13,03

Структура и состав пленок карбида кремния, синтезированных методом ионной имплантации

© К.Х. Нусупов, Н.Б. Бейсенханов, С.К. Жариков, И.К. Бейсембетов, Б.К. Кенжалиев, Т.К. Ахметов, Б.Ж. Сейтов

Казахстанско-Британский технический университет, Алматы, Казахстан E-mail: n.beisenkhanov@kbtu.kz

(Поступила в Редакцию 5 марта 2014 г. В окончательной редакции 10 июня 2014 г.)

Посредством математического разложения ИК-спектра поглощения, полученного от слоя Si после имплантации ионов C⁺ с энергией 10 или 40 keV или от однородной пленки SiC_{0.7}, показано, что доли слабых удлиненных Si-C-связей аморфной фазы, сильных укороченных Si-C-связей на поверхности мелких нанокристаллов, тетраэдрических Si-C-связей кристаллической фазы (степень кристалличности) после высокотемпературного отжига (1250–1400°C) слоев составляют 29/29/42, 22/7/71 и 21/31/48%, соответственно. Методом рентгеновской рефлектометрии и моделированием с помощью программы Release в пленке идентифицирована система слоев SiC_{2.0}, SiO₂, SiC_{0.8}, SiC_{0.6} на подложке Si. Данные рефлектометрии о флуктуации интенсивности отражений в области главного максимума объясняются вариацией плотности по глубине слоя с гауссовым распределением атомов углерода от 2.55 g/cm³ (слой SiC_{0.25}) и 2.90 g/cm³ (SiC_{0.65}) до 3.29 g/cm³ (SiC_{1.36}).

Работа поддержана комитетом науки Министерства образования и науки Республики Казахстан: "Исследование наноструктурированных слоев карбида кремния, синтезированных методами ионной имплантации и ионно-лучевого распыления" (ГР 0217/ГФ, 2012—201 гг., приоритет "Интеллектуальный потенциал страны", подприоритет "Фундаментальные исследования в области естественных наук").

1. Введение

Ценные физико-химические свойства карбида кремния (широкая запрещенная зона $E_g = 2.3-3.5$ eV, высокая твердость и химическая стойкость, высокая подвижность носителей заряда и возможность получения материала с электронной и дырочной проводимостью) обусловили его широкое применение в оптоэлектронике, высокочастотной, высокотемпературной, радиационно стойкой электронике и т.д. [1–3]. Электронные приборы на основе SiC могут работать при температурах до 600°C, обладают высоким быстродействием и радиационной стойкостью [4,5]. Синтез слоев SiC в кремнии методом ионной имплантации позволяет получить пленки заданной толщины и состава [6-11].

Карбид кремния демонстрирует голубое свечение при низких температурах [12]. Непрямозонный характер SiC затрудняет его применение в светоизлучающих устройствах. В связи с повышением интереса к материалам на базе кремния, излучающим в голубом диапазоне, синтез нанокристаллов SiC, встроенных методом ионной имплантации в пленки SiO₂, приобрел важное значение [12–14]. Двойная имплантация ионов Si⁺ и C⁺ в матрицу SiO₂ приводит к изменению свойств нанокристаллов кремния и формированию системы, содержащей нановключения углерода, кремния и карбида кремния, которые за счет квантово-размерного эффекта обеспечивают люминесценцию практически во всей видимой области спектра [12,13,15–17]. Например, авторы [13] имплантацией в пленку SiO₂ ионов Si⁺ и C⁺ с энергией E = 100 keV и дозой $D = 7 \cdot 10^{16}$ cm⁻² обеспечили концентрацию избыточного Si и C в максимуме распределения ионов 10 at.%. Наблюдалась белая фотолюминесценция, характеризующаяся полосами при ~ 400, ~ 500 и ~ 625 nm, которые приписаны нановключениям фаз SiC, C, нанокластеров (ncl) и мелких нанокристаллов (nc) Si соответственно. Это направление перспективно при создании светодиодов, лазеров, планарно-оптических усилителей и др.

Высокие темпы роста КПД связаны с переходом к кремниевым фотоэлектрическим преобразователям третьего поколения, представляющим собой многослойные, многобарьерные структуры, в которых присутствуют материалы с различной шириной запрещенной зоны E_g , благодаря чему удается уменьшить потери в кристалле, связанные с невозможностью поглощения фотонов с энергией, меньшей ширины запрещенной зоны кристалла, и термализацией кристаллической решетки при поглощении фотонов с энергией, большей E_{q} , и превысить теоретический предел фотовольтаического преобразования энергии для монокристаллического кремния в 27% [18,19]. Уменьшить термализацию можно путем использования в многослойных структурах более широкозонного, чем кремний, материала. Таким материалом может быть слой широкозонного карбида кремния или слой с нанокристаллами кремния, в которых E_g определяется квантово-размерными эффектами и может быть заметно больше, чем Еg объемного монокристаллического Si. Применение этих материалов позволяет расширить область спектральной чувствительности кремниевого фотоэлектрического преобразователя в более коротковолновую часть спектра солнечного излучения [19].

Микрокристаллические сплавы µс-SiC:Н являются перспективными материалами для использования в качестве прозрачных проводящих