09,05,10

Фононные и магнонные возбуждения в спектрах комбинационного рассеяния света эпитаксиальной пленки феррита висмута

© Г. Кхабири^{1,5}, А.С. Анохин^{1,2}, А.Г. Разумная¹, Ю.И. Юзюк¹, І. Gueye³, В. Carcan³, H. Bouyanfif³, J. Wolfman⁴, C. Autret-Lambert⁴, M. El Marssi³

¹ Южный федеральный университет, Ростов-на-Дону, Россия ² Южный научный центр РАН, Ростов-на-Дону, Россия ³ LPMC, Université de Picardie Jules Verne, Amiens, France ⁴ GREMAN UMR 7347, Université de Tours, Tours, France ⁵ Fayoum University, Fayoum, Egypt E-mail: yuzyuk@rambler.ru

(Поступила в Редакцию 9 июня 2014 г.)

Эпитаксиальная пленка феррита висмута BiFeO₃ на монокристаллической подложке (001)MgO получена методом импульсного лазерного напыления с использованием буферных слоев SrTiO₃ и SrRuO₃. При комнатной температуре поляризационные характеристики спектров комбинационного рассеяния света исследованной пленки BiFeO₃ предполагают моноклинную симметрию. Проведены высокотемпературные (295–1100 K) исследования спектров комбинационного рассеяния света в области частот $20 < \nu < 1600 \text{ cm}^{-1}$. Особое внимание уделено высокочастотной области, где наблюдаются полоса 610 cm⁻¹, соответствующая максимуму плотности состояний магнонной ветви на границе зоны Бриллюэна, и интенсивная полоса в спектрах второго порядка с максимумом ~ 1250 cm⁻¹, соответствующая плотности состояний двухмагнонных возбуждений. Установлено, что при повышении температуры интенсивность полосы ~ 1250 cm⁻¹ линейно понижается и выше 650 K она отсутствует. Экстраполяция температурной зависимости интегральной интенсивности полосы 1250 cm⁻¹ позволяет предполагать, что в данной пленке антиферромагнитный фазовый переход происходит при температуре ~ 670 K.

Работа проводилась при финансовой поддержке РФФИ (грант № 12-02-91051_НЦНИ_а).

1. Введение

Феррит висмута BiFeO₃ (BFO) относится к классу мультиферроиков, в которых наблюдается взаимосвязь магнитных и сегнетоэлектрических свойств [1], и является перспективным материалом для создания принципиально новых элементов памяти [2]. Ниже температуры Кюри ($T_C = 1083 \,\text{K}$) кристаллическая структура монокристалла феррита висмута описывается пространственной группой R3c. Ромбоэдрическая элементарная ячейка $(a = 0.562 \,\mathrm{nm}, \ \alpha = 59.35^\circ)$ содержит две формульные единицы, а сопряженные кислородные октаэдры антифазно развернуты. Спонтанная поляризация ориентирована вдоль направления типа [111] псевдокубической перовскитной ячейки BFO. Антиферромагнитное упорядочение G-типа возникает ниже $T_N = 643 \,\mathrm{K}$ так, что магнитные моменты ионов железа лежат в плоскостях типа (111), перпендикулярных направлению спонтанной поляризации, и, сохраняя локально антипараллельную ориентацию, поворачиваются по спирали, ориентированной вдоль направления [101]. Согласно данным по дифракции нейтронов [3], период этой циклоиды значительно превышает размеры элементарной ячейки и составляет 62 nm. Спиральная модуляция в монокристаллах BFO приводит к тому, что в среднем по объему линейный магнитоэлектрический эффект и спонтанная намагниченность равны нулю [4].

