09

Отрицательная рефракция света в градиентной среде с показателем преломления, модулируемым ультразвуком

© Е.К. Наими, Ю.Х. Векилов

Национальный исследовательский технологический университет "МИСиС", Москва, Россия

E-mail: e.naimi@mail.ru

(Поступила в Редакцию 14 июля 2014 г.)

Рассмотрены условия формирования в градиентной среде (фотонном кристалле) пространственно упорядоченной оптической структуры с модулируемым ультразвуком показателем преломления. Показано, что при возбуждении в среде стоячей ультразвуковой волны создается структура, состоящая из траекторий отдельных световых лучей, которая является сверхрешеткой ,динамического 4D-фотонного кристалла". На траекториях лучей выявлены зоны, соответствующие отрицательному преломлению света. Обсуждаются возможные области применения подобных структур.

Работа выполнена при финансовой поддержке РФФИ (гранты №№ 11-02-00604-а, 12-02-31641, 13-07-00409), а также в рамках Программы создания и развития НИТУ "МИСиС".

1. Введение

Одним из направлений современной оптики, сформировавшимся в последние 15 лет, является исследование и разработка так называемых градиентных сред или фотонных кристаллов (ФК) — нового класса упорядоченных оптических материалов, для которых характерно наличие двух основных признаков: периодической пространственной модуляции показателя преломления с периодом, допускающим брэгговскую дифракцию света, и наличие в спектре собственных электромагнитных состояний (вблизи границ оптических зон Бриллюэна) запрещенных зон (band gaps), связанных с трансляционной симметрией показателя преломления. Идея создания ФК принадлежит независимо Яблоновичу [1] и Джону [2]. Она состояла в том, чтобы сконструировать новые искусственные среды, свойства которых позволяли бы воздействовать на фотоны аналогично влиянию обычной кристаллической решетки на электроны [3].

С общей точки зрения ФК является сверхрешеткой структурой, в которой искусственно создано дополнительное поле с периодом, на порядки превышающим период основной решетки. Для фотонов такое поле получают периодическим изменением показателя преломления среды в одном, двух или трех измерениях (1D-, 2D-, 3D-фотонные структуры). Если период оптической сверхрешетки сравним с длиной световой волны, то поведение фотонов кардинально отличается от их поведения в решетке обычного кристалла. Благодаря периодическому изменению показателя преломления, возникают разрешенные и запрещенные зоны для энергий фотонов. В зависимости от ширины запрещенных и разрешенных зон ФК можно разделить на проводники — способные проводить свет на большие расстояния с малыми потерями, диэлектрики — практически идеальные зеркала, полупроводники — вещества, способные выборочно отражать фотоны определенной длины волны и сверхпроводники — в которых, благодаря коллективным явлениям, фотоны способны распространяться практически на неограниченные расстояния.

Аналогично блоховским волнам электронов в обычных кристаллах, оптические волны в решетке ΦK могут иметь состояния, в которых направление волнового вектора **k** (фазовой скорости) и направление вектора Пойнтинга (групповой скорости) антипараллельны, что характерно для оптических ветвей фононного спектра кристаллической решетки. Другими словами, ΦK могут обладать свойством отрицательной рефракции света, т.е. иметь отрицательный показатель преломления.

Наиболее полно явление отрицательной рефракции света рассмотрено в работе [4], хотя этот вопрос ранее обсуждался в работе [5], а затем в статье [6]. Еще раньше, по крайней мере, в 1940 г., глубокое понимание сути этого явления было достигнуто Мандельштамом [7]. Установленная Мандельштамом связь между отрицательным преломлением и отрицательной групповой скоростью показывает, что отрицательное преломление возможно для волн любой природы, а также указывает на возможность отыскания подходящих для наблюдения отрицательного преломления материалов на основе изучения закона дисперсии $\omega(\mathbf{k})$ для тех волн, которые могут распространяться в этих средах.

