07

Влияние знака нагрузки на характеристики микро- и нанометровых скачков скорости деформации *у*-облученного политетрафторэтилена

© В.В. Шпейзман¹, П.Н. Якушев¹, Л.И. Трахтенберг², А.С. Смолянский³

¹ Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

² Институт химической физики им. Н.Н. Семенова РАН,

Москва, Россия

³ Научно-исследовательский физико-химический институт им. Л.Я. Карпова,

Москва, Россия

E-mail: shpeizm.v@mail.ioffe.ru, yak@pav.ioffe.ru

(Поступила в Редакцию 28 мая 2014 г.)

Методом лазерной доплеровской деформометрии впервые проведено прецизионное измерение скорости деформации в режиме одноосного растяжения образцов политетрафторэтилена (РТFE), необлученных и подвергнутых воздействию γ -излучения ⁶⁰Со до дозы 30 kGy при комнатной температуре на воздухе. Сопоставлены результаты деформационных испытаний образцов исходного и γ -облученного РТFE при растяжении и сжатии. Показано, что для скачков как нано-, так и микрометровых масштабов наблюдается тенденция к увеличению их амплитуды при растяжении по сравнению с полученными в условиях одноосного сжатия. Рассчитаны среднеквадратичные отклонения скорости деформации с учетом микромасштабных скачков по всему интервалу деформаций в зависимости от величины напряжений, а также для наномасштабных скачков в пределах перемещения $\Delta l_0 = 0.325 \,\mu$ m. Обнаружено, что величина среднеквадратичного отклонения растет при переходе от режима испытаний в условиях одноосного сжатия к растяжению, а также больше для γ -облученных образцов, чем для необлученных. В качестве возможной причины зависимости характеристик скачков деформации от вида нагружения рассматриваются особенности поведения ансамбля нано- и микротрещин при растяжении и сжатии.

Работа выполнена при поддержке РФФИ (проект № 12-08-00437-а).

1. Введение

Влияние знака одноосной нагрузки на скорость деформации может быть вызвано особенностями эволюции структуры с ростом деформации, связанными с разным поведением ансамбля микротрещин при растяжении и сжатии. Кроме того, для пластичных материалов при сжатии невозможно достичь макроразрушения, что уже свидетельствует о влиянии знака нагрузки на кинетику процессов, проходящих в твердых телах. Многочисленные исследования, в которых сравнивалась деформация при растяжении и сжатии, показали, что при малых деформациях, а также при высоких температурах скорость деформации не зависит от знака нагрузки (см., например, [1]). Однако при больших деформациях или низких температурах кривые деформации при постоянных растягивающих и сжимающих напряжениях могут существенно различаться [2,3].

Использование методов лазерной интерферометрии для измерения скорости деформации привело к новым представлениям о деформации как многоуровневом процессе со скачкообразным изменением ее скорости и величины. С развитием метода анализа деформации на разных ее уровнях путем прецизионного измерения скачков скорости и величины деформации открылись большие возможности исследования ее природы, были предложены новые характеристики деформации: размеры и частоты появления скачков разной величины (от нанометровых до измеряемых несколькими десятками и более микрометров). Размеры и другие характеристики скачков деформации отражают, по нашему мнению, реальные размеры структурных образований, участвующих в деформации (кинетических единиц деформации).

