11,01

Электропроводность и полиморфный переход титана в мегабарной области давлений ударного сжатия

© А.М. Молодец, А.А. Голышев

Институт проблем химической физики РАН, Черноголовка, Россия E-mail: molodets@icp.ac.ru

(Поступила в Редакцию 27 июня 2014 г.)

Исследован эффект воздействия высоких динамических давлений на электросопротивление титана. Электросопротивление титановых образцов измерено в условиях ступенчатого ударного сжатия и последующей разгрузки. История ударноволнового нагружения титана рассчитана на основе разработанных полуэмпирических уравнений состояния. Показано, что в фазе сжатия при давлении 83(5) GPa электросопротивление образцов титана скачкообразно уменьшается на 30%. В фазе разгрузки в этой же области динамических давлений происходит обратное изменение электросопротивления титана. Зарегистрированный эффект истолкован как следствие полиморфного $\omega \leftrightarrow \gamma$ перехода в ударносжатом титане.

Работа выполнена при поддержке Росатома в рамках государственного контракта H.4x.44.90.13.1112 от 20.05.2013 г.

1. Введение

Как известно, титан и его химические соединения играют большую роль в ряде разноплановых задач физики экстремальных состояний, таких как, например, ударное сжатие гидрида титана в мегабарной области давлений [1], полиморфизм наноструктурированных оксидов титана при высоких статических [2] и динамических [3] давлениях, зависимость выхода нейтронов ядерной реакции в текстурированной мишени из дейтерида титана [4] и др.

Широкому спектру этих задач сопутствуют фундаментальные исследования полиморфных переходов самого титана при высоких статических и динамических давлениях. Полиморфизму титана посвящена обширная научная литература (см. [5-13] и ссылки в них). Согласно цитируемым работам титан при атмосферном давлении существует в двух полиморфных модификациях: α-Ті при температурах < 1155 К и *β*-Ті при температуре > 1155 К. При продвижении в мегабарную область вдоль комнатной изотермы титан испытывает еще ряд полиморфных превращений: $\alpha \leftrightarrow \omega$ при 9 GPa, $\omega \leftrightarrow \gamma$ при 116 GPa, $\gamma \leftrightarrow \delta$ при 145 GPa (см. [6–8]). Вместе с этим следует отметить, что высокотемпературные участки фазовой диаграммы титана при высоких давлениях ограничены сравнительно невысокими величинами. Например, в [9] при температуре ~ 1000 К давления составляют ~ 10 GPa.

Более широкий диапазон давлений и температур охвачен при исследовании титана в ударных волнах. Так в работах [10,11] ударные давления в титане достигали терапаскальных значений. Однако исследования полиморфных переходов титана в условиях ударного сжатия к настоящему времени также выполнены при невысоких давлениях на уровне ~ 10 GPa (см. [12,13]). В то же время известно, что сочетание высоких дав-

лений и температур, присущих динамическому нагружению, позволяет достигать труднодоступные области фазовых диаграмм исследуемых веществ. При этом одной из экспериментальных методик чувствительных к протеканию полиморфных превращений в ударносжатых твердых телах является методика измерения их электропроводности in situ (см. [14,15]). Можно предположить, что электропроводность различных фаз титана различна. Тогда при ударном сжатии титановых образцов их электропроводность должна скачкообразно изменяться при пресечении ударной адиабаты с линиями равновесия полиморфных модификаций титана. В этой связи в представляемой работе проведены измерения электропроводности ударносжатого титана с целью нахождения области полиморфного превращения титана в мегабарном диапазоне динамических давлений.

2. Постановка эксперимента и его результаты

В качестве исследуемых образцов титана использовалась титановая проволока чистотой 99.7%, приобретенная по каталогу фирмы Aldrich (№ 267902-23G). Исходные образцы титана представляли собой α -Ti, что подтверждается дифрактометрическими измерениями. Дифрактограмма образцов представляла собой интенсивные узкие, характерные для кристаллов пики, местоположения которых совпадают с пиками из справочной рентгеновской базы данных для α -Ti.

