05

Твердые углеродные покрытия, наносимые методом импульсного сильноточного магнетронного распыления

© К.В. Оскомов, А.А. Соловьев, С.В. Работкин

Институт сильноточной электроники СО РАН, 634055 Томск, Россия e-mail: oskomov@lae.hcei.tsc.ru

(Поступило в Редакцию 13 марта 2014 г.)

Твердые (до 17 GPa) углеродные покрытия наносились на торцевые SiC-подшипники, используемые в жидкостных насосах, методом импульсного сильноточного магнетронного распыления графита. За счет этого удалось уменьшить коэффициент трения с 0.43 до 0.11 и скорость износа с 26 до $0.307 \,\mu m^3 N^{-1} m^{-1}$, что увеличило срок службы подшипников примерно в 3 раза. Причиной осаждения твердых и износостойких углеродных покрытий является генерация плотной (до $10^{13} \, cm^{-3}$) плазмы.

Введение

В последнее время растет интерес к фундаментальной науке и технологиям, связанным с получением и исследованием твердых аморфных углеродных покрытий. Подобные пленки являются идеальными износостойкими покрытиями на деталях в парах трения благодаря сочетанию низкого коэффициента трения и высокой твердости. Они потенциально могут найти применение в машиностроении (упрочнение инструмента и штампов), автомобилестроении (упрочнение деталей двигателей внутреннего сгорания), медицине (упрочняющие и биосовместимые покрытия на искусственных протезах суставов) и других областях.

Для большинства практических применений требуется получение достаточно твердой (около 20 GPa) и довольно толстой (более 1 µm) углеродной пленки. До последнего времени считалось, что необходимым условием первого является высокое (более 50%) содержание в пленке атомов углерода с тетраэдрическим ближним порядком и С-С-связью как в алмазе (далее — алмазоподобная фаза) [1]. Считается, что алмазоподобная фаза образуется по механизму субплантации: 1) атомы углерода с энергиями более 30 eV проникают в приповерхностные слои растущей пленки, располагаясь в междоузлиях; 2) за счет этого создаются локальные области с повышенной плотностью, увеличивается число ближайших соседей каждого атома, геометрия С-Ссвязей меняется от тригональной (графит) к тетраэдрической (алмаз), а гибридизация электронных орбиталей атомов углерода — от $sp^2 \kappa sp^3$. Поэтому более плотная плазма лучше подходит для осаждения алмазоподобных покрытий, так как растущая пленка и подложка испытывают ионную бомбардировку [2,3]. Однако это также приводит к росту уровня внутренних напряжений в покрытии, что отрицательно сказывается на его стабильности и адгезии. Становится проблематичным получить покрытие с толщиной более 100 nm, что резко сужает область его потенциальных применений.

Не так давно было показано, что углеродные покрытия с большой долей графитоподобных С-С-связей, получаемые методом постоянного несбалансированного магнетронного распыления, совмещенного с постоянным низковольтным смещением на подложке, также обладают значительной твердостью (до 30 GPa) [4]. Кроме того, вследствие своей графитоподобной природы они отличаются низким уровнем внутренних напряжений, обычно сопутствующих алмазоподобной фазе углерода. Таким образом, подобные углеродные пленки являются не менее, а даже более перспективными для некоторых применений, чем традиционные алмазоподобные покрытия.

Мы предлагаем использовать как метод генерации плазмы импульсное сильноточное магнетронное катодное распыление. Отрицательные импульсы напряжения (до 1 kV) длительностью несколько десятков микросекунд, которые подаются на мишень (катод), инициируют в вакуумной камере импульсный сильноточный (до 1 kA) аномальный тлеющий разряд в скрещенных электрических и магнитных полях. Это приводит к генерации плотной плазмы (до 10¹³ cm⁻³) вблизи мишени, что значительно выше плотности плазмы обычного магнетронного разряда на постоянном токе (до $10^{11} \,\mathrm{cm}^{-3}$) [5]. В результате достигаются высокая плотность потока на подложку и степень ионизации (до 70-90%) распыленного материала катода и рабочего газа. Кроме того, оснащение магнетронов электромагнитными катушками для разбалансировки магнитного поля позволяет еще больше увеличивать концентрацию ионов вблизи подложки. При этом отсутствует генерация капельной фракции, как в случае катодного вакуумно-дугового распыления, и сохраняется возможность масштабирования процесса для нанесения покрытия на большие подложки.