Проведенные исследования показали, что на характеристики скачков скорости и величины деформации влияют изменения структуры, вызванные различной предысторией образца, в частности предварительной деформацией, облучением, воздействием слабого магнитного поля и др. В ранних работах по исследованию скачкообразной деформации полимеров и металлов нижний предел величины скачков деформации составлял 0.6-1 µm [4-8]. В последующих работах благодаря разработке новых приемов анализа результатов, усовершенствованию техники измерений и использованию специальных компьютерных программ обработки результатов удалось наблюдать скачки с размерами от нескольких нанометров до десятков и даже сотен микрометров и проследить закономерности их изменения с деформацией и взаимосвязь развития разноуровневых скачков скорости и величины деформации [9-11]. Опыты проводились на различных металлах, полимерах и композитах. Для ряда полимеров было показано, что стационарная стадия ползучести отсутствует: средняя скорость деформации сначала уменьшается, а затем возрастает. На фоне этого изменения скорости происходят непрерывные ее колебания разной амплитуды, т.е. кривая ползучести содержит разномасштабные скачки скорости и связанные с ними скачки величины деформации. С ростом деформации размеры нано- и субмикрометровых скачков деформации увеличиваются. Мелкие скачки в некоторых случаях могут объединяться и охватывать большие изменения длины образца, равные десяткам и более микрометров [8,9]. В [10] на примере образнов полиметилметакрилата. предварительно подвергнутых воздействию у-облучения дозами $D = 55 - 330 \, \text{kGy}$, а также необлученных образцов показано присутствие нанометровых скачков деформации, величина которых зависит от дозы облучения и времени ползучести. Результаты подтверждают положение о существовании в аморфных полимерах доменов с размерами 10-20 nm и более. При измерении скорости деформации свинца в области больших деформаций показано, что вся кривая деформации, в том числе в магнитном поле, состоит из скачков разной величины и протяженности: от десятков нанометров до сотен микрометров. Магнитное поле приводит к некоторому ускорению деформации и перераспределению вкладов в нее скачков разной величины. Введение магнитного поля в процессе ползучести приводит к кратковременному резкому увеличению скорости деформации и последующему ее спаду до величин, больших или близких к тем, что были до введения поля. Выведение поля сопровождается обратным эффектом. Характеристики скачков деформации на разных масштабных уровнях и величина магнитопластического эффекта зависят от скорости и величины деформации. Особенности поведения свинца связываются с возможной многократной его рекристаллизацией в процессе ползучести [11]. В [12] показано, что для образцов биоуглерода, полученного путем карбонизации дерева бука при различных температурах в области 600-1600°С, прочность зависит от содержания в биоуглероде нанокристаллической фазы. Установлено, что размеры скачков деформации на микро- и нанометровом уровнях зависят от структуры материала и времени нагружения. Показано, что в отличие от поведения пластичных металлов и полимеров интегральные характеристики скачков деформации (среднеквадратичные отклонения распределений скачков скорости деформации) не зависят от величины скорости и коррелируют с предельной деформацией в момент разрушения образца.

Все указанные выше результаты получены в случае испытаний на одноосное сжатие. В настоящей работе приведены результаты исследования скачкообразной деформации при растяжении и проведено их сравнение с уже известными оригинальными данными, полученными при сжатии.

2. Методика эксперимента

Известная по многочисленным исследованиям деформации и разрушения пленочных материалов при одноосном растяжении установка (см., например, [4]) была дополнена рядом новых приспособлений, позволяющих проводить прецизионные измерения скорости деформации с помощью лазерного интерферометра. Высокая точность измерений скорости деформации потребовала разработки приспособления, запрещающего паразитные повороты и перемещения подвижной части образца при его деформации.

Испытывались пленочные образцы из политетрафторэтилена (PTFE) толщиной 0.1 mm и рабочей длиной 10 mm. В экспериментах использовались необлученные образцы и образцы, подвергнутые воздействию γ -излучения ⁶⁰Со до дозы 30 kGy при комнатной температуре на воздухе (мощность дозы 0.2 Gy/s). Образцы РТFE для испытаний на сжатие имели вид цилиндров диаметром 5 mm и высотой 10 mm. Они испытывались при одноосном сжатии в условиях постоянных напряжений $\sigma = 10-18$ MPa и комнатной температуре. По зарегистрированным кривым биений (интерферограммам) с использованием программного обеспечения [13] рассчитывалась скорость деформации на базе последовательных одинаковых изменений длины образца, равных $\Delta l_0 = 325 \,\mathrm{nm} \, (\Delta \varepsilon_0 \sim 3 \cdot 10^{-3} \,\%)$, что соответствовало периоду биений. Расчет производился по формуле $\dot{\varepsilon} = \lambda \omega / 4\pi l_0$, где $\lambda = 650$ nm — длина волны лазера в измерительной схеме, $l_0 = 10 \,\mathrm{mm}$ — начальная длина образца, ω — частота биений; отсюда следует $\dot{\varepsilon} = 0.52 \cdot 10^{-5} \omega.$

