Оптическое выстраивание аксиальных центров Cu²⁺ в КТаО₃: спектральная зависимость эффекта

© С.А. Басун, А.Г. Раздобарин, Л.С. Сочава, D.R. Evans*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, Ohio 45433, USA

E-mail: Lev.Sochava@mail.ioffe.ru

(Поступила в Редакцию 14 июля 2003 г.)

Обнаружено выстраивание аксиальных центров $Cu_{Ta}^{2+}-V_O$ в кристалле $KTaO_3$, возникающее под действием поляризованного света. Показано, что знак эффекта изменяется в зависимости от длины волны выстраивающего света. Параллельное исследование спектральной зависимости фотопроводимости тех же образцов позволило сделать вывод, что выстраивание центров меди обусловлено не реориентацией, а анизотропной перезарядкой центров, происходящей с участием двух зон кристалла: зоны проводимости и валентной зоны. Этот результат подтвержден исследованием кинетики термического разрушения "выстроенного" состояния центров меди.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 03-02-17632) и European Office of Aerospace Research and Development (грант CRDF, RPO-1385-ST-03).

1. Введение

Выяснение физических механизмов упорядочения ориентации дефектных центров в кристалле, вызванного внешним анизотропным воздействием, является актуальной проблемой как для физики твердого тела, так и для тех практических применений, где принципиально важна симметрия объекта (например, генерация второй гармоники, фоторефракция и др.). Одним из типов анизотропного воздействия является облучение кристалла поляризованным светом, которое может приводить к выстраиванию низкосимметричных дефектных центров. Природа такого оптического упорядочения ориентации центров может быть различной. Например, согласно известным исследованиям Люти (см. [1] и ссылки там), выстраивание F_A-центров в щелочно-галоидных кристаллах обусловлено ориентационно-чувствительным возбуждением центров с их последующей реориентацией в возбужденном состоянии. Другой механизм выстраивания, связанный с анизотропной фотоперезарядкой центров, был рассмотрен, в частности, Берни и Кованом [2] для центров Fe⁺-V_O в SrTiO₃. Очевидно, в случае, когда центр может находиться в двух зарядовых состояниях, преимущественная перезарядка центров с определенной ориентацией проявляется как выстраивание.

В работах [3,4] было показано, что оптическое выстраивание двух тетрагональных комплексов железа ($Fe_{Ta}-V_O$ и Fe_K-O_i) в кристалле танталата калия является результатом ориентационно-чувствительной фотоионизации этих центров. Оказалось, что эффективность фотоионизации обоих центров зависит от взаимной ориентации оси центра и вектора поляризации света. В результате для дефектов, имеющих *данное* зарядовое состояние, нарушается равновероятность распределения их осей по трем направлениям $\langle 100 \rangle$. Этот механизм, не включающий в себя реальных реориентаций комплексов Fe_{Ta} $-V_O$ и Fe_K $-O_i$, приводит тем не менее к эффекту выстраивания центров в *каждом* из двух зарядовых состояний вдоль (или поперек) вектора поляризации света.

Анализ всей совокупности полученных в [3,4] экспериментальных результатов привел к выводу об участии в выстраивании двух конкурирующих процессов фотоперезарядки. Так, для центра $Fe_K - O_i$ осуществляется как фотоионизация $Fe_K^{2+} - O_i$ (с забросом электрона в зону проводимости и образованием $Fe_K^{3+} - O_i$), так и фотоперенос электрона из валентной зоны на $Fe_K^{3+} - O_i$ (с образованием дырки в валентной зоне и появлением $Fe_K^{2+} - O_i$).

Эти процессы, вообще говоря, имеют различные спектральные пороги, и поэтому при облучении в разных областях спектра в принципе может возникнуть выстраивание разных знаков (преобладание одного из двух процессов в разных областях спектра). Именно такая ситуация обнаружена на примере центров $Cu_{Ta}^{2+}-V_O$ в кристалле танталата калия, где выстраивание меняет знак при изменении длины волны поляризованного света.