Эксперименты по измерению электропроводности образцов во время ступенчатого ударного сжатия были выполнены по традиционной схеме [15]. Измерительная ячейка включала (см. рис. 1, *a*) образец титана *1*. Начальная проводимость образца σ_0 составляла $\sigma_0 = 20 \,\Omega^{-1}$. Образец представлял тонкую пластину (16 × 2 × 0.08 mm). К узким граням припаивались

медные тоководы 2 толщиной $30\,\mu$ т и шириной 3 mm. Симметрично образцу располагался манганиновый датчик 3. Линейные размеры и толщина чувствительного элемента манганинового датчика были близки к таковым для титанового образца. Детали 1, 2 и 3 помещались между двумя тефлоновыми пленками (толщиной 1.3 и 0.3 mm), склеенными вакуумной смазкой (TBC-среда). Сформированная таким образом слойка 4 (см. рис. 1, b) помещалась между двумя вольфрамовыми пластинами 5, граничащими со стальными пластинами 6.

Измерительная ячейка нагружалась с использованием генератора ступенчатого ударного сжатия, показанного на рис. 1, *b*. Здесь стальной ударник 7 толщиной 3 mm разгонялся продуктами плоской детонационной волны в заряде BB 8, которая инициировалась взрывной линзой 9. Скорость ударника W_0 в момент столкновения с мишенью составляла $W_0 = 3.15(5)$ km/s. Свойства и работа используемого генератора, обеспечивающие ступенчатое ударное нагружение образцов, заделка датчиков и электрические свойства ТВС-среды, а также используемая в данной работе калибровка манганинового датчика подробно описаны в [16].

Измерение электропроводности титанового образца производилось по мостовой схеме. Во время нагружения через образец 1 и манганиновый датчик 3 пропускались постоянные токи $J_0 = 9.9(1)$ А от двух независимых импульсных источников тока. В эксперименте измерялся профиль (зависимости от времени t) изменения напряжения разбалансировки моста $\Delta U = \Delta U(t)$. Профиль электросопротивления как образца, так и чувствительного элемента манганинового датчика определялся как $R(t) = R_0 + k\Delta U$, где k — предварительно определяемый калибровочный коэффициент. На рис. 2 показан

Рис. 1. Постановка эксперимента по измерению электропроводности образцов при ступенчатом ударном сжатии. *а* — измерительная ячейка: *1* — образец, *2* — медный токовод, *3* — манганиновый датчик. *b* — генератор ступенчатого ударного нагружения образцов: *4* — ТВС-среда, *5* вольфрамовые пластины толщиной 1.49 mm, *6* — стальные (сталь 12Х18Н10Т) пластины толщиной 2.05 и 4.92 mm, *7* стальной ударник, *8* — заряд взрывчатого вещества (ВВ), *9* взрывная линза.

Рис. 2. Профили электросопротивления R и давления P в условиях ступенчатого ударного сжатия титана. 1 — экспериментальная осциллограмма электросопротивления R образцов титана. P_{ω} — давление скачкообразного изменения электросопротивления. Стрелкой $\omega \rightarrow \gamma$ обозначено скачкообразное уменьшение электросопротивления при сжатии, стрелкой $\gamma \rightarrow \omega$ обозначено скачкообразное увеличение электросопротивления при разгрузке. 2 — показания манганинового датчика давления P, расположенного в ТВС-среде рядом с титановым образцом.

типичный профиль электросопротивления титанового образца 1. Форма этого профиля остается неизменной от эксперимента к эксперименту, различаясь не более чем на 5% на всем интервале времен рис. 2.

Профиль электросопротивления манганинового датчика пересчитывался в профиль давления P(t) с использованием калибровки из [16]. Полученный таким способом профиль давления показан кривой 2 на рис. 2. Профиль 2 показывает давление в окружающей ТВС-среде в непосредственной близости с образцом титана. Поскольку динамические жесткости титана и манганина сопоставимы, а размеры титанового образца и чувствительного элемента манганинового датчика близки, то в первом приближении можно считать, что зарегистрированное манганиновым датчиком давление равно давлению в титановом образце.

Кроме того, отметим, что, согласно [16], TBC-среда может быть использована в качестве изолятора при условии, что электросопротивление исследуемых образцов в процессе ступенчатого ударного сжатия в области давлений 80-230 GPa оказывается меньше $\approx 20 \Omega$. Как видно на рис. 2 амплитуда профиля электросопротивления *I* не превышает десятых долей Ω . Это означает, что паразитным шунтирующим действием окружающей TBC-среды можно пренебречь и специфику изменения профиля *I* целиком отнести к изменению электросопротивления титана в мегабарном диапазоне давлений.