По зависимостям скорости деформации при постоянных напряжениях от величины деформации определялись характеристики микрометровых скачков. Скачки меньших размеров определялись по отклонению формы линий на интерферограммах от синусоидальной [8]. Обработка результатов позволяла измерять параметры неоднородности деформации на разных ее уровнях: от нескольких нанометров до сотен микрометров с шагом дискретизации по времени до 10^{-4} s. Основные измерения проведены на частоте 10³ Hz, что соответствует временному интервалу между точками на интерферограмме 1 ms. По полученным экспериментальным зависимостям скорости относительной деформации (*Ė*) от времени (t) или от изменения длины образца (Δl) определялись амплитуда, частота следования и форма скачков скорости деформации, а также усредненные (сглаженные) зависимости скорости и ее среднеквадратичное отклонение ($\Delta \dot{\epsilon}$). При вычислении $\dot{\epsilon}$ и $\Delta \dot{\epsilon}$ в расчет принималась полная длина образца.

3. Результаты опытов и их обсуждение

На рис. 1, 2 показаны результаты испытаний на растяжение и сжатие облученных и необлученных образцов РТFE. На рис. 1 приведены кривые деформации при трех последовательно изменяющихся напряжениях: 10, 14 и 18 МРа. Видно, что для необлученных образцов кривые деформации для растяжения (*a*) и сжатия (*b*) различа-

Рис. 1. Кривые деформации при последовательном увеличении напряжений: 10 (I), 14 (II), 18 МРа (III). *a*, *c* — растяжение, *b*, *d* — сжатие; *a*, *b* — необлученные, *c*, *d* — облученные образцы.

ются уже при малых напряжениях. Первая расположена выше второй, а при напряжении 18 МРа образец при растяжении сразу разрушался. Различие в поведении пленок при растяжении и цилиндрических образцов при сжатии, очевидно, связано не только с влиянием знака нагрузки, но и в первую очередь с их разными структурными характеристиками. Более интересно то, что для облученных образцов начальные области кривых при растяжении (c) и сжатии (d) близки. Это может означать, что при малых напряжениях сопротивление деформации в данном случае определяется дефектами, возникшими при облучении, а исходные дефекты играют второстепенную роль.

Зависимости скорости деформации, определенной по частоте биений на интерферограммах, от времени представлены на рис. 2, a-d. В отличие от плавных кривых на рис. 1 зависимости скорости деформации от времени при растяжении внешне не отличаются от аналогичных зависимостей, полученных при сжатии, и состоят из скачков скорости деформации разной величины. Рас-

Рис. 2. Зависимости скорости деформации от времени. Обозначения те же, что на рис. 1.

Рис. 3. Примеры распределений числа микрометровых скачков скорости деформации по их размерам (*a*, *c*, *e*) и "хвосты" распределений (*b*, *d*, *f*). *a*, *b*: необлученные образцы, напряжение 10 МРа, *1* — растяжение, *2* — сжатие; *c*, *d*: облученные, 18 МРа, *I* — растяжение, *2* — сжатие; *c*, *d*: облученные, 18 МРа, *I* — растяжение, *2* — сжатие; *c*, *d*: облученные, 18 МРа, *I* — растяжение, *2* — сжатие; *c*, *d*: облученные, 18 МРа, *I* — растяжение, *2* — сжатие; *c*, *d*: облученные, 18 МРа, *I* — растяжение, *2* — сжатие; *c*, *d*: облученные, 18 МРа, *I* — растяжение, *2* — сжатие; *c*, *d*: облученные, 18 МРа, *I* — растяжение, *2* — сжатие; *c*, *d*: облученные, 18 МРа, *I* — растяжение, *2* — сжатие; *c*, *d*: облученные, 18 МРа, *I* — растяжение, *a* = сжатие; *c*, *d*: облученные, 18 МРа, *I* — облученный, *B* = необлученные.

