon_{\rm F} - \omega_l^0) \left(1 + \frac{\Gamma_a^0(0)}{\pi} \frac{E_g}{(E_g/2)^2 - (\omega_l^0)^2} \right)^{-1}.$$
 (36)

В случае адсорбции на чистом полупроводнике число заполнения локального состояния \tilde{n}_{as}^l дается формулой (36) с учетом (33) и заменой $\Gamma_a^0(0)$ на Γ_s .

Отметим, что уровни ω_l и ω_l^0 могут располагаться по разные стороны от уровня Ферми. Поэтому оценки вкладов локального состояния должны рассчитываться для конкретной системы.

Режим слабой связи графена с подложкой

Будем полагать, что $\Gamma_{eg}(\omega) \ll \xi$. Такое неравенство можно трактовать как слабую связь углеродных атомов с атомами субстрата по сравнению с их связью между собой в графеновом листе. Поэтому в качестве нулевого приближения теории следует рассматривать адсорбцию на однослойном свободном графене (СГ), тогда как учет подложки будет первым приближением.

Функция Грина атома, адсорбированного на СГ, может быть записана в виде

$$\left(G^{0}_{ag}(\omega)\right)^{-1} = \omega - \varepsilon_a - \Lambda^{0}_{ag}(\omega) + i\Gamma^{0}_{ag}(\omega).$$
(37)

где $\Gamma_{ag}^{0}(\omega) = \pi V_{ag}^{2} \rho_{g}^{0}(\omega), \rho_{g}^{0}(\omega)$ — ПС однослойного СГ, V_{ag} — матричный элемент взаимодействия адатом–СГ; функция сдвига квазиуровня адатома $\Lambda_{ag}^{0}(\omega)$ вычисляется по формуле (2) с заменой $\Gamma_{a}(\omega)$ на $\Gamma_{ag}^{0}(\omega)$.

Оставаясь в рамках низкоэнергетического приближения к описанию спектра СГ, легко показать (см., например, [9]), что ПС СГ есть

$$\rho_g^0(\Omega_{\rm D}) = 2 \, \frac{|\Omega_{\rm D}|}{\xi^2}, \quad |\Omega_{\rm D}| \le \xi, \tag{38}$$

где $\Omega_{\rm D} = \omega - \varepsilon_{\rm D}$. Число заполнения СГ $n_g^0 = 1 \mp (\varepsilon_{\rm F} - \varepsilon_{\rm D})^2 / \xi^2$ для $\varepsilon_{\rm F} < \varepsilon_{\rm D}$ и для $\varepsilon_{\rm F} > \varepsilon_{\rm D}$ соответственно. Подчеркнем, что по предположению $(\varepsilon_{\rm F} - \varepsilon_{\rm D})^2 / \xi^2 \ll 1$.

Физика твердого тела, 2015, том 57, вып. 1

Для функции сдвига квазиуровня, вызванного взаимодействием с графеном, имеем

$$\Lambda_{ag}^{0}(\Omega_{\rm D}) = 2 \frac{V_{ag}^2}{\xi^2} \Omega_{\rm D} \ln \left| \frac{\Omega_{\rm D}^2}{\xi^2 - \Omega_{\rm D}^2} \right|. \tag{39}$$

Для оценки числа заполнения атома n_{ag}^0 , адсорбированного на СГ, аппроксимируем функции $\Gamma_{ag}^0(\omega)$ и $\Lambda_{ag}^0(\omega)$ выражениями $\overline{\Gamma}_{ag}^0 = \pi V_{ag}^2 \rho_g^0(\xi)$ и $\overline{\Lambda}_{ag}^0(\Omega_{\rm D}) = \Omega_{\rm D}a$, где $a = 2(V_{ag}/\xi)^2 \ln[\xi^2/(\xi^2 + \varepsilon_{\rm D}^2)]$, причем, полагая $(V_{ag}/\xi)^2 \ll 1$, получаем $|a| \ll 1$. Тогда

$$n_{ag}^{0} \approx \frac{1+a}{\pi} \left(\arctan \frac{(1-a)(\varepsilon_{\rm F} - \varepsilon_{\rm D})}{\overline{\Gamma}_{ag}^{0}} + \arctan \frac{(1-a)(\xi + \varepsilon_{\rm D})}{\overline{\Gamma}_{ag}^{0}} \right).$$
(40)