Кроме того, известно, что импульсная (в том числе высокоэнергетическая (до 10 keV)) ионная бомбардировка позволяет, с одной стороны, увеличивать подвижность адатомов и плотность нуклеации, а с другой — достигать отжига дефектов и релаксации избыточных внутренних напряжений в пленке в промежутке между импульсами [6,7]. Все это должно способствовать формированию более мелкозернистого, плотного, твердого, бездефектного и термодинамически стабильного покрытия.

Таким образом, целью настоящей работы было исследование импульсного магнетронного распыления графита, синхронизованного с подачей на подложку импульсов отрицательного напряжения смещения, как метода нанесения твердых аморфных углеродных покрытий и сравнение свойств покрытий, полученных при различных токах разряда.

Эксперимент

Твердые аморфные углеродные пленки наносились методом импульсного сильноточного магнетронного распыления. Осциллограммы тока импульсов, подаваемых на катод, изображены на рис. 1, условия осаждения покрытий приведены в табл. 1. Нами использовались оригинальные магнетронные распылительные системы с регулируемой степенью разбалансировки магнитного поля [9], магнетрон располагался на верхнем фланце установки ННВ-6. В качестве мишени использовался диск из графита МПГ-8 толщиной 5 mm и диаметром 90 mm, рабочим газом служил аргон, давление которого составляло 0.3 Ра.

Параметры плазмы измерялись с помощью проволочного цилиндрического лэнгмюровского зонда, а также с помощью плоского зонда диаметром 1 cm с охранным кольцом. Спектральные измерения плазмы разряда осуществлялись с помощью гибкого световода диаметром 0.5 mm, установленного вблизи катода магнетрона. Рабочая часть световода размещалась в металлическом коллиматоре диаметром 1.5 mm, на который подавался отрицательный потенциал (-300 V) относительно вакуумной камеры, позволяющий экранировать световод от контакта с плазмой и от запыления материалом катода. Остальная часть световода закрывалась непрозрачной

Рис. 1. Осциллограммы тока при импульсном сильноточном магнетронном распылении графита.

Таблица 1	. Условия	нанесения	углеродных	к покрытий і	маг-
нетронным	распыление	ем графита	в аргоне	и интенсивно	ость
линии С ⁺ в	оптически	эмиссионно	м спектре і	плазмы	

N	<i>U</i> , V	<i>I</i> , A	τ , μ s	f, kHz	t, min	d, µm	<i>W</i> , a.u.
1	850	100	50	2	180	4.7	439
2	760	40	100	2	480	3.5	192
3	895	2.6	—	—	120	1.1	142

Примечание. U и I — напряжение и ток разряда, τ и f — длительность и частота импульсов разряда, t и d — время нанесения и толщина покрытия, W — интенсивность линии C⁺ в спектре.

полиэтиленовой трубкой. Излучение плазмы магнетронного разряда регистрировалось спектрометром AvaSpec-2048USB2. Данный спектрометр позволяет регистрировать спектры излучения в диапазоне 237–792 nm с разрешением 0.7 nm. Идентификация спектральных линий проводилась с использованием данных из таблиц [8]. Достоинством метода является то, что он не оказывает возмущающего влияния на создаваемую плазму, а также его относительная простота. Однако данный метод позволяет сделать только качественные оценки ионного состава плазмы.