Как показывает анализ имеющихся литературных данных, в каждом конкретном случае выяснение механизма оптического выстраивания (реальные реориентации центров или их ориентационно-чувствительная фотоперезарядка) является весьма сложной задачей. В настоящей работе ответить на этот вопрос удалось в результате параллельного исследования спектральных зависимостей фотопроводимости и выстраивания, а также кинетики термической релаксации выстроенного состояния центров.

Рис. 1. Геометрия эксперимента по фото-ЭПР. Магнитное поле **H**₀ лежит в плоскости (001).

2. Техника эксперимента

Исследовались монокристаллы КТаО₃:Сu, выращенные в Физико-техническом институте им. А.Ф. Иоффе методом спонтанной кристаллизации медленно охлаждаемого расплава. Рост проходил в атмосфере кислорода, при скорости охлаждения 0.5 К/h. Были выращены кристаллы из шихты с содержанием меди 0.5 и 5 аt.%; первые были прозрачными, вторые имели светло-зеленую окраску. Исследовались также кристаллы, полученные из шихты, содержащей, кроме меди, несколько процентов ниобия и незначительную примесь ванадия. Изложенные далее результаты по оптическому выстраиванию центров меди получены в основном на кристаллах, выращенных из шихты с содержанием меди 5 аt.%.

Спектры ЭПР регистрировались на модифицированном спектрометре трехсантиметрового диапазона SE/X2544 фирмы Radiopan.

Источниками света служили лазерные диоды на разные длины волн в диапазоне 450–850 nm, перестраиваемый аргоновый лазер (Spectra Physics 164-05), гелийнеоновый лазер и лазер на парах меди, а также ртутная лампа (100 W). Для измерения в красной и ИК спектральных областях мы использовали вольфрамовую галогенную лампу накаливания (70 W) и ксеноновую лампу (250 W) с набором широкополосных и интерференционных (полоса пропускания 10 nm) светофильтров.

Свет от источника, проходя через кристаллический поляризатор, фокусировался на верхнем торце кварцевого стержня (диаметр 4 mm, длина 270 mm, торцы плоские и полированные), служившего световодом. На нижний торец монтировался образец. Нижняя часть стержня с образцом находились в пальце азотного дьюара, вставленного в резонатор спектрометра. Поляризатор обеспечивал хорошую степень поляризации (> 95%) во всем спектральном диапазоне измерений (350–2000 nm). Основная же деполяризация света происходила в кварцевом стержне и составляла не более 10%.

При проведении температурных экспериментов использовался криостат с продувкой паров азота (диапазон температур 90–500 K, стабильность ±0.1 K). Ориентация образца относительно магнитного поля H_0 и волнового вектора света показана на рис. 1.

Стационарный фототок измерялся электрометрическим усилителем (чувствительность 10^{-14} A) при комнатной температуре при возбуждении ксеноновой лампой или лампой накаливания через интерференционные светофильтры. Темновая проводимость была исчезающе малой. Спектр возбуждения фототока нормировался на поток фотонов.

3. Основные результаты

3.1. Спектр ЭПР. В исследованных кристаллах КТаО₃:Си наблюдаются два интенсивных спектра Cu²⁺ (S = 1/2, I = 3/2) тетрагональной симметрии. Параметры спектров весьма близки между собой и совпадают с найденными в работах [5,6]. Угловые зависимости обоих спектров в плоскости (100) показаны на рис. 2. В спектрах присутствует, помимо сверхтонкой, суперсверхтонкая структура, степень разрешения которой сильно зависит как от ориентации кристалла в магнитном поле, так и от состава исходной шихты. Анализ суперсверхтонкого взаимодействия ионов меди показал [6], что Cu²⁺ замещают Ta⁵⁺ (I = 7/2), а взаимодействие неспаренного электрона с ядрами четырех ионов тантала определяет суммарную ширину каждой из сверхтонких компонент (около 30 Oe).