В изотропной среде частота волны ω зависит только от модуля волнового вектора **k**, поэтому групповая скорость волнового пакета $\mathbf{u} = d\omega(\mathbf{k})/d\mathbf{k} = (\mathbf{k}/k)d\omega(k)/dk$ направлена либо по **k**, либо по -**k**, в зависимости от знака производной $d\omega(k)/dk$. Как было показано Манделыштамом, второй из этих случаев, $d\omega(k)/dk < 0$, т. е. случай отрицательной групповой скорости, связан с явлением отрицательного преломления. Отрицательное преломление света и все необычные свойства материалов с отрицательным преломлением — естественные следствия такой связи между векторами **u** и **k**. Отрицательная групповая скорость оказывается возможной для сред с достаточно сильной пространственной дисперсией диэлектрических свойств [8]. Наличие пространственной дисперсии означает существование нелокального диэлектрического отклика и выражается в зависимости тензора диэлектрической проницаемости $\varepsilon_{ij}(\omega, \mathbf{k})$ не только от частоты ω , но и от волнового вектора **k**. Подход, основанный на учете пространственной дисперсии [9], содержит в себе, как частный случай, более известный подход [4], обычно используемый для описания отрицательной рефракции света в средах с одновременно отрицательными диэлектрической ($\varepsilon(\omega) < 0$) и магнитной ($\mu(\omega) < 0$) проницаемостями.

Создание динамических неоднородностей в структуре ΦK , позволяет добавить еще одно измерение — время. Получаемый таким образом кристалл можно считать четырехмерной (4D) фотонной структурой, где четвертым измерением является время. Благодаря взаимному влиянию пространственных и временных процессов, оптические свойства таких структур потенциально разнообразнее свойств трехмерных кристаллов.

В данной работе рассмотрены условия формирования динамического ФК на основе оптически однородной и изотропной среды с пространственно-временной модуляцией показателя преломления, осуществляемой ультразвуковой (УЗ) волной, длина которой на много порядков превосходит длину световой волны.

2. Общая постановка задачи и методы ее решения

Пусть параллельный пучок монохроматического света падает из вакуума на плоский слой однородной оптически прозрачной изотропной среды, показатель преломления которой *n* модулируется возбуждаемой в этой среде стоячей УЗ-волной. Угол входа луча в среду (угол скольжения) $0 \le \theta \le \pi/2$, толщина слоя *d*. Задача состоит в отыскании траектории светового луча в среде с модулированным показателем преломления n = n(x, y, z).

Для решения поставленной задачи в общем виде воспользуемся принципом Ферма, согласно которому время τ , необходимое для распространения света из точки *a* в точку *b*, минимально. Математическим выражением этого принципа является равенство нулю вариации функционала

$$\tau[y(x), t] = \int_{a}^{b} \frac{ds}{\nu(x, y, t)} = \frac{1}{c} \int_{x_{1}}^{x_{2}} n(x, y, t) \sqrt{1 + y'^{2}(x)} dx,$$
(1)

где v(x, y, t) = c/n(x, y, t) — фазовая скорость света в данной точке среды в момент времени t; x_1 и x_2 — фиксированные координаты концов светового луча в среде.

Решение соответствующей вариационной задачи приводит к уравнению Эйлера

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} = 0 \tag{2}$$

для функции

$$F(x, y, y', t) = \frac{1}{c} n(x, y, t) \sqrt{1 + y'^2(x)}.$$
 (3)

Подставляя (3) в (2), получаем дифференциальное уравнение

$$\frac{1}{n}\frac{dn}{dx} = \frac{y'y''}{1+y'^2}.$$
 (4)

Интегрируя (4), находим первый интеграл уравнения Эйлера

$$C_1 n(x, y, t) = \sqrt{1 + y'^2},$$
 (5)

откуда

$$y' = \pm \sqrt{C_1^2 n^2(x, y, t) - 1}.$$
 (6)

Постоянная интегрирования C_1 определяется из условия, что при $y \ge d$ показатель преломления n = 1, а $y' = \pm \operatorname{tg} \theta$ (см. рисунок). Это дает $C_1 = 1/\cos \theta$. Подставляя значение C_1 в (6), будем иметь

$$y' = \pm \frac{\sqrt{n^2(x, y, t) - \cos^2 \theta}}{\cos \theta}.$$
 (7)

Дальнейшая задача сводится к отысканию решения уравнения (7) с соответствующими граничными условиями, при известной функции n(x, y, t) и заданном угле скольжения θ .