пределения числа скачков скорости $\Delta \dot{\varepsilon} / \dot{\varepsilon}$ (плотности вероятности $n_i / [n_0 \Delta (\Delta \dot{\varepsilon} / \dot{\varepsilon})]$, где n_i — число скачков в десятипроцентном интервале изменения скорости: от $(\Delta \dot{\varepsilon} / \dot{\varepsilon})_i - 0.05$ до $(\Delta \dot{\varepsilon} / \dot{\varepsilon})_i + 0.05$; n_0 — полное число скачков) для различных типов образцов и условий нагружения приведены на рис. 3, *a*, *c*, *e*, а среднеквадратичные отклонения распределений $\Delta \dot{\varepsilon} / \dot{\varepsilon}$ — в табл. 1. В своей

средней части распределения $\Delta \dot{\epsilon} / \dot{\epsilon}$ мало отличаются друг от друга, разными являются положения максимумов и число самых малых и самых больших скачков скорости деформации. Основное отличие распределений скачков скорости в зависимости от знака нагрузки, а также облученных и необлученных образцов заключается в поведении "хвостов" распределений, отдельно

Параметр		Сжатие		Растяжение						
Необлученные образцы										
σ , MPa	10	14	18	10	14	18				
$\overline{\Delta \dot{\epsilon} / \dot{\epsilon}}$	0.056	0.061	0.053	0.084	0.113	_				
L, μm	4-8	4-8 4-10		8-10	8-10	_				
	20 - 50	30-50	30-50	40-50	30-50					
Облученные образцы										
σ , MPa	10	14	18	10	14	18				
$\overline{\Delta \dot{\epsilon} / \dot{\epsilon}}$	0.074	0.083	0.077	0.134	0.161	0.153				
L, μm	2 - 8	3-6	3-8	2 - 10	2 - 7	3-10				
	10-30	10 - 40	15 - 40	40 - 70	30-60	40 - 70				

Таблица 1. Характеристики скачков скорости деформации политетрафторэтилена при растяжении и сжатии

показанных на рис. 3, b, d, f. Число крупных скачков определяет и величину среднеквадратичного отклонения распределений $\Delta \dot{\varepsilon}/\dot{\varepsilon}$ (табл. 1). Как видно из рис. 3 и табл. 1, его величина больше для облученных образцов и при растяжении больше, чем при сжатии. Зависимости среднеквадратичного отклонения распределений $\Delta \dot{\varepsilon}/\dot{\varepsilon}$ от величины напряжений для РТFE в выбранном интервале напряжений не обнаружено.

В [13] анализировались скачки скорости деформации РТFE при сжатии. Был выбран участок ползучести с примерно постоянной малой скоростью, и рассматривались только абсолютные величины положительных скачков $\Delta \dot{\varepsilon}$, т.е. в сторону увеличения скорости. Полученное в [13] распределение скорости соответствовало половине распределений, показанных на рис. 3: от значений скорости, близких к нулю, до максимальных скоростей. При этом статистика малых по величине скачков соответствовала статистике случайных процессов, а большие скачки ей не подчинялись. Данные, приведенные на рис. 3, показывают, что относительные величины $\Delta \dot{\varepsilon} / \dot{\varepsilon}$ малых и больших скачков — как положительных, так и отрицательных — в первом приближении следуют выводам [13]. Однако можно отметить различие поведения крупных скачков: положительных заметно больше, чем отрицательных. Поскольку деформация в направлении, противоположном действующей силе, маловероятна, минимальное значение $\Delta \dot{\varepsilon} / \dot{\varepsilon} = -1$, что означает кратковременную остановку деформации, а максимальное может быть больше единицы.¹ В наших опытах заметное изменение $\Delta \dot{\varepsilon} / \dot{\varepsilon}$ наблюдалось в интервале от -0.9 до 1.3, а отдельные скачки скорости деформации достигали $\Delta \dot{\varepsilon} / \dot{\varepsilon} = 5 - 8$.