Тетрагональная симметрия двух наблюдаемых центров возникает, по-видимому, из-за двух типов локальной компенсации эффективно отрицательного заряда примесного иона вакансиями кислорода. В качестве возможных вариантов структуры центров рассматривалась компенсация одной или двумя кислородными вакансиями [6], а также более сложная модель, учитывающая перенос заряда и искажение решетки в окрестности иона Cu²⁺ [7].

Рис. 2. Рассчитанные угловые зависимости в плоскости {100} резонансных полей линий ЭПР Cu²⁺ (без ССТС) в КТаО₃ ($\nu = 9.29$ GHz, T = 78 K). *1* и 2 — спектры I и II соответственно. Экспериментальные точки совпадают с расчетными кривыми и не поставлены, чтобы не загромождать рисунок.

Рис. 3. Спектр ЭПР КТаО₃:Си (5%) в *X*-диапазоне. T = 78 К, $\theta = 14^{\circ}$. На линии *z*-центров в спектре I накладываются сильнополевые компоненты *x*- и *y*-центров. В спектре II удается разрешить только одну из компонент *x*-центров. Остальные линии скрыты под более сильными линиями спектра I.

Рис. 4. Оптическое выстраивание центров $Cu_{Ta}^{2+}-V_O$ в KTaO₃. Штриховая линия — спектр ЭПР после облучения образца светом е || *у* с длиной волны 655 nm. После облучения светом с длиной волны 450 nm (сплошная линия) знак выстраивания меняется на противоположный.

Оптическое выстраивание обнаружено на центре I $(g_{\parallel} = 2.24, g_{\perp} = 2.04, A_{\parallel} = 173 \cdot 10^{-4} \text{ cm}^{-1})$, интенсивность спектра которого значительно превосходила интенсивность спектра II (рис. 3). (В кристаллах, выращенных из шихты с содержанием меди 0.5 at.%, спектр II лишь незначительно превосходил уровень шума).

Для измерений была выбрана ориентация кристалла, соответствующая $\theta = 14^{\circ}$ (рис. 2), при которой отмеченные на рис. 3 компоненты двух перпендикулярных центров *x* и *y*(спектр I), лежащих в горизонтальной плоскости, не налагались на линии центров *z*.

3.2. Спектральная зависимость выстраивания. Освещение образца поляризованным светом в широком спектральном диапазоне (370–920 nm) приводит к нарушению равнораспределения ориентации центров вдоль трех осей (100). Экспериментально мы могли регистрировать изменение концентрации только *x* и у центров (n_x, n_y) , так как на линии z центров накладываются сильнополевые компоненты x и y центров (рис. 2, 3). Измерялись интенсивности третьей компоненты x-центров и первой (слабополевой) компоненты y-центров (рис. 3).

Рис. 4 (штриховая кривая) иллюстрирует изменение соотношения концентраций *x*- и *y*-центров после освещения образца светом с $\lambda = 655$ nm и ориентацией электрического вектора е || *y*. Степень выстраивания $A = (n_y - n_x)/(n_x + n_y)$ доостигает в этом случае 0.66, отношение концентраций n_y/n_x увеличивается от 1 до 4.9. В то же время свет с длиной волны 450 nm приводит к противоположному изменению соотношения n_x и n_y , т.е. изменению знака выстраивания (сплошная кривая на рис. 4); величина |A| в этом случае составляет 0.41. Свет с ориентацией электрического вектора е || *x* вызывает противоположные описанным изменения n_x и n_y .

В процессе выстраивания суммарная интенсивность спектра (измерявшаяся как $2I_x + I_y$ при **e** || y) в пределах погрешности эксперимента ($\pm 5\%$) остается неизменной.