Рассмотрим две схемы возбуждения стоячей УЗ-волны в твердом диэлектрике — пластине толщиной d и длиной l. В первом случае волновой вектор УЗ-волны параллелен оси x, во втором — оси y. Считается, что диэлектрик оптически прозрачен, и в отсутствие ультразвука имеет невозмущенный показатель преломления $n_0(\omega)$, ω — частота света. В присутствии ультразвука показатель преломления среды n меняется (модулируется) переменным механическим напряжением, действующем в стоячей УЗ-волне.

Принимая линейный закон фотоупругости, запишем соответственно для каждого случая

$$n(x,t) = n_0 + C\sigma(t)\sin\frac{\pi Nx}{l}, \qquad (8.1)$$

$$n(y,t) = n_0 + C\sigma(t)\sin\frac{\pi N y}{d},$$
(8.2)

где $C = C(\omega)$ — фотоупругая постоянная материала; N = 1, 2, 3, ... — номер гармоники возбуждаемой УЗ-волны;

$$\sigma(t) = \sigma_0 \cos \Omega t, \tag{9}$$

 σ_0 — амплитуда механического напряжения в стоячей УЗ-волне; Ω — частота ультразвука.

Схема преломления (рефракции) светового луча в диэлектрической пластине с показателем преломления, модулируемым стоячей ультразвуковой волной (N = 2): θ — угол внешнего скольжения дополнительный к углу падения; ψ — угол внутреннего скольжения дополнительный к углу преломления; $\sigma(y)$ — кривая распределения амплитуды механического напряжения по толщине пластины

Используя (8.1) и (8.2) в (7), будем иметь соответственно

$$y(x,t) = \pm \frac{1}{\cos\theta} \int dx \sqrt{n^2(x,t) - \cos^2\theta}, \qquad (10.1)$$

$$\int \frac{dy}{\sqrt{n^2(y,t) - \cos^2 \theta}} = \pm \frac{x}{\cos \theta}.$$
 (10.2)

Обычно в хорошем приближении можно считать, что

$$C\sigma_0 \ll n_0. \tag{11}$$

Учитывая (11), ограничимся линейными членами по σ_0 в n^2 . Тогда уравнения (10.1) и (10.2) примут вид

$$y(x,t) = \pm \frac{\sqrt{n_0^2 - \cos^2 \theta}}{\cos \theta} \int dx \sqrt{1 + p(t) \sin \frac{\pi N x}{l}},$$
(12.1)
$$\int \frac{dy}{\sqrt{1 + p(t) \sin \frac{\pi N x}{l}}} = \pm \frac{\sqrt{n_0^2 - \cos^2 \theta}}{\cos \theta} x,$$
(12.2)

$$\int \frac{1}{\sqrt{1+p(t)\sin\frac{\pi Ny}{d}}} = \pm \frac{1}{\cos\theta} x, \qquad ($$

где обозначено

$$p(t) = \frac{2Cn_0\sigma_0(t)}{n_0^2 - \cos^2\theta}.$$
 (13)

Заметим, что в отсутствие УЗ-волны ($\sigma_0 = 0$) оба уравнения (10) дают прямые линии (штриховые линии на рисунке), соответствующие невозмущенным световым лучам с углом наклона ψ

$$y = \pm \operatorname{tg} \psi \cdot x + C_2, \tag{14}$$

где

$$\operatorname{tg}\psi = \frac{\sqrt{n_0^2 - \cos^2\theta}}{\cos\theta}.$$
 (15)

Из (15), в частности, следует известный закон преломления Снеллиуса в геометрической оптике

$$n_0 = \frac{\cos}{\cos\psi} = \frac{\sin i}{\sin r},\tag{16}$$

 $(i = (\pi/2) - \theta$ — угол падения, $r = (\pi/2) - \psi$ — угол преломления).