В качестве подложек использовались кольца из SiC, внешний диаметр которых составлял 106 mm, внутренний — 82 mm, толщина — 10 mm. Кольца располагались на устройстве планетарного вращения подложек на проводящих держателях, скорость вращения составляла 4.5 оборота в минуту, расстояние до мишени магнетрона составляло 10 ст. На кольца при напылении подавались импульсы отрицательного напряжения смещения амплитудой 5 kV, длительностью 5 µs и частотой 2 kHz, одновременно с импульсами, подаваемыми на катод. В случае постоянного магнетронного распыления графита (строка 3 табл. 1) такое напряжение смещения подавалось на детали. Перед напылением проводилась ионная очистка в течение 30 min, покрытие при этом не осаждалось — магнетрон работал в сильно разбалансированном режиме, мощность разряда составляла 0.5 kW, а на подложки подавалось постоянное отрицательное напряжение 650 V. Осаждения покрытия не происходило, так как в этом режиме были низкая скорость распыления, высокая концентрация ионов и превалировало ионное травление [9].

Для исследования твердости пленок применялось наноиндентирование, использовался алмазный индентор Берковича, твердость определялась по методу Оливера—Фарра с помощью наноиндентора NanoTest 600 (MicroMaterials, Великобритания) [10]. Толщина покрытия определялась с помощью микроинтерферометра Линника МИИ-4 (ЛОМО, Россия).

Адгезия покрытий определялась методом скретч-теста алмазного индентора радиусом 20 µm при следующих параметрах: конечная нагрузка — 20 N, длина трека — 8 mm. Каждому значению критической нагрузки соответствует три теста, проведенных при аналогичных параметрах на одном образце.

3000

2500

2000

1500

1000

500

0

Intensity, a. u.

Исследования коэффициента трения и скорости износа покрытий проводились в геометрии диск-штифт с помощью трибометра (CSEM, Швейцария) при комнатной температуре и влажности. В качестве контртела использовался шарик из сплава ВК диаметром 3 mm, диаметр трека равнялся 5 mm, скорость вращения 5 cm/s, нагрузка — 5 N, дистанция до остановки — 100 m. Объем износа материала покрытия определялся после проведения профилометрии образовавшегося трека с помощью лазерного оптического профилометра MicroMeasure 3D Station (Stil, Франция).

Результаты и обсуждение

Ранее нами было показано, что концентрация ионов в случае сильноточного импульсного магнетронного распыления графита достигает 10¹³ ст⁻³, что выше, чем в случае постоянного магнетронного распыления $(10^9 - 10^{11} \text{ cm}^{-3})$ [5]. В табл. 1 приведены результаты измерений плазмы методом оптической эмиссионной спектроскопии. Строка 3 соответствует случаю магнетронного распыления графита на постоянном токе. Видно, что интенсивность линий ионов углерода увеличивается с ростом импульсного тока разряда.

На рис. 2, а приведен оптический эмиссионный спектр при импульсном магнетронном распылении графита в азоте, а на рис. 2, b — в аргоне. В случае азота линия ионов углерода видна лучше, хотя она примерно той же интенсивности, что и в случае аргона. Это связано с высокой интенсивностью линий ионов аргона. Так как оптический спектрометр настроен на среднюю интенсивность линий, то в случае распыления графита в аргоне линия ионов углерода видна хуже.

На рис. 3 приведен скрэтч-тест углеродного покрытия, нанесенного на подшипник из SiC. Свойства покрытий приведены в табл. 2, строка 3 соответствует случаю магнетронного распыления графита на постоянном токе. Как видно, твердость и износостойкость выше для образца, полученного методом импульсного магнетронного распыления графита при большом токе (100 A) и короткой длительности импульса (50 µs). Это связано с тем, что при импульсном сильноточном распылении графита повышается концентрация ионов углерода и аргона (табл. 1), поэтому подложка и растущая пленка

Таблица 2. Свойства углеродных покрытий, нанесенных магнетронным распылением графита

Ν	H, GPa	E, GPa	μ	$w, \mu m^3 N^{-1} m^{-1}$	<i>L</i> , N
1	17	163.1	0.11	0.307	9
2	12	124	0.13	0.812	5
3	7.3	124	0.24	9.216	1.28

Примечание. Н — твердость, Е — модуль упругости, µ — коэффициент трения, w — скорость износа, L — критическая нагрузка на индентор при царапании.