Рис. 5. Зависимость стационарного выстраивания центров $Cu^{2+}-V_0$ в кристаллах KTaO₃ от длины волны падающего света, T = 78 K (*a*). Пороги двух спектральных областей с противоположными знаками выстраивания совпадают с границами соответствующих полос в спектре фотопроводимости (*b*). Фототок нормирован на поток падающих фотонов, T = 300 K.

Рис. 6. Схема уровней и переходов, связанных с тетрагональными комплексами $Cu_{Ta}-V_0$. Индуцированные светом переходы электронов изображены прямыми стрелками. Толщины стрелок условно отражают разницу в сечениях ионизации для центров *x* и *y* при поляризации света **e** || *y*.

При температуре ниже ~ 230 K созданное поляризованным светом выстраивание сохраняется в темноте неопределенно долгое время.

На рис. 5, a показана спектральная зависимость величины A в диапазоне 370–920 nm. Две качественные особенности этой зависимости обращают на себя внимание:

1) наличие двух широких спектральных областей с противоположным знаком выстраивания и с весьма резкой границей между ними — вблизи 520 nm (~ 2.4 eV);

2) наличие длинноволнового порога выстраивания: свет с длиной волны больше $870 \, \text{nm} \, (\sim 1.4 \, \text{eV})$ не приводит к выстраиванию центров.

Изменение знака выстраивания может быть объяснено изменением под действием света зарядового состояния иона меди и участием в этом процессе не одной, а двух электронных зон кристалла [4]. По-видимому, в исследованных кристаллах ионы меди находятся в двух зарядовых состояниях — Cu²⁺ (чей спектр ЭПР наблюдается) и Cu³⁺ (спектр ЭПР не наблюдается при 77 К [8]). Тогда порог выстраивания (1.45 eV) соответствует энергетическому зазору между уровнем Cu^{2+/3+} и краем одной из электронных зон кристалла (например, дном зоны проводимости). Когда энергия кванта света достигает 1.45 eV, начинается процесс ионизации $Cu^{2+} \rightarrow Cu^{3+}$ (процесс 1 на рис. 6), анизотропия которого приводит к эффекту выстраивания. При достижении энергией кванта значения $\sim 1.9 \,\mathrm{eV}$ включается процесс 2, который в силу большей эффективности ведет к быстрому падению величины фактора выстраивания, а затем и к смене его знака.

3.3. Фотопроводимость кристаллов КТаО₃:Сu. Перезарядка ионов меди под действием света должна, очевидно, вносить вклад в фотопроводимость исследуемых кристаллов. Поэтому прямым указанием на связь реализующегося механизма оптического выстраивания с фотоионизацией ионов меди может служить корреляция между спектральными зависимостями этих двух эффектов. Такая корреляция была обнаружена и демонстрируется на рис. 5.

В спектре возбуждения фотопроводимости (рис. 5, b) наблюдаются две широкие полосы, сильно (на 3-4 порядка) отличающиеся по интенсивности. Примечательной особенностью этой кривой является наличие длинноволнового порога возбуждения фототока при 860-880 nm, совпадающего со спектральным порогом выстраивания (рис. 5, a). Столь точное совпадение двух порогов не может быть, на наш взгляд, случайным и свидетельствует о том, что исследуемое выстраивание обусловлено фотоионизацией ионов меди. Не менее примечательным фактом является близость границы между двумя полосами фотопроводимости к энергии кванта, при которой начинается резкое уменьшение положительного фактора выстраивания ($\sim 1.9 \,\text{eV}$, рис. 5).

3.4. Термическое разрушение "выстроенного" состояния центров. Как уже отмечалось, при температурах ниже ≈ 230 К выстроенное состояние центров сохраняется в темноте неопределенно долгое время. Однако подъем температуры до ~ 250 К приводит к его быстрому исчезновению, т.е. к восстановлению равнораспределения центров вдоль трех осей (100).