Сопоставляя теперь профили электросопротивления 1 и давления 2, можно сделать следующий вывод: в фазе сжатия при давлении $P_{\omega} = 83(5)$ GPa электросопротивление титана скачкообразно уменьшается на 30%. В фазе разгрузки в этой же области давлений происходит

обратное изменение электросопротивления титана. Этот вывод является экспериментальным результатом работы. В следующих разделах статьи представлено обсуждение и интерпретация этого результата.

3. Обсуждение экспериментального результата и его интерпретация

Заметим, что ударноволновые исследования полиморфных переходов титана позволили сделать вывод о том, что при давлении ударного сжатия $P_{\alpha\omega} \sim 9-12$ GPa имеет место полиморфный $\alpha \leftrightarrow \omega$ переход титана (см. [12,13]). Как видно из рис. 2, наблюдаемый в наших экспериментах скачок электросопротивления титана происходит при давлении $P_{\omega} > 25$ GPa > $P_{\alpha\omega}$.

Очевидно, скачкообразное изменение электросопротивления само по себе не является доказательством полиморфного превращения. Однако факт $P_{\omega} > P_{\alpha\omega}$ позволяет утверждать, что наблюдаемый скачок электросопротивления ударносжатого титана обусловлен по крайней мере превращением не исходной α -фазы, а ударносжатой ω -фазы титана. В развитие этого результата можно предположить, что наблюдаемым превращением является полиморфный переход ударносжатой ω -фазы в следующую γ -фазу высокого давления титана. Рассмот-

Рис. 3. Концептуальная фазовая диаграмма титана. 1 — расчеты линий равновесия полиморфных переходов в области тройной точки $\alpha \leftrightarrow \beta \leftrightarrow \omega$ титана из [17]; 2 — то же из [18]; 3 — точка излома ударной адиабаты ω-титана (предполагаемое $\omega \to \gamma$ полиморфное превращение титана в однократной ударной волне); 4 — расчетная температура вдоль ударной адиабаты ω -титана; 5 — координаты скачкообразного изменения электропроводности титана при ступенчатом ударном сжатии; 6 — точка полиморфного $\omega \rightarrow \gamma$ превращения титана из [6]; 7 — ориентировочная линия равновесия $\omega \leftrightarrow \gamma$ превращения при высоких температурах и давлениях. Величина погрешностей давления точки 3 соответствует неопределенности точки излома на рис. 4. Величина погрешностей давления точки 5 соответствует точности определения давления Р_ω на рис. 2. В качестве погрешности точек 3 и 5 по температуре принята разность между расчетом температуры ударного сжатия в [17] и нашим расчетом в области ≈ 80 GPa.

Рис. 4. Подразделение экспериментальных точек ударной адиабаты однократного сжатия титана на массивы точек, принадлежащих α -Ті и ω -Ті. Точки — эксперимент [19]; 1, 2 — рассчитанные ударные адиабаты α -Ті и ω -Ті соответственно; заштрихованный квадрат 3 — область излома ударной адиабаты; размеры прямоугольника задают погрешность определения точки излома ударной адиабаты.

рим аргументы в пользу этого предположения. С этой целью обсудим фазовую диаграмму титана (см. рис. 3).

На рис. 3 семейством линий 1 и 2 представлены расчетные линии равновесия α-, β- и ω-фаз титана из работ [17] и [18] соответственно для области высоких температур и сравнительно небольших давлений. Сопоставляя линию равновесия 1 и свои расчеты температуры вдоль ударной адиабаты, авторы [17] предсказали отсутствие $\omega \rightarrow \beta$ перехода на ударной адиабате титана. В то же время сопоставление линий равновесия 2 [18] с расчетами температуры вдоль ударной адиабаты [17] не исключает такого перехода при давлении $P \sim 35 \,\mathrm{GPa}$, где экстраполированная линия равновесия $\omega \leftrightarrow \beta$ пересекает ударную адиабату. Эта точка пересечения показана заштрихованным кружком на рис. 3. Это же состояние в координатах D-u показано заштрихованным кружком на рис. 4. Как видно, на экспериментальной ударной адиабате титана каких-либо особенностей не наблюдается. Поэтому прогноз [17], согласно которому ударносжатый титан не переходит в *β*-фазу, представляется реалистическим и мы будем его придерживаться при дальнейшем обсуждении.