На протяжении последних десяти лет огромный интерес вызывают пленки BFO, поскольку высокие значения спонтанной поляризации и магнетоэлектрического эффекта [5] указывают на факт разрушения спиральной модуляции в пленках, что обусловлено искажениями их кристаллической структуры. Различия в параметрах элементарных ячеек кристаллических структур пленки и подложки могут приводить как к сжимающим, так и к растягивающим деформациям, что позволяет существенным образом искажать кристаллическую структуру и тем самым влиять на ее физические свойства. В последние годы эпитаксиальные пленки BFO были синтезированы на различных подложках и буферных слоях; кроме ромбоэдрической фазы [6-9] обнаружены весьма разнообразные структурные искажения, не наблюдающиеся в объемном материале: тетрагональные [5,10,11], орторомбические [12-14] и моноклинные [15-18]. Последовательности фазовых переходов, реализующиеся в таких пленках BFO, еще не установлены. Очевидно, что структурное многообразие пленок BFO открывает возможности модификации магнетоэлектрического взаимодействия за счет влияния деформаций, обусловленных подложкой. Последовательности фазовых переходов в эпитаксиальных пленках BFO, а также температурные области сосуществования магнитного и полярного порядков могут существенно отличаться от известных для монокристалла. При исследовании температурных зависимостей параметров решетки серии из шести пленок BFO, осажденных на различные подложки, было установлено [19], что температура антиферромагнитного перехода T_N слабо зависит от величины деформации пленки, в то время как температура сегнетоэлектрического перехода T_C существенно понижается с ростом деформации пленки, что объяснялось в [19] взаимодействием полярных и ротационных искажений в решетке BFO.

В настоящей работе представлены результаты исследований спектров комбинационного рассеяния света (КРС) эпитаксиальной пленки ВFO в температурном интервале от 295 до 1100 К. Выполнено сравнение наблюдаемых спектров КРС первого порядка пленки со спектрами монокристаллических образцов ВFO. В спектрах двухчастичных возбуждений полоса 1250 сm⁻¹ отнесена к двухмагнонному рассеянию. Исходя из температурной зависимости двухмагнонной полосы определена температура антиферромагнитного фазового перехода.

2. Экспериментальные детали

Пленка BFO была получена методом импульсного лазерного осаждения (pulsed laser deposition — PLD) с использованием эксимерного лазера Lambda Physik KrF ($\lambda = 248$ nm) и высоковакуумной камеры MECA 2000 UHV, оснащенной системой для регистрации дифракции электронов (RHEED), что позволяло контролировать качество осаждаемых слоев в процессе роста пленки. Для обеспечения эпитаксии на подложку (001)MgO ($a_{\rm MgO} = 0.421$ nm) предварительно осаждался буферный слой SrTiO₃ (STO) толщиной 10 nm при давлении кислорода 10⁻⁵ mbar и температуре 790°C и проводящий SrRuO₃ (SRO) толщиной 20 nm при давлении кислорода 0.3 mbar и температуре 700°C. Пленка BFO толщиной 45 nm осаждалась при давлении кислорода 0.3 mbar и температуре 750°C.

Рентгенограмма пленки, полученная на дифрактометре Siemens D5000 (Си K_{α} -излучение), приведена на рис. 1. Наличие рефлексов только типа (00*l*) подтверждает эпитаксиальный рост пленки на подложке (001)МgO. Перпендикулярный подложке параметр пленки в кубической установке составляет 0.4 nm. Соответствующий параметр объемного BFO $a_{pc} = 0.396$ nm. Слои SRO и STO имеют близкие параметры решетки, и соответствующие им рефлексы перекрываются.

Поляризованные спектры микро-КРС были получены на образцах, точно ориентированных в соответствии с кристаллографическими осями подложки: $X \parallel [100]$, $Y \parallel [010]$ и $Z \parallel [001]$. Для регистрации спектров использовались геометрия "рассеяния от торца" (side-view backscattering) [20], когда волновой вектор падающего

Рис. 1. Дифрактограмма гетероструктуры BFO/SRO/STO/ (001)MgO. Интенсивность приведена в логарифмической шкале.

луча параллелен подложке, а поляризация падающего и рассеянного света параллельна или перпендикулярна оси Z пленки, и геометрия нормального к поверхности обратного рассеяния. Спектры микро-КРС возбуждались поляризованным излучением аргонового лазера $(\lambda = 514.5 \, \text{nm})$. Возбуждающее излучение фокусировалось на образце с помощью оптического микроскопа, диаметр сфокусированного пучка составлял 2 µm. Поляризованные спектры КРС при комнатной температуре регистрировались тройным спектрометром Jobin Yvon Т64000. Для температурных исследований использовался однопроходный спектрометр Renishaw. Высокотемпературные измерения были выполнены в печи Linkam TS 1500. Отметим, что проводящий слой SRO полностью отражает видимый свет, поэтому спектр тонкой пленки STO не возбуждается.