С учетом (15) уравнения (12.1) и (12.2) запишутся окончательно в виде

$$y(x,t) = \pm \operatorname{tg} \psi \int dx \sqrt{1 + p(t) \sin \frac{\pi N x}{l}}, \qquad (17.1)$$

$$\int \frac{dy}{\sqrt{1+p(t)\sin\frac{\pi Ny}{d}}} = \pm \operatorname{tg}\psi x.$$
(17.2)

Входящие в (17) интегралы, приводятся, в конечном итоге, к эллиптическим интегралам 1-го и 2-го рода.

3. Обсуждение полученных результатов

Полученные уравнения (17) позволяют, в принципе, найти траекторию светового луча в явном виде и, тем самым, дают решение поставленной выше задачи. Однако для выявления общих закономерностей распространения света в среде с модулированным ультразвуком показателем преломления нет необходимости в отыскании точного решения уравнений (17). В наших целях достаточно исследовать поведение углового коэффициента светового луча, т.е. производной y'(x, y, t).

В приближении (11) из (17.1) и (17.2) имеем соответственно

$$y'(x,t) = \pm \operatorname{tg} \psi \sqrt{1 + p(t) \sin \frac{\pi N x}{l}}, \quad 0 \le x \le l,$$
 (18.1)

$$y'(y,t) = \pm \operatorname{tg} \psi \sqrt{1 + p(t) \sin \frac{\pi N y}{d}}, \quad 0 \le y \le d.$$
 (18.2)

Как следует из (18), угловой коэффициент светового луча осциллирует около невозмущенного значения tg ψ , периодически изменяясь в пространстве вдоль траектории луча. Для моментов времени, когда p(t) принимает максимальное (по модулю) значение угловой коэффициент изменяется в пределах от $y'_{min} = \pm \text{tg }\psi\sqrt{1-p}$ до $y'_{max} = \pm \text{tg }\psi\sqrt{1+p}$. Величину

$$\Delta = \frac{y'_{\max} - y'_{\min}}{y'_{\max} + y'_{\min}} = \frac{\sqrt{1+p} - \sqrt{1-p}}{\sqrt{1+p} + \sqrt{1-p}},$$
 (19)

где

$$p = \frac{2Cn_0\sigma_0}{n_0^2 - \cos^2\theta} \tag{20}$$

можно назвать степенью (глубиной) пространственной модуляции углового коэффициента светового луча.

В соответствии с (18) в каждой точке траектории луча угловой коэффициент периодически изменяется во времени с частотой ультразвука Ω . В общем случае закон изменения y'(t), как и y(t), не является гармоническим. Для всякой точки с заданными координатами x и y изменение амплитуды колебаний углового коэффициента в каждом из рассматриваемых случаев составляет соответственно

$$\Delta y'(x) = \operatorname{tg} \psi \left| \sqrt{1 + p \sin \frac{\pi N x}{l}} - \sqrt{1 - p \sin \frac{\pi N x}{l}} \right|,$$
(21.1)
$$\Delta y'(y) = \operatorname{tg} \psi \left| \sqrt{1 + p \sin \frac{\pi N y}{d}} - \sqrt{1 - p \sin \frac{\pi N y}{d}} \right|.$$
(21.2)

Максимальное изменение $\Delta y'$ соответствует "пучностям" углового коэффициента, координаты которых определяются соотношениями

$$x_k = \frac{2k+1}{2N}l, \quad y_k = \frac{2k+1}{2N}d, \quad k = 0, 1, 2, \dots$$
 (22)

Точки траектории, где $\Delta y' = 0$, соответствуют "узлам" углового коэффициента. Координаты узлов определяются соотношениями

$$x_k = \frac{k}{N}l, \quad y_k = \frac{k}{N}d, \quad k = 0, 1, 2, \dots$$
 (23)

Пространственный период *L* изменения углового коэффициента светового луча равен расстоянию между соседними пучностями (узлами)

$$L_x = \frac{l}{N}, \quad L_y = \frac{d}{N}.$$
 (24)