Для анализа экспериментальных данных по ударному сжатию титана в однократных ударных волнах, а также наших экспериментальных данных по электропроводности мы построили уравнения состояния α -, ω -фазы титана (см. раздел 4). Это дало возможность рассчитать ударные адиабаты однократного сжатия α - и ω -модификаций титана и сравнить расчеты с соответствующим экспериментом [19] (см. рис. 4). Как видно на рис. 4, часть экспериментальных точек располагается на рассчитанной ударной адиабате 1 α -фазы. После излома аналогично [20] экспериментальные точки располагаются на расчетной ударной адиабате 2 ω -фазы. Однако в дополнение к [20] можно отметить, что в области больших скоростей, отмеченной заштрихованным квадратом 3, экспериментальные точки располагаются систематически ниже расчетной ударной адиабаты 2. Это позволяет считать заштрихованный квадрат областью излома ударной адиабаты и ассоциировать ее с неким превращением ударносжатого *w*-титана. Поскольку, согласно [17], этим превращением не может быть переход $\omega \rightarrow \beta$, то разумной альтернативой представляется $\omega \rightarrow \gamma$ превращение. Итак, координаты начала предполагаемого $\omega \rightarrow \gamma$ полиморфного превращения титана в однократной ударной волне определяются заштрихованным квадратом на рис. 4. Соответствующая точка $\omega \rightarrow \gamma$ полиморфного превращения на фазовой диаграмме в координатах температура-давление показана квадратом 3 на рис. 3. Кроме того, отметим, что согласно расчетам температура ударносжатого титана не превышала его температуру плавления в исследованном диапазоне давлений и, следовательно, особенности изменения электросопротивления ударносжатых образцов в наших экспериментах относятся к нерасплавленному титану.

Мы оценили также на фазовой диаграмме местоположение области, в которой зарегистрировано изменение электросопротивления ударносжатого титана. В своих оценках мы использовали расчеты давления и температуры ω -фазы титана, полученные при ступенчатом ударном сжатии из начального состояния α-фазы. При этом "привязка" расчетных значений давления и температуры к экспериментальному профилю электросопротивления образца титана осуществлялась с помощью показаний манганинового датчика, который служил здесь в качестве отметчика времени прихода волн напряжения на титановый образец. Результаты этого расчета показаны точкой 5, соответствующей значению давления, при котором в согласии с рис. 2 наблюдается скачкообразное изменение электросопротивления титана при ступенчатом ударном сжатии. Наконец, в дополнение к точкам 3 и 5 на фазовой диаграмме представлена точка 6 из [6], принадлежащая линии равновесия полиморфного $\omega \leftrightarrow \gamma$ превращения титана, и объединяющая эти три точки пунктирная линия 7. Линию 7 можно ориентировочно рассматривать как линию равновесия, на которой закономерно располагаются точки 3 и 5 предполагаемого полиморфного $\omega \rightarrow \gamma$ превращения при высоких температурах и давлениях и точка 6 этого превращения при комнатной температуре. Это обстоятельство можно расценивать как аргумент в пользу того, что наблюдаемое на рис. 2 скачкообразное изменение электросопротивления ударносжатого титана обусловлено полиморфным переходом ω-фазы в γ-фазу титана.

Уравнения состояния полиморфных модификаций титана

Свободная энергия F = F(V, T) полиморфных модификаций α -Ті и ω -Ті как функция объема V и температу-

Рис. 5. Экспериментальные и расчетные изотермы полиморфных модификаций титана. *I* — α -Ti [6], *2* — α -Ti [8], *3* — ω -Ti [6], *4* — рассчитанная комнатная изотерма α -Ti, *5* — рассчитанная комнатная ω -Ti.