Воспользовавшись выражением (24) работы [9] при $|\Omega_{\rm D}| = \xi$, найдем главную поправку к плотности состояний $\rho_g^0(\omega)$ в виде

$$\delta \rho_g(\omega) \approx -2 \arctan(\Gamma_{sub}/\xi)/\pi\xi,$$
 (41)

где $\Gamma_{sub}(\omega)$ для металлической подложки есть Γ_m , а для полупроводниковой подложки — Γ_s при $|\omega| \ge E_g/2$ и 0 при $|\omega| < E_g/2$. Теперь соответствующая поправка к функции уширения есть $\gamma_a(\omega) = \pi V_{ag}^2 \delta \rho_g(\omega)$.

Для металлической подложки имеем $\gamma_{ag}^{m} = -\Gamma_{m}(V_{ag}^{2}/\xi^{2})\ln(\xi^{2}/\Gamma_{m}^{2})$ и $\lambda_{ag}^{m} = 0$. Тогда добавка к n_{ag}^{0} и суммарное число заполнения n_{ag}^{m} равны

$$\delta n_{ag}^{m} \approx \frac{1}{\pi} \operatorname{arccot} \frac{\varepsilon_{a} - \varepsilon_{\mathrm{F}}}{\gamma_{ag}^{m}},$$

$$n_{ag}^{m} \approx n_{ag}^{0} - \delta n_{ag}^{m}.$$
(42)

В случае полупроводниковой подложки $\gamma_{ag}^{s} = \Gamma_{s}(V_{ag}^{2}/\xi^{2})\ln(\xi^{2}/\Gamma_{s}^{2})$ для $|\omega| \geq E_{g}/2$ и $\gamma_{ag}^{s} = 0$ для $|\omega| < E_{g}/2$, откуда $\lambda_{ag}^{s} = \gamma_{ag}^{s}\ln|(\omega - E_{g}/2)/(\omega + E_{g}/2)|$. По аналогии с (29), запишем

$$n_{ag}^{sb} \approx \frac{1}{\pi} \operatorname{arccot} \frac{\varepsilon_a + R_{ag}^s}{\gamma_{ag}^s},$$
$$R_{ag}^s = \sqrt{\frac{E_g^2}{4} + \frac{\gamma_{ag}^s E_g}{\pi}}.$$
(43)

Так как локальный вклад отсутствует (запрещенная зона подложки перекрыта сплошным спектром графена), то $n_{ag}^s = n_{ag}^0 - n_{ag}^{sb}$. Заметим, что, как и в случае сильной связи, имеет место понижение числа заполнения вследствие увеличения вероятности ухода электрона с адатома.

5. Заключение

В настоящей работе в рамках простых моделей мы рассмотрели задачу об адсорбции на ЭГ, сформированном на металлической и полупроводниковой подложках. Рассматривались два предельных случая. В первом случае сильной связи графена с подложкой считалось, что взаимодействие атома углерода с субстратом гораздо сильнее его взаимодействия с другими углеродными атомами, составляющими графен, так что в нулевом приближении адатомы углерода можно считать изолированными. При этом электронная структура ЭГ в большой степени определяется структурой субстрата. Так, например, запрещенная зона полупроводниковой подложки "прорастает" в графен.

Во втором случае рассматривалась слабая связь графена с подложкой. При этом в качестве нулевого приближения теории рассматривалась задача об адсорбции атома на свободном однолистном графене (СГ). Взаимодействие системы адатом-СГ с подложкой не вносит сколь-либо сильные изменения в электронную структуру СГ. Так, например, в случае полупроводниковой подложки графен остается бесщелевым.