Скорость разрушения выстраивания чрезвычайно резко зависит от температуры и поэтому может быть

Рис. 7. *а* — термическое разрушение выстраивания центров $Cu^{2+}-V_O$ в КТаО₃ при *T* = 245, 255 и 265 К. Точки — эксперимент, сплошные линии — аппроксимация одноэкспоненциальными зависимостями с характерными временами распада τ . *b* — зависимость скорости термического разрушения выстраивания ($w = 1/\tau$) центров $Cu^{2+}-V_O$ в КТаО₃ от температуры. Начальное выстраивание создавалось поляризованным светом с длиной волны: *1* — 436 nm, *2* — в спектральном интервале 600–800 nm.

Рис. 8. Стационарное выстраивание центров $Cu^{2+}-V_0$: I — отношение концентраций n_x/n_y , как функция температуры при одновременном облучении поляризованным светом с длиной волны 436 nm, P = 2 mW, 2 — отношение концентраций n_y/n_x как функция температуры при облучении поляризованным светом в спектральном интервале 600–800 nm, P = 15 mW. Точки — эксперимент, кривые — расчет с использованием параметров ΔE , w_0 , определенных из рис. 7.

измерена лишь в узком температурном интервале. На рис. 7, *а* приведены несколько временны́х зависимостей исчезновения выстраивания (созданного светом с $\lambda = 578$ nm) в темноте при температурах 245–265 K; каждая из этих зависимостей очень хорошо описывается одной экспонентой $\exp(-t/\tau)$. Время релаксации τ для приведенных трех зависимостей изменяется почти в 30 раз — от 1620 (245 K) до 59 s (265 K). Рис. 7, *b* демонстрирует экспоненциальную зависимость $w = 1/\tau$ от 1/T, что позволяет определить энергию активации процесса $\Delta E = 0.90 \pm 0.02$ eV и предэкспоненциальный множитель $w_0 = (2 \pm 0.5) \cdot 10^{15}$ s⁻¹.

Аналогичное исследование термического разрушения выстраивания, созданного светом с $\lambda = 436$ nm, привело к значениям ΔE и w_0 , совпадающим с приведенными выше.

На рис. 8 показаны температурные зависимости изменения равновесной степени выстраивания (характеризуемой отношением концентраций n_x и n_y) при освещении образца поляризованным светом. Изменение стационарного значения отношения $\frac{n_y}{n_x}$ с ростом температуры в предположении, что концентрация центров Cu_{Ta}^{3+} существенно превышает концентрацию центров Cu_{Ta}^{2+} , можно описать следующим выражением (используя уравнения, приведенные в [4]):

$$\frac{n_y}{n_x} = \frac{R1 + w_0 \exp\left(-\frac{\Delta E}{\kappa T}\right)}{R2 + w_0 \exp\left(-\frac{\Delta E}{\kappa T}\right)}$$

Здесь *R*1 и *R*2 являются подгоночными параметрами и могут быть выражены через соответствующие сечения ионизации центров меди:

1)
$$R1 = \sigma_1^{\parallel} P_x + \sigma_1^{\perp} P_y,$$

 $R2 = \sigma_1^{\parallel} P_y + \sigma_1^{\perp} P_x$ — при выстраивании светом в диапазоне 600–800 nm;

2)
$$R1 = (\sigma_2^{\parallel} P_y + \sigma_2^{\perp} P_x) \frac{\Sigma C u^{3+}}{\Sigma C u^{2+}},$$

 $R2 = (\sigma_2^{\parallel} P_x + \sigma_2^{\perp} P_y) \frac{\Sigma C u^{3+}}{\Sigma C u^{2+}}$ — при выстраивании све-
том с длиной волны 436 nm. Здесь $\sigma_i^{\parallel}, \sigma_i^{\perp}$ ($i = 1, 2$)
соответствуют переходам *I* и *2* на схеме рис. 6 — сече-
ния поглощения для фотоионизационных переходов для
света, поляризованного параллельно и перпендикулярно
оси центра соответственно; P_x, P_y — плотность потока
квантов света с поляризациями вдоль соответствующих
осей; $\frac{\Sigma C u^{3+}}{\Sigma C u^{2+}}$ — отношение концентраций центров $C u_{Ta}^{3+}$
и $C u_{Ta}^{2+}$. Как видно, расчетные кривые, полученные при
значениях ΔE и w_0 , определенных из данных рис. 7,
вполне хорошо описывают эксперимент.