пульсном сильноточном магнетронном распылении графита в

a

300 350 400 450 500 550 600 650 700 750

Рис. 3. Результаты скретч-теста углеродного покрытия на подшипнике SiC, нанесенного методом импульсного сильноточного магнетронного распыления графита.

подвержены более интенсивной ионной бомбардировке. При этом в покрытии должно содержаться больше алмазоподобного углерода, так как он образуется в результате субплантации [11]. Эти же образцы обладают

N.

меньшим коэффициентом трения и лучшей адгезией (табл. 2).

Углеродная пленка, нанесенная сильноточным импульсным магнетронным распылением графита, может обладать лучшими механическими свойствами и адгезией не из-за большего содержания алмазоподобной фазы, а из-за лучшей когезии между частицами углерода и релаксации внутренних сжимающих напряжений вследствие импульсного нанесения и импульсного напряжения смещения [6,7]. Для ответа на этот вопрос нам надо знать количественное отношение sp^3/sp^2 углерода. Это можно сделать, проведя в будущем анализ пленок методом рентгеновской фотоэлектронной спектроскопии или методом рамановской спектроскопии. Для анализа структуры покрытия мы в дальнейшем воспользуемся рентгеновской дифрактометрией и атомно-силовой микроскопией.

Подшипники скольжения из SiC используются в жидкостных насосах. Детали с нанесенными углеродными пленками обладали меньшим коэффициентом трения и скоростью износа (табл. 2), поэтому срок службы подшипников увеличился примерно в 3 раза. Натурные испытания проводила компания ТРЭМ Инжиниринг (Москва).

Заключение

Импульсное сильноточное магнетронное распыление графита было использовано для осаждения твердых углеродных пленок на SiC. Твердость покрытий составила 17 GPa, коэффициент трения — 0.11, а скорость износа — $0.307 \mu m^3 N^{-1} m^{-1}$. У исходного материала твердость была 25 GPa, коэффициент трения — 0.43, а скорость износа — $26 \mu m^3 N^{-1} m^{-1}$. За счет нанесения углеродного покрытия удалось увеличить срок службы подшипников скольжения из SiC, применяемых в жидкостных насосах, примерно в 3 раза.

Работа выполнена в рамках Госзадания и при поддержке гранта РФФИ № 14-08-31164 мол_а.

Список литературы

- [1] Robertson J. // Adv. Phys. 1986. V. 35. P. 317-321.
- [2] Polo M.C., Andujar J.L., Robertson J., Milne W.I. // Diam. Relat. Mater. 2000. P. 663–670.
- [3] Weiler M., Lang K., Li E., Robertson J. // Appl. Phys. Lett. 1998. V. 72. P. 1314–1316.
- [4] Kulikovsky V., Bohac P., Franc F., Deineka A., Vorlicek V., Jastarbik L. // Diamond and Related Materials. 2001. V. 10. P. 1076–1081.
- [5] Одиванова А.Н., Подковыров В.Г., Сочугов Н.С., Оскомов К.В. // Физика плазмы. 2010. Т. 36. Вып. 1. С. 1–6.
- [6] McKenzie D.R., Tarrant R.N., Bilek M.M.M., Pearce G., Marks N.A., McCulloch D.G., Lim S.H.N. // Nuclear Instruments and Methods in Physics Research B. 2003. V. 206. P. 741–744.

- [7] Bilek M.M.M., Verdon M., Ryves L., Oates T.W.H., Ha C.T., McKenzie D.R. // Thin Solid Films. 2005. V. 482. P. 69–73.
- [8] Зайдель А.Н., Прокофьев В.К., Райский С.М., Славный В.А., Шрейдер Е.Я. Таблицы спектральных линий. М.: Наука, 1969. 784 с.
- [9] Соловьев А.А., Сочугов Н.С., Оскомов К.В., Работкин С.В. // Физика плазмы. 2009. Т. 35. Вып. 5. С. 443–452.
- [10] Oliver W., Pharr J. // J. Mater. Res. 1992. V. 7. P. 1564–1572.
- [11] Lifshitz Y., Lempert G.D., Grossman E. // Phys. Rev. Lett. 1994. V. 72. N 17. P. 2753–2756.