Как было сказано выше, угловой коэффициент светового луча при распространении в среде с модулированным показателем преломления осциллирует около невозмущенного значения tg ψ , периодически изменяясь в пространстве вдоль траектории луча. Остановимся более подробно на случае, имеющем для нас наибольший интерес, когда излучатель УЗ-волны расположен на нижнем основании пластинки (см. рисунок). Распределение амплитуды механического напряжения в стоячей УЗ-волне для этого случая показано на том же рисунке на примере возбуждения второй гармоники (N = 2). Как видно из рисунка, близи узловых точек амплитуды напряжения имеются участки (зоны), где за каждый полупериод УЗ-волны угловой коэффициент светового луча меняет знак на противоположный, принимая при этом отрицательное значение (сплошные кривые на рисунке). Эффективно это соответствует отрицательному показателю преломления, т.е. — отрицательной групповой скорости света на этих участках траектории луча (см. п. 1).

При падении на пластинку широких световых пучков (от источника света с большой апертурой) в пластинке образуется некоторая периодическая структура, составленная из траекторий отдельных световых лучей — создается своеобразный "динамический фотонный кри-

сталл", несущий в себе свойства градиентной среды с отрицательной рефракцией. Период "решетки" такого Φ К определяется номером гармоники N возбуждаемой в нем стоячей УЗ-волны (ее длиной), и при заданных размерах d и l может варьироваться в достаточно широких пределах.

4. Заключение

Фотонные кристаллы с показателем преломления, модулируемым ультразвуком, могут найти широкое применение в различных областях акустооптики и фотоники. Это различного рода модуляторы света, рефлекторы, дефлекторы, оптические усилители и стабилизаторы света [10], спектральные дисперсионные приборы на принципиально новой основе, элементы управляющих устройств адаптивной оптики, другие приборы и устройства. Существенно расширяются функциональные возможности планарных ФК при использовании фотоннокристаллических гетероструктур, например, светоизлучающих диодов [11]. Становится возможной практическая реализация теоретически предсказанных [12] эффектов "закрученного света" (twisted photons) в градиентной среде с отрицательным показателем преломления, и создания на основе этого суперлинзы Веселаго, дающей возможность фокусировать свет в точку с размерами меньшими длины волны света [13]. Поскольку градиентные среды с показателем преломления, модулируемым ультразвуком, являются по существу нелинейными оптическими средами, в них способны возникать процессы самоорганизации структурных неоднородностей, обычно описываемые в рамках теории диссипативных систем и динамического хаоса. Наличие этих процессов означает принципиальную возможность функциональной самоорганизации ФК как устройства.

Список литературы

- [1] E. Yablonovich. Phys. Rev. Lett. 58, 2059 (1987).
- [2] S. John. Phys. Rev. Lett. 58, 2486 (1987).
- [3] E. Yablonovitch. In Photonic Band Gaps and Localization / Ed. C.M. Soukoulis. Plenum Press, N.Y. (1993). P. 207.
- [4] В.Г. Веселаго. УФН. 92, 517 (1967).
- [5] Д.В. Сивухин. Оптика и спектроскопия 3, 308 (1957).
- [6] В.Е. Пафомов. ЖЭТФ **36**, 1853 (1959).
- [7] Л.И. Мандельштам. Полн. собр. тр. Т. 5. АН СССР, М. (1950). С. 439.
- [8] В.М. Агранович, В.Л. Гинзбург. Кристаллооптика с учетом пространственной дисперсии и теория экситонов. Наука, М. (1965). С. 271.
- [9] В.М. Агранович, Ю.Н. Гартштейн. УФН 176, 1051 (2006).
- [10] В.И. Балакший, А.В. Казарьян. Квантовая электрон. 25, 988 (1998).
- [11] Е.К. Наими, О.И. Рабинович. Кристаллография **56**, 521 (2011).
- [12] L. Allen, M.W. Beijerbergen, R.J.S. Spreeuw. Phys. Rev. A 45, 8 (1992).
- [13] J.B. Pendry, D.R. Smith. Phys. Today 57, 37 (2004).

109