4. Обсуждение результатов

Поразительно точное совпадение двух характерных энергий, найденных при исследовании спектральной зависимости выстраивания центров меди (1.45 и 1.90 eV, рис. 5, а), со значениями пороговой энергии фотопроводимости (1.45 eV) и энергии, разделяющей две полосы фотопроводимости (1.90 eV, рис. 5, b) в кристаллах КТаО3, однозначно указывает на связь эффекта выстраивания с фотоионизацией ионов меди и, таким образом, определяет механизм выстраивания исследуемых дефектных центров как обусловленный ориентационночувствительной фотоионизацией центров. Отметим, что в наших предыдущих исследованиях оптического выстраивания двух тетрагональных центров железа в том же кристалле KTaO₃ [4] корреляция между спектральными зависимостями фотопроводимости и эффекта выстраивания была выражена значительно слабее, и поэтому сама по себе не могла служить решающим доводом при определении реализующегося механизма выстраивания.

Обсудим теперь вопрос об участии обеих электронных зон кристалла в эффекте выстраивания и объяснении наблюдающегося на эксперименте изменения знака выстраивания. Сушественным доводом в пользу предложенного объяснения изменения знака выстраивания является совокупность найденных из эксперимента значений порога выстраивания (1.45 eV) и энергии кванта (1.9 eV), при которой начинает происходить быстрое уменьшение степени выстраивания, приводящее к изменению знака эффекта (рис. 5, b), т.е. происходит включение некоего второго процесса (процесса 2 на рис. 6). Действительно, в соответствии с термодинамическим циклом Борна-Хабера [9-11] сумма пороговых энергий фотоионизации тетрагонального центра Cu²⁺_{Ta} и перевода электрона из валентной зоны на Cu_{Ta}³⁺ должна равняться ширине запрещенной зоны Eg. Сумма экспериментальных значений двух указанных энергий дает 3.35 eV, что близко к существующим оценкам E_g в КТаО₃: 3.6–3.8 eV [12,13].

Перейдем теперь к обсуждению результатов исследования кинетики термического разрушения выстроенного состояния центров. Какому физическому процессу, ведущему к уменьшению степени выстраивания, может соответствовать найденная из эксперимента энергия ΔE ? Такими процессами могут быть:

1) термическая перезарядка $Cu_{Ta}^{2+} \leftrightarrow Cu_{Ta}^{3+}$ — переходы *I* или *2* на рис. 6;

 термическая ионизация ловушек с последующим захватом электронов или дырок ионами меди;

 термическая реориентация исследуемых центров (прыжки кислородной вакансии).

1) При разрушении выстраивания посредством термической ионизации Cu_{Ta} длинноволновый порог выстраивания и фототока (1.45 eV) должен был бы совпадать со значением ΔE (0.90 eV), полученным из экспериментов по термическому разрушению выстроенного состояния центров.

2) Если бы разрушение выстраивания (двух знаков) происходило путем термической ионизации ловушек, то при переходах между ионами меди и двумя зонами кристалла было бы необходимо наличие ловушек двух типов: электронных и дырочных. Точное совпадение двух значений ΔE , полученных из экспериментов по термическому разрушению выстроенного состояния центров того или другого знака, свидетельствует против рассматриваемой возможности.