Во всех рассмотренных случаях поправка δn_a к нулевому приближению к числу заполнения адатома n_a^0 отрицательна, так что $n_a = n_a^0 + \delta n_a < n_a^0$. С физической точки зрения понижение результирующего числа заполнения связано с открытием дополнительного канала ухода электрона с адатома. В случае сильной связи этот канал образуют атомы углерода графена (ближайшие к углеродному атому, который непосредственно связан с адатомом), на которые может перейти электрон с адатома. В нулевом приближении электрон изолированного адатома мог уйти только в подложку. В случае слабой связи дополнительный канал делокализации электрона адатома представляет субстрат. Отметим, что понижение результирующего числа заполнения n_a можно трактовать как увеличение перехода заряда в системе адатом-ЭГ.

Рассмотрим качественное изменение энергии адсорбции E_{ads} , вызванное поправками δn_a . Как известно [11], E_{ads} можно представить в виде суммы ионной E_{ads}^{ion} и металлической E_{ads}^{met} составляющих.

Оценить ионную составляющую можно по классической формуле $E_{ads}^{ion} = -Z_a^2 e^2/4 l_{ads}$, где $Z_a = 1 - n_a$ — заряд адатома, e — величина заряда электрона, l_{ads} — длина адсорбционной связи. Таким образом, учет поправок δn_a ведет к увеличению заряда Z_a и, следовательно, величины ионной составляющей $|E_{ads}^{ion}|$.

Для оценки влияния учета $\delta n_a < 0$ на E_{ads}^{met} поступим следующим образом. Как замечено выше, поправка δn_a связана с открытием дополнительного пространства для делокализации электрона адатома. Исходя из соотношения неопределенностей Гейзенберга $\Delta r \cdot \Delta p \sim \hbar$ (Δr и Δp — неопределенности координаты и импульса соответственно, \hbar — постоянная Планка), ясно, что увеличение Δr ведет к уменьшению Δp и, тем самым,

самого импульса p, в результате чего положительная кинетическая энергия электронов понижается, а суммарная отрицательная энергия системы возрастает. Отсюда возрастает и величина $|E_{ads}^{met}|$. Таким образом, учет поправок δn_a ведет к увеличению заряда $|E_{ads}|$.

В настоящей работе мы часто прибегали к достаточно грубым оценкам, которых, в принципе, можно бы было избежать. Нужно, однако, понимать, что для получения более точных результатов необходимо знать значения входящих в формулы параметров, что невозможно в отсутствии соответствующих экспериментальных данных по адсорбции на ЭГ.

Список литературы

- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. Rev. Mod. Phys. 81, 109 (2008).
- [2] V.N. Kotov, B. Uchoa, V.V. Pereira, A.H. Castro Neto, F. Guinea. arXiv: 1012.3484.
- [3] I.V. Falkovsky, D.V. Vassilevich. arXiv: 1111.3017.
- [4] D.R. Cooper, B. D'Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, V. Yu. arXiv: 1110.6557.
- [5] Y.H. Wu, T. Yu, Z.X. Shen. J. Appl. Phys. 108, 071 301 (2010).
- [6] J. Haas, W.A. de Heer, E.H. Conrad. J. Phys.: Cond. Matter 20, 323 202 (2008).
- [7] Th. Seyller, A. Botswick, K.V. Emtsev, K. Horn, L. Ley, J.L. McChestney, T. Ohta, J.D. Riley, E. Rotenberg, F. Speck. Phys. Status Solidi B 245, 1436 (2008).
- [8] С.Ю. Давыдов. ФТТ 56, 1430 (2014).
- [9] С.Ю. Давыдов. ФТП 47, 97 (2013).
- [10] P.W. Anderson. Phys. Rev. 124, 41 (1961).
- [11] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник. Элементарное введение в теорию наносистем. Лань, СПб. (2014).
- [12] С.Ю. Давыдов, С.В. Трошин. ФТТ 49, 1508 (2007).
- [13] F.D.M. Haldane, P.W. Anderson. Phys. Rev. B 13, 2553 (1976).