Размер микрометровых скачков деформации L определялся по расстояниям между близкими по величине скачками скорости на зависимостях $\Delta \dot{\epsilon} / \dot{\epsilon} (\Delta l)$ [4–9]. Пример участка такой зависимости для облученных образцов РТFE при напряжениях 10 МРа приведен на рис. 4, а результаты — в табл. 1. Скачки *L* размером несколько единиц и десятков микрометров наблюдались для облученных и необлученных образцов и при растяжении, и при сжатии. При растяжении больше отношение скоростей в скачке и до (после) него; отсюда на фоне меньших, чем при сжатии, скоростей деформации для одинаковых напряжений больше величина $\Delta \dot{\epsilon}/\dot{\epsilon}$. Крупные скачки размером 100–150 μ m встречались редко, в основном при большой скорости деформации, и их появление было нерегулярным (см. также [8]).

Характеристики нанометровых скачков деформации определялись по искажению формы биений на интерферограммах [8]. Рассчитывались среднеквадратичное отклонение сигнала $\overline{\Delta U/U_0}$ на базе перемещений $\Delta l_0 = 325 \,\mathrm{nm}$ и величина нанометровых скачков деформации L для растяжения и сжатия облученных и необлученных образцов РТГЕ. Примеры зависимостей $\Delta U/U_0(\Delta l)$ приведены на рис. 5, а полные результаты сведены в табл. 2. Как следует из этой таблицы, закономерности изменения $\Delta U/U_0$ для нанометровых скачков в случае сжатия и растяжения, а также при сравнении облученных и необлученных образцов подобны описанным выше для аналогичной характеристики при микрометровых скачках: при растяжении $\overline{\Delta U/U_0}$ заметно больше, чем при сжатии, а $\overline{\Delta U/U_0}$ для необлученных образцов несколько ниже, чем для облученных. Зависимости величины разброса $\overline{\Delta U/U_0}$ от скорости деформации, наблюдаемой в [9] для PTFE в интервале скоростей деформации $(0.5{-}6.5)\cdot 10^{-7}\,{\rm s}^{-1},$ в настоящей работе для более высоких скоростей деформации не обнаружено. Отличие измерений $\Delta U/U_0$ в [9] от приведенных в настоящей работе заключается в том, что в [9] рассматривались последовательные биения при постоянном напряжении, которые при малой скорости деформации сильно отличались по частоте, а данные табл. 2 получены при изменяющихся напряжениях. Если

Рис. 4. Пример скачка с $L = 8 \,\mu$ т при растяжении облученного образца, $\sigma = 10$ МРа.

¹ Кратковременная деформация в направлении, противоположном приложенной силе, обсуждалась в [8]. Однако в том случае эффект был связан с удалением нагруженного образца из магнитного поля.

Рис. 5. Нанометровые скачки деформации при растяжении (a, b) и сжатии (c) облученных (a, c) и необлученного (b) образцов при напряжениях 14 (a) и 10 MPa (b, c). На вставках в увеличенном виде показаны отдельные участки соответствующих зависимостей $\Delta U/U_0(\Delta l)$.

же сравнивать величины $\overline{\Delta U/U_0}$ для постоянных напряжений, то тенденция к увеличению $\overline{\Delta U/U_0}$ при уменьшении скорости деформации в большинстве случаев сохраняется. Обнаружено увеличение разброса скорости деформации при растяжении по сравнению со сжатием как на микрометровом, так и на нанометровом уровне.