Очевидно также, что захват освобожденных с ловушек носителей ионами Cu_{Ta} должен был бы приводить наряду с уменьшением степени выстраивания [4] к изменению суммарной интенсивности спектра. Специально поставленный эксперимент по измерению интенсивности "выстроенного" спектра, проведенный в диапазоне 245–265 К, показал, что суммарная интенсивность после выключения света в пределах погрешности эксперимента ($\pm 5\%$) остается постоянной, хотя степень выстраивания при этих температурах достаточно быстро становится равной нулю.

Итак, мы приходим к выводу, что из трех возможных интерпретаций энергии ΔE реализуется вариант 3: найденная энергия $\Delta E = 0.90$ eV является высотой барьера, разделяющего различные ориентации центра (например, соседние позиции вакансии кислорода в модели [6] центра).

Таким образом, в кристаллах КТаО₃ выстроенное состояние центров меди, созданное за счет анизотропной фотоионизации, разрушается термически путем реальных реориентаций центров.

Результаты настоящей работы убедительно демонстрируют, что оптическое выстраивание тетрагональных центров Cu_{Ta}^{2+} в кристалле танталата калия, так же как выстраивание центров $Fe_{K}^{3+}-O_{i}$ и $Fe_{Ta}^{4+}-V_{O}$ в том же кристалле, происходит за счет ориентационнозависимой перезарядки центров, в результате которой для дефектов, имеющих *данное* зарядовое состояние, нарушается равновероятность распределения их осей по трем направлениям (100). Таким образом, исследованный механизм оптического выстраивания аксиальных дефектных центров не включает в себя их реальных реориентаций. В то же время термическая релаксация выстроенного состояния центров меди происходит за счет прыжков кислородной вакансии, входящей в состав дефектного центра.

Авторы благодарят А.Г. Бадаляна и В.С. Вихнина за полезные дискуссии, П.П. Сырникова за выращивание активированных медью кристаллов танталата калия и А.А. Каплянского за обсуждение результатов работы и постоянную поддержку.

Список литературы

- F. Lüty. In: Physics of Color Centers / Ed. by W.B. Fowler. Academic Press, N.Y. (1968). 655 p.
- [2] R.L. Berney, D.L. Cowan. Phys. Rev. 23, 37 (1981).
- [3] S.A. Basun, L.S. Sochava, V.E. Bursian, H. Gesse, S. Kapphan, V.S. Vikhnin. Proc. of the XIII Internat. Conf. on Defects in Insulating Materials. Wake Forest University, USA (1996); In: Materials Science Forum. Trans Tech Publications, Switzerlang (1997). Vol. 239–241. P. 345.
- [4] С.А. Басун, В.Э. Бурсиан, А.Г. Раздобарин, Л.С. Сочава. ФТТ 43, 1025 (2001).
- [5] И.П. Быков, В.В. Лагута, М.Д. Глинчук, А.А. Кармазин, П.П. Сырников. ФТТ 27, 1908 (1985).
- [6] A.G. Badalyan, P.G. Baranov, D.V. Azamat, V.A. Trepakov, C.B. Azzoni, P. Galinetto, M.C. Mozzati, L. Jastrabik, J. Rosa. J. Phys.: Condens. Matter 14, 6855 (2002).
- [7] V.S. Vikhnin, A.G. Badalyan, P.G. Baranov. Ferroelectrics 283, 149 (2003).
- [8] W.E. Blumberg, J. Eisinger, S. Geschwind. Phys. Rev. 130, 900 (1963).
- [9] M. Born. Verh. d. D. Phys. Ges. 21/22, 679 (1919).
- [10] F. Haber. Verh. d. D. Phys. Ges. 21/22, 750 (1919).
- [11] W.C. Wong, D.S. McClure, S.A. Basun, M.R. Kokta. Phys. Rev. 51, 5682 (1995).
- [12] W.S. Baer. J. Phys. Chem. Solids 28, 677 (1967).
- [13] A. Frova, P.J. Boddy. Phys. Rev. 153, 606 (1967).