3. Результаты и обсуждение

При комнатной температуре структура кристалла ВFО описывается ромбоэдрической симметрией R3c. Элементарная ячейка, в которой октаэдры FeO₆ антифазно развернуты вокруг оси третьего порядка, содержит две формульные единицы. Согласно фактор-групповому анализу, в спектрах ИК и КРС ромбоэдрического кристалла BFO следует ожидать $4A_1 + 9E \mod [21,22]$. Для кристалла, ориентированного вдоль кристаллографических осей ромбоэдрической ячейки, А1-моды наблюдаются в геометриях рассеяния, соответствующих диагональным компонентам тензора поляризуемости, а девять двукратно вырожденных Е-мод можно наблюдать как в параллельных, так и в скрещенных геометриях рассеяния. Сравнение поляризованных спектров кристалла ВFO, полученных в геометрии обратного рассеяния с плоскости (111)_{сиbic} ориентированного монокристалла при 4К позволило сделать отнесение наблюдавшихся

2422

Рис. 2. Спектры КРС пленки ВFO, полученные при комнатной температуре в различных геометриях рассеяния.

линий по типам симметрии [21]. Кроме того, дальнодействующие электростатические силы расщепляют все A_1 и *Е*-моды на поперечные (ТО) и продольные (LO) компоненты. Однозначное отнесение мод ромбоэдрического кристалла всегда затруднительно из-за сложной доменной структуры. В последующих исследованиях неоднократно предпринимались попытки выполнить отнесение LO- и ТО-фононных мод BFO [23–25], но результаты этих работ несколько различаются.

Спектры КРС пленки BFO/(001)MgO, полученные при комнатной температуре в пяти геометриях рассеяния, приведены на рис. 2. Поляризованные спектры пленки для диагональных геометрий рассеяния очень близки к полученным при рассеянии от (001)_{сиbic} кубической грани монодоменного ромбоэдрического кристалла ВFO [23]. Отметим, что интенсивное рэлеевское рассеяние в $Z(YY)\overline{Z}$ -спектре на рис. 2 обусловлено упругим отражением от металлического слоя SRO. Частоты наблюдаемых в пленке BFO/(001)MgO линий (см. таблицу) несколько отличаются от данных, имеющихся в литературе [23,25], что может быть обусловлено искажением кристаллической структуры пленки, которая не является ромбоэдрической. В пользу последнего утверждения свидетельствует различие вида спектров в геометриях $Y(XZ)\overline{Y}$ и $Z(YX)\overline{Z}$, которые должны быть идентичны в случае ромбоэдрической симметрии [23]. При осаждении пленки BFO на грань (001) кубического кристалла (в нашем случае MgO предварительно покрывался слоями

перовскитов SRO/STO, что обеспечивало эпитаксиальный рост пленки BFO) следует ожидать искажения структуры до тетрагональной или моноклинной [16,26] с изменением схемы разворотов кислородных октаэдров. В случае тетрагональной симметрии *P4mm* с одной формульной единицей в элементарной ячейке следует ожидать $4A_1 + B_1 + 5E$ мод в спектрах КРС. В этом случае полярная ось *Z* направлена перпендикулярно подложке (*c*-доменная пленка), и в геометрии рассеяния $Z(YX)\overline{Z}$ спектр КРС запрещен правилами отбора [20]. Наличие достаточно интенсивного спектра в геометрии $Z(YX)\overline{Z}$ на рис. 2, который нельзя отнести к нарушениям правил отбора, позволяет однозначно отклонить гипотезу о тетрагональной симметрии исследуемой пленки.

Структура исследуемой пленки BFO, по-видимому, является моноклинной с пространственной группой Сс и четырьмя формульными единицами в элементарной ячейке, что неоднократно предполагалось в ряде работ по пленкам [16,23,26]. В этом случае в спектрах КРС следует ожидать проявления оптических фононов 14А' + 13А". Поляризационные характеристики спектров КРС исследуемой пленки согласуются с данным предположением. Отметим, однако, что близость спектров для геометрий рассеяния $Z(YY)\overline{Z}$ и $Y(XX)\overline{Y}$ указывает на псевдотетрагональность структуры пленки, т.е. степень моноклинного искажения весьма невелика, и поэтому частоты наблюдаемых линий в спектрах КРС исследуемой пленки лишь немного отличаются от частот в монокристаллических образцах. В спектре $Y(XX)\bar{Y}$ наиболее интенсивными являются линии 71, 141, 172 и 221 cm⁻¹. Линии с близкими частотами наблюдаются в геометриях $Z(YY)\overline{Z}$, $Y(ZZ)\overline{Y}$ и $Y(XZ)\overline{Y}$, а спектр $Z(YX)\overline{Z}$ значительно отличается от всех предыдущих, что характерно для моноклинных групп симметрии. Кроме того, самая низкочастотная линия, отнесенная ранее [21,24] в спектрах монокристаллов ВFO к Е-типу симметрии, в исследуемой пленке наблюдается во всех геометриях с частотами от 71 до 74 сm⁻¹, что может быть вызвано расщеплением моды Е-типа на компоненты A' и A'' в моноклинной фазе.