Нанометровые скачки деформации можно условно разделить на три группы по размерам L_1 : мелкие (до 20 nm), средние (40–70 nm) и крупные (90–180 nm). Мелкие и крупные скачки присутствовали во всех рассмотренных случаях, а средние не наблюдались при $\sigma = 10$ MPa. Из данных, приведенных в табл. 2, следует, что только самые малые скачки при растяжении и сжатии отличаются по размерам, при сжатии их размер L_1 меньше, чем при растяжении. Именно это, по-видимому, обусловливает более высокие значения характеристики разброса скорости деформации на нанометровом уровне $\Delta U/U_0$ при растяжении, чем при сжатии. Поскольку число малых скачков велико, они вносят большой вклад в

разброс скорости деформации на нанометровом уровне. Что касается микрометровых скачков, то и для них наблюдается в большинстве случаев увеличение размера L после облучения и при переходе от сжатия к растяжению. Возможное объяснение этого эффекта заключается в том, что знак шарового тензора напряжений оказывает влияние на соотношение положительных и отрицательных скачков деформации, т.е. растяжение способствует появлению большего числа ускорений деформации (рис. 2). Это может быть связано с разным поведением ансамбля нано- и микротрещин в процессе деформации на разных ее уровнях и их влиянием на характеристики деформации. Для растяжения при ступенчатом нагружении всегда можно достичь разрушения образца. В аналогичном испытании при сжатии макроразрушение не достигается. Поскольку отличие в характеристиках скачков скорости деформации при растяжении и сжатии наблюдается уже на ранних стадиях деформации, эти изменения в кинетике деформации можно трактовать

			Растя:	жение,	необлуче	енные образ	зцы						
σ , MPa	10			14							18		
t,s	720	1260	126	1265		2500	2	2990)	3583		
$\dot{\epsilon}, \ 10^{-5} { m s}^{-1}$	4.30	2.36	130)	1.97	1.38	0	0.84			1.08		
$\Delta U/U_0$	0.083	0.093	0.07	4	0.096	0.099	0.099 0.0		0.090 0.094		0.088		
L_1 , nm	8-15, 1		10-15, 40-60, 120-150						10, 100-120				
	•		•										
			Растя	яжение	е, облучен	ные образі	ĮЫ						
σ , MPa	10			14		18		8			18 (в скачке $\dot{\varepsilon}$)		
t, s	153	1118 1	428 2	2309	2621	4007	4168	4612	510	09 59)26	6049	
$\dot{\varepsilon}, \ 10^{-5} { m s}^{-1}$	4.85	0.60	5.50	1.16	0.86	62.5	11.1	0.65	0.4	7 0	.89	2.51	
$\overline{\Delta U/U_0}$	0.097	0.128 0	.089 0	.084	0.090	0.054	0.117	0.128	0.0	97 0.)75	0.074	
L_1, nm	10–20, 90–180					10-20, 40-70, 120-180							
	,		Сжа	атие, н	еоблучен	ные образці	Ы						
σ , MPa	10				14			14			18		
<i>t</i> , s	36.5	20	03	1157		1487	2	2287		3958		4043	
$\dot{\varepsilon}, \ 10^{-5} { m s}^{-1}$	2.1	0.2	26	0.0)5	1.14	0	0.13		0.04		1.09	
$\overline{\Delta U/U_0}$	0.029	0.0	30	0.037		0.032	0.	0.043		0.050		0.029	
L_1 , nm	3-5, 110-150					4-12, 50-80, 120-150							
			Сж	катие,	облученн	ые образцы	Ι						
σ , MPa	10					14			1		8		
<i>t</i> , s	45	234	1130		1330	1509	3187		3702	4117		4888	
$\dot{\varepsilon}, \ 10^{-5} { m s}^{-1}$	2.80	0.88	0.15		2.60	0.57	0.10		3.0	0.21		0.12	
$\overline{\Delta U/U_0}$	0.030	0.037	0.047		0.036	0.051	0.053	(0.029	0.041		0.057	
L_1 , nm	4-	-8,100-18	30				4 - 12, 5	0-70, 1	20 - 180				

Таблица 2. Характеристики нанометровых скачков деформации облученного и необлученного политетрафторэтилена

как влияние процесса, приводящего в конечном счете к разрушению образца.