ры T строилась в рамках традиционного полуэмпирического подхода, в котором F представлялась в виде суммы фононной и электронной $F_e = F_e(V, T)$ составляющей

$$F = E_x + 3R \left[\frac{\Theta}{2} + T \ln\left(1 - \exp\left(-\frac{\Theta}{T}\right)\right)\right] + F_e.$$
 (1)

Выражение для фононной составляющей свободной энергии обеих модификаций базируется на модели эйнштейновских осцилляторов, где потенциальная энергия $E_x = E_x(V)$ и зависящая только от объема характеристическая температура $\Theta = \Theta(V)$ определялись как (см. [21])

$$E_x = -\nu_x (C_1 H_x + C_2 x) + C_3 + E_m, \qquad (2)$$

$$H_x = 9\left(\frac{1}{10}x^{-\frac{2}{3}} + 2x^{\frac{1}{3}} + \frac{3}{2}x^{\frac{4}{3}} - \frac{1}{7}x^{\frac{7}{3}} + \frac{1}{70}x^{\frac{10}{3}}\right), \quad (3)$$

х

$$=\frac{V}{v_x} \tag{4}$$

$$\Theta = \Theta_0 \left(\frac{\nu_0 - V}{\nu_0 - V_0}\right)^2 \left(\frac{V_0}{V}\right)^{2/3},\tag{5}$$

$$\nu_0 = V_0 \left(1 + \frac{2}{\gamma_0 - 2/3} \right). \tag{6}$$

В (2)–(6) y_0 — параметр Грюнайзена при начальном объеме V_0 , v_x — подгоночный параметр, первое приближение которого есть v_0 ; C_1, C_2, C_3 — константы, выражающиеся через справочные свойства материала (плотность, модуль объемного сжатия, характеристическая температура, коэффициент Грюнайзена при нормальных условиях) и подгоночный параметр v_x . Величина E_m задает уровень отсчета внутренней энергии рассматриваемой модификации. Справочные свойства для фононных составляющих обеих модификаций титана взяты из [20]. Подгоночный параметр v_x и вместе с ним

Коэффициенты полуэмпирического выражения (1) свободной энергии полиморфных модификаций титана (начальная температура для обеих модификаций составляет величину $T_0 = 298 \, {
m K}$)

Ti phase	V ₀ , cm ³ /mol	Θ ₀ , Κ	$v_0,$ cm ³ /mol	v_x , cm ³ /mol	C ₁ , GPa	C ₂ , GPa	C3, kJ/g	E_m , kJ/g	$egin{array}{c} eta_0, \ mJ/molK^2 \end{array}$
$lpha \omega$	10.631 10.434	252.0 263.4	52.873 31.656	26.578 46.593	-184.7959 -26.2031	3827.7242 509.8793	$-1073.8091 \\ -277.8009$	0 0.022	3.36 5.78

весь комплект опорных констант из (2)-(6) находился, исходя из требования совпадения объемной зависимости потенциальной энергии в форме (2) с теоретической зависимостью из этой же работы [20].

Электронная составляющая F_e записывалась согласно [22]

$$F_e = -\frac{1}{2}\beta_0 T^2 \left(\frac{V}{V_0}\right)^{\gamma_e},\tag{7}$$

где γ_e — электронный коэффициент Грюнайзена, $\gamma_e = 1/2, \beta_0$ — коэффициент электронной теплоемкости, V_0 — начальный удельный объем.

Для модификации α -Ті сразу полагалось $E_m = 0$, а для β_0 бралось справочное значение коэффициента электронной теплоемкости α -Ті. Для модификации ω -Ті параметры E_m и β_0 считались подгоночными. Их величина находилась, исходя из требования равенства давлений и температур модификаций α -Ті и ω -Ті давлению 7.5 GPa и температуре 913 K в тройной точке титана из [9].

Полученный комплект параметров для α -Ті и ω -Ті представлен в таблице. Рис. 4 и 5 иллюстрируют степень адекватности построенных уравнений состояния на примере изотерм и ударных адиабат. На рис. 4 видно совпадение расчетной ударной адиабаты α -Ті и ударной адиабаты ω -Ті с экспериментом из [19] в диапазоне массовых скоростей 0-2 km/s. На рис. 5 показано соответствие рассчитанных по формуле $P(V, T_0) = -\frac{\partial F}{\partial V}$ изотерм и экспериментальных изотерм высокого давления α -Ті и ω -Ті из [6,8].