Частоты (в ст⁻¹) линий в спектрах КРС пленки ВFO, полученные в настоящей работе, и литературные данные [25]

$Y(XX)\overline{Y}$	$Z(YY)\bar{Z}$	$Y(ZZ)\overline{Y}$	$Y(XZ)\overline{Y}$	$Z(YX)\overline{Z}$	Данные [25]
71	72	74	72	74	77
141	137	138	137	134	140
172	173	174	171		173
221	221	220	217		220
					265
			271	276	279
					288
					350
361	363		369	370	371
471	470			470	471
520					520
555			547	544	550
609	610				

Рис. 3. Спектр КРС пленки ВFO в геометрии рассеяния $Z(YY)\overline{Z}$. Линии v_1-v_6 соответствуют оптическим фононам первого порядка; v_{μ} — линия, отвечающая максимуму плотности состояний магнонной ветви на границе зоны Бриллюэна; полоса $2v_{\mu}$ соответствует плотности состояний двухмагнонных возбуждений; полосы $2v_4-2v_6$ в интервале частот 700–1200 сm⁻¹ обусловлены двухфононными возбуждениями.

Согласно многочисленным экспериментальным [21-25] и теоретическим [26,27] исследованиям, спектры КРС монокристаллов ВFO, обусловленные оптическими фононами первого порядка, лежат в области частот ниже $600 \,\mathrm{cm}^{-1}$, а наблюдающиеся высокочастотные линии обусловлены двухчастичными процессами. Спектр КРС пленки ВFO в области частот 100-1600 сm⁻¹ для геометрии рассеяния $Z(YY)\bar{Z}$ приведен на рис. 3, где указаны шесть линий, соответствующих спектру первого порядка с частотами ниже $600 \,\mathrm{cm}^{-1}$, и высокочастотные комбинационные полосы. Отметим, что полоса вблизи 610 cm⁻¹ отсутствует в спектрах монокристаллов [23,25], но часто наблюдается в спектрах пленок и керамик ВFO. Исследуя угловую зависимость фононов в керамике BFO, Глинка с соавторами [24] впервые обратили внимание на то, что полоса вблизи 620 cm⁻¹ не относится к фононам первого порядка и не имеет угловой зависимости, а удвоенное значение ее частоты соответствует достаточно интенсивной полосе 1250 cm⁻¹, которая наблюдалась ранее и интерпретировалась как двухфононная полоса [22,23,28]. Отсутствие угловой зависимости полосы вблизи $620\,\mathrm{cm}^{-1}$ наводит на мысль о том, что она возникает в результате нарушений правил отбора. Мы полагаем, что полоса в районе 610-620 cm⁻¹ соответствует магнону с границы зоны Бриллюэна и активируется в спектрах КРС из-за нарушений правил отбора по волновому вектору в пленках и керамиках, где высока вероятность нарушений трансляционной симметрии из-за дефектности кристаллической структуры. В этом случае полоса 1250 сm⁻¹ соответствует плотности состояний двухмагнонных возбуждений, а не исключительно двухфононному рассеянию. Отметим, что гигантское возрастание интенсивности и отсутствие сдвига максимума полосы вблизи $610-620 \text{ cm}^{-1}$ наблюдались в спектрах КРС пленок твердых растворов BiFeO₃–10% *R*MnO₃ (*R* = La, Eu, Gd, Tb, Dy) [29], где трансляционная симметрия нарушалась за счет замещений как Fe, так и Bi в структуре BFO. Такое поведение полосы вблизи $610-620 \text{ cm}^{-1}$ подтверждает наше предположение о ее происхождении в спектрах КРС за счет беспорядка.