4. Заключение

Впервые проведенные измерения характеристик скачков скорости и величины деформации при растяжении подтвердили общность представлений о деформации как многоуровневом процессе, скорость которого изменяется скачками разной величины и протяженности. Предварительное облучение образцов создает новые дефекты и не только уменьшает среднюю скорость деформации при заданном напряжении, но и изменяет характеристики скачков скорости и величины деформации. Вид напряженного состояния (изменение знака напряжений при одноосном нагружении) также влияет на скачки скорости и величины деформации. В работе проанализировано поведение двух характеристик скачкообразной деформации PTFE при различных напряжениях: величины деформации в скачке (период повторяемости скачков по шкале деформации) и среднеквадратичного отклонения скорости от среднего в данный момент значения, определенного по плавной кривой изменения скорости деформации в опыте. Обе характеристики использованы для анализа микро- и нанометровых скачков деформации. Показано, что для скачков как нано-, так и микрометровых масштабов наблюдается тенденция к увеличению их амплитуды при растяжении по сравнению с полученными в условиях одноосного сжатия, причем наибольшее различие наблюдается для самых малых из доступных для измерения наномасштабных скачков скорости ползучести (порядка нескольких нанометров) и микромасштабных скачков максимальной амплитуды (100-200 µm). Среднеквадратичные отклонения скорости деформации для микромасштабных ее скачков были рассчитаны во всем интервале деформаций при постоянном напряжении. Для наномасштабных скачков расчет среднеквадратичного отклонения проводился в пределах перемещений (деформаций) 325 nm, что соответствует одному биению на интерферограмме. Обнаружено, что величина среднеквадратичного отклонения растет при переходе от режима испытаний в условиях одноосного сжатия к растяжению, а также больше для у-облученных образцов, чем для необлученных. Роль предварительного облучения заключается, очевидно, в изменении дефектной структуры. Влияние знака нагрузки на характеристики скачков деформации можно связать с разным поведением ансамбля нано- и микротрещин в процессе деформации на разных ее уровнях.

Список литературы

- [1] В.А. Степанов, Н.Н. Песчанская, В.В. Шпейзман. Прочность и релаксационные явления в твердых телах. Наука, Л. (1984). 245 с.
- [2] Т.С. Орлова, Б.И. Смирнов, В.В. Шпейзман. ФТТ 23, 7, 1981 (1981).
- [3] В.В. Шпейзман, В.И. Николаев. ФТТ 40, 260 (1998).
- [4] Н.Н. Песчанская. Высокомолекуляр. соединения А **31**, 1181 (1989).
- [5] Н.Н. Песчанская, П.Н. Якушев. ФТТ 40, 1635 (1998).
- [6] Н.Н. Песчанская, А.Б. Синани. ФТТ 50, 177 (2008).
- [7] Н.Н. Песчанская, Б.И. Смирнов, В.В. Шпейзман. ФТТ 50, 815 (2008).
- [8] В.В. Шпейзман, Н.Н. Песчанская. ФТТ 53, 1169 (2011).
- [9] В.В. Шпейзман, П.Н. Якушев, Н.Н. Песчанская, Ж.В. Мухина, А.С. Смолянский, А.С. Шведов. ФТТ **54**, 1156 (2012).
- [10] В.В. Шпейзман, Н.Н. Песчанская, П.Н. Якушев, А.С. Смолянский, А.С. Шведов, В.Г. Черемисов. ФТТ 52, 248 (2010).
- [11] В.В. Шпейзман, П.Н. Якушев. ФТТ 55, 1765 (2013).
- [12] В.В. Шпейзман, Т.С. Орлова, Б.К. Кардашев, Б.И. Смирнов, A. Gutierrez-Pardo, J. Ramirez-Rico. ФТТ 56, 522 (2014).
- [13] А.С. Шведов, В.Г. Черемисов, Н.Н. Песчанская, В.В. Шпейзман, П.Н. Якушев, А.С. Смолянский, С.Г. Лакеев. Вопр. атомной науки и техники. Сер. Физика радиационного воздействия на радиоэлектронную аппаратуру. Науч.-техн. сб. В. 3. ФГУП "НИИП", М. (2010). С. 77.