5. Заключение

Исследован эффект воздействия высоких динамических давлений на электрофизические свойства титана. Электросопротивление титановых образцов измерено в условиях ступенчатого ударного сжатия и последующей разгрузки. История ударноволнового нагружения титана рассчитана на основе разработанных полуэмпирических уравнений состояния. Показано, что в фазе сжатия при давлении 83(5) GPa электросопротивление образцов титана скачкообразно уменьшается на 30%. В фазе разгрузки в этой же области давлений происходит обратное изменение электросопротивления образца титана. Зарегистрированный эффект истолкован как следствие полиморфного $\omega \leftrightarrow \gamma$ перехода в ударносжатом титане.

Список литературы

- Р.Ф. Трунин, М.В. Жерноклетов, Н.Ф. Кузнецов, Ю.Н. Сутулов. Физика Земли 11, 65 (1987).
- [2] D. Machon, M. Daniel, V. Pischedda, S. Daniele, P. Bouvier, S. LeFloch. Phys. Rev. B 82, 140102(R) (2010).
- [3] А.М. Молодец, А.А. Голышев, Ю.М. Шульга. ЖТФ 83, 7, 100 (2013).
- [4] В.М. Быстрицкий, В.М. Быстрицкий, Г.Н. Дудкин, М. Филипович, Ш. Гажи, Й. Гуран, Г.А. Месяц, Б.А. Нечаев, В.Н. Падалко, С.С. Паржицкий, Ф.М. Пеньков, А.В. Филиппов, Ю.Ж. Телеушев. Письма в ЖЭТФ 99, 9, 579 (2014).
- [5] N. Velisavljevic, S. MacLeod, H. Cynn. In: Titanium alloys towards achieving enhanced properties for diversified applications / Ed. Dr. A.K.M. Nurul Amin. InTech (2012). P. 67; http://www.intechopen.com/books/titanium-alloys-towardsachieving-enhanced-properties-for-diversifiedapplications/
- [6] Y.K. Vohra, P.T. Spencer. Phys. Rev. Lett. 86, 3068 (2001).
- [7] Y. Akahama, H. Kawamura, T. Le Bihan. Phys. Rev. Lett. 87, 275 503 (2001).
- [8] D. Errandonea, Y. Meng, M. Somayazulu, D. Häusermann. Physica B 355, 116 (2005).
- [9] J. Zhang, Y. Zhao, R.S. Hixson, G.T. Gray III, L. Wang, W. Utsumi, S. Hiroyuki, H. Takanori. J. Phys. Chem. Solids 69, 2559 (2008).
- [10] Р.Ф. Трунин, Л.А. Илькаева, М.А. Подурец, Л.В. Попов, Б.В. Печенкин, Л.В. Прохоров, А.Г. Севастьянов, В.В. Хрусталев. Теплофизика высоких температур **32**, 692 (1994).
- [11] Р.Ф. Трунин, Н.В. Панов, А.Б. Медведев. Письма в ЖЭТФ 62, 572 (1995).
- [12] Р.Ф. Трунин, Г.В. Симаков, А.Б. Медведев. Теплофизика высоких температур 37, 881 (1999).
- [13] E. Cerreta, G.T. Gray III, A.C. Lawson, T.A. Mason, C.E. Morris. J. Appl. Phys. 100, 013 530 (2006).
- [14] А.А. Бриш, М.С. Тарасов, В.А. Цукерман. ЖЭТФ **38**, *1*, 23 (1960).
- [15] В.В. Якушев. ФГВ 14, 2, 3 (1978).
- [16] А.А. Голышев, А.М. Молодец. ФГВ 49, 2, 106 (2013).
- [17] S. Pecker, S. Eliezer, D. Fisher, Z. Henis. J. Appl. Phys. 98, 043 516 (2005).
- [18] Zhi-Gang Mei, Shun-Li Shang, Yi Wang, Zi-Kui Liu. Phys. Rev. B 80, 104 116 (2009).
- [19] LASL Shock Hugoniot Data / Ed. S.P. Marsh. University California Press, Berkeley (1980) 658 p.
- [20] C.W. Greeff, D.R. Trinkle, R.C. Albers. J. Appl. Phys. 90, 2221 (2001).
- [21] А.М. Молодец, Д.В. Шахрай, В.Е. Фортов. ЖЭТФ 145, 1015 (2014).
- [22] Л.В. Альтшулер, С.Б. Кормер, А.А. Баканова, Р.Ф. Трунин. ЖЭТФ 38, 790 (1960).