Несмотря на то что исчезновение полосы 1250 cm^{-1} при антиферромагнитном переходе вблизи 650 K в монокристалле BFO наблюдали еще в 2007 г. [22], авторы последующих работ [28,30,31] "отыскали" полосу двухмагнонного рассеяния на частотах $1490-1530 \text{ cm}^{-1}$, основываясь на оценках из первых принципов [32] константы обменного взаимодействия J = 7.4 meV. Поскольку частота максимума двухмагнонного рассеяния и константа обменного взаимодействия связаны простым соотношением $2v_{\mu} = J(2Sz-1) = 29J$ (где S = 5/2 — спин ионов Fe³⁺, z = 6 — число их ближайших соседей в структуре BFO), то соответствующий двухмагнонный пик искали (и находили!) на частотах существенно выше 1250 cm^{-1} .

Дисперсии магнонных ветвей ВFO вдоль трех выделенных направлений (Γ –A, Γ –K и Γ –M) гексагональной зоны Бриллюэна были экспериментально определены на основе данных по рассеянию нейтронов при комнатной температуре несколько позже [33]. Согласно этим данным, энергия магнонной ветви в точке A на границе гексагональной зоны Бриллюэна превышает энергии фононных ветвей и составляет 72.5 meV (585 cm⁻¹). Определенная в [33] константа обменного взаимодействия оказалась существенно меньше (4.38 meV), что ставит под сомнение сделанное ранее [28,30,31] отнесение полосы в районе 1490–1530 сm⁻¹ к двухмагнонному пику.

Таким образом, на основании данных [33] появление линии с частотой 610 cm⁻¹ выше фононных частот первого порядка в спектре КРС исследуемой пленки мы можем объяснить активацией магнонной ветви с границы зоны Бриллюэна за счет нарушений правил отбора по волновому вектору из-за дефектов (кислородных вакансий и дислокаций) пленки. Частота максимума этой линии на 4% превышает граничную величину магнонной ветви, определенную для монокристалла [33], что может быть вызвано моноклинным искажением кристаллической структуры пленки, в которой схема разворотов кислородных октаэдров (и, возможно, их искаженность) отличается от наблюдаемой для ромбоэдрической фазы монокристалла. Поскольку частота двухмагнонного пика в спектре КРС должна быть близкой к удвоенному значению частоты магнонной ветви на границе зоны Бриллюэна, двухмагнонному рассеянию соответствует полоса 1250 cm⁻¹. При этом ее интенсивность существенно превышает интенсивность двухфононных полос, что может быть обусловлено резонансным процессом [34], поскольку энергия возбуждающего излучения

Рис. 4. Температурная зависимость спектров КРС пленки ВFО в геометрии рассеяния $Z(YY)\overline{Z}$. Произведена коррекция интенсивности на температурный фактор заселенности. Пунктиром показано положение двухмагнонной полосы.

(в нашем случае 2.41 eV) близка к энергии электронного перехода (2–2.5 eV) между e_g - и t_{2g} -орбиталями ионов Fe³⁺, причем обязательным условием резонанса является обменное взаимодействие между двумя электронами (спинами) ближайших ионов Fe³⁺в возбужденных состояниях [35].

Далее проанализируем температурную зависимость спектров КРС пленки BFO/(001)MgO в геометрии рассеяния $Z(YY)\overline{Z}$, приведенную на рис. 4. Антиферромагнитный переход в BFO не связан со структурным, поэтому в спектрах нет ярких аномалий фононных мод вблизи *T_N* = 643 К. Из анализа температурных зависимостей частот фононных мод в пленке BFO на подложке (111)STO признаки спин-фононного взаимодействия вблизи *T_N* = 643 К были зарегистрированы в [9]. В нашем случае частоты всех мод понижаются (рис. 5), полуширины растут, и с ростом температуры слабые линии все сложнее зарегистрировать из-за малой толщины пленки. Выше 700К на фоне шумов удается зарегистрировать только две низкочастотные линии, частоты которых постепенно понижаются. Выше 1000 К в спектре КРС пленки визуализируются только полосы второго порядка, а в высокочастотной области (выше 1200 cm⁻¹) появляется люминесцентный фон.

При отсутствии структурного перехода интенсивность фононных спектров второго порядка определяется квадратом температурного фактора заселенности и не может

уменьшаться с ростом температуры. Как видно из рис. 4, все полосы в интервале частот от 700 до 1200 сm⁻¹ несколько уширяются, но не исчезают вплоть до 1100 К. Напротив, интенсивность полосы 1250 сm⁻¹, отнесенной к двухмагнонному рассеянию, линейно понижается с ростом температуры, и выше 650 К она отсутствует. Экстраполяция температурной зависимости интегральной интенсивности полосы 1250 сm⁻¹, приведенная на рис. 6, указывает на антиферромагнитный фазовый переход в пленке при 670 К. Как и в [19], в нашей пленке T_N

Рис. 5. Температурная зависимость частот линий в спектрах КРС, приведенных на рис. 4.

Рис. 6. Температурная зависимость интегральной интенсивности полосы 1250 ст⁻¹.

незначительно смещена по сравнению со значением для монокристалла. Заметного сдвига температуры Кюри в исследованной пленке не обнаружено.

4. Заключение

Использование буферных слоев SRO/STO позволило получить эпитаксиальную пленку BFO на подложке (001)MgO. Полученные при комнатной температуре поляризованные спектры КРС согласуются с моноклинной симметрией пленки ВFO. В спектрах КРС второго порядка наблюдается линия 610 ст⁻¹, соответствующая максимуму плотности состояний магнонной ветви на границе зоны Бриллюэна и появляющаяся в спектрах КРС за счет нарушений правил отбора по волновому вектору из-за дефектов пленки. Интенсивная полоса в спектрах второго порядка с максимумом $\sim 1250\,{
m cm^{-1}}$ соответствует плотности состояний двухмагнонных возбуждений. На основании температурной зависимости спектров КРС первого и второго порядка установлено, что в данной пленке магнитоупорядоченное состояние существует вплоть до ~ 670 К.

Список литературы

- [1] А.П. Пятаков, А.К. Звездин. УФН 182, 593 (2012).
- [2] А.И. Морозов. ФТТ 56, 833 (2014).
- [3] I. Sosnovska, T. Peterlin-Neumaier, E. Steichle. J. Phys. C 15, 4835 (1982).
- [4] А.К. Звездин, А.П. Пятаков. УФН 174, 465 (2004).
- [5] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh. Science **299**, 1719 (2003).
- [6] X. Qi, M. Wei, Y. Lin, Q. Jia, D. Zhi, J. Dho, M.G. Blamire, J.L. MacManus-Driscoll. Appl. Phys. Lett. 86, 071 913 (2005).
- [7] M.K. Singh, H.M. Jang, S. Ryu, M.H. Jo. Appl. Phys. Lett. 88, 042 907 (2006).
- [8] Y. Yang, J.Y. Sun, K. Zhu, Y.L. Liu, L. Wan. J. Appl. Phys. 103, 093 532 (2008).
- [9] M.K. Singh, R.S. Katiyar. J. Appl. Phys. Lett. 109, 07D 916 (2011).
- [10] M.K. Singh, S. Ryu, H.M. Jang. Phys. Rev. B 72, 132101 (2005).
- [11] M.N. Iliev, M.V. Abrashev, D. Mazumdar, V. Shelke, A. Gupta. Phys. Rev. B 82, 014 107 (2010).
- [12] В.М. Мухортов, Ю.И. Головко, Ю.И. Юзюк. УФН 179, 909 (2009).
- [13] I.N. Leontyev, Yu.I.Yuzyuk, P.-E. Janolin, M. El-Marssi,
 D. Chernyshov, V. Dmitriev, Yu.I. Golovko, V.M. Mukhortov,
 B. Dkhil. J. Phys.: Cond. Matter 23, 332 201 (2011).
- [14] J.C. Yang, Q. He, S.J. Suresha, C.Y. Kuo, C.Y. Peng, R.C. Haislmaier, M.A. Motyka, G. Sheng, C. Adamo, H.J. Lin, Z. Hu, L. Chang, L.H. Tjeng, E. Arenholz, N.J. Podraza, M. Bernhagen, R. Uecker, D.G. Schlom, V. Gopalan, L.Q. Chen, C.T. Chen, R. Ramesh, Y.H. Chu. Phys. Rev. Lett. 109, 247 606 (2012).
- [15] G. Xu, H. Hiraka, G. Shirane, J. Li, J. Wang, D. Viehland. Appl. Phys. Lett. 86, 182 905 (2006).

- [16] Ю.И. Головко, В.М. Мухортов, О.А. Бунина, И.Н. Захарченко, А.С. Анохин, В.Б. Широков, Ю.И. Юзюк. ФТТ 52, 1336 (2010).
- [17] H. Liu, P. Yang, K. Yao, J. Wang. Appl. Phys. Lett. 96, 012 901 (2010).
- [18] H. Toupet, F. Le Marrec, C. Lichtensteiger, B. Dkhil, M.G. Karkut. Phys. Rev. B 81, 140 191(R) (2010).
- [19] I.C. Infante, S. Lisenkov, B. Dupe, M. Bibes, S. Fusil, E. Jacquet, G. Geneste, S. Petit, A. Courtial, J. Juraszek, L. Bellaiche, A. Barthélémy, B. Dkhil. Phys. Rev. Lett. 105, 057 601 (2010).
- [20] Ю.И. Юзюк. ФТТ 54, 963 (2012).
- [21] H. Fukumura, H. Harima, K. Kisoda, M. Tamada, Y. Noguchi, M. Miyayama. J. Magn. Magn. Mater. 310, e367 (2007).
- [22] H. Fukumura, S. Matsui, H. Harima, T. Takahashi, T. Itoh, K. Kisoda, M. Tamada, Y. Noguchi, M. Miyavama. J. Phys.: Cond. Matter 19, 365 224 (2007).
- [23] R. Palai, H. Schmid, J.F. Scott, R.S. Katiyar. Phys. Rev. B 81, 064 110 (2010).
- [24] J. Hlinka, J. Pokorny. S. Karimi, I.M. Reaney. Phys. Rev. B 83, 020 101(R) (2011).
- [25] C. Beekman, A.A. Reijnders, Y.S. Oh, S.W. Cheong, K.S. Burch. Phys. Rev. B 86, 020403(R) (2012).
- [26] M.N. Iliev, M.V. Abrashev, D. Mazumdar, V. Shelke, A. Gupta. Phys. Rev. B 81, 014 107 (2010).
- [27] А.Ф. Ревинский, В.В. Тригук, И.И. Макоед. ФТТ 56, 1740 (2014).
- [28] M. Cazayous, A. Sacuto, D. Lebeugle, D. Colson. Eur. Phys. J. B 67, 209 (2009).
- [29] A. Lahmar, S. Habouti, M. Dietze, C.-H. Solterbeck, M. Es-Souni. Appl. Phys. Lett. 94, 012 903 (2009).
- [30] M.O. Ramirez, M. Krishnamurthi, S. Denev, A. Kumar, S.-Y. Yang, Y.-H. Chu, E. Saiz, J. Seidel, A.P. Pyatakov, A. Bush, D. Viehland, J. Orenstein, R. Ramesh, V. Gopalan. Appl. Phys. Lett. **92**, 022 511 (2008).
- [31] M.O. Ramirez, A. Kumar, S.A. Denev, Y.H. Chu, J. Seidel, L.W. Martin, S.-Y. Yang, R.C. Rai, X.S. Xue, J.F. Ihlefeld, N.J. Podraza, E. Saiz, S. Lee, J. Klug, S.W. Cheong, M.J. Bedzyk, O. Auciello, D.G. Schlom, J. Orenstein, R. Ramesh, J.L. Musfeldt, A.P. Litvinchuk, V. Gopalan. Appl. Phys. Lett. 94, 161 905 (2009).
- [32] P. Baettig, C. Ederer, N.A. Spaldin. Phys. Rev. B 72, 214105 (2005).
- [33] J. Jeong, E.A. Goremychkin, T. Guidi, K. Nakajima, G.S. Jeon, S.-A. Kim, S. Furukawa, Y.B. Kim, S. Lee, V. Kiryukhin, S.-W. Cheong, J.-G. Park. Phys. Rev. Lett. **108**, 077 202 (2012).
- [34] Y. Yang, J.Y. Sun, K. Zhu, Y.L. Liu, J. Chen, X.R. Xing. Physica B 404, 171 (2009).
- [35] T.P. Martin, R. Merlin, D.R. Huffman, M. Cardona. Solid State Commun. 22, 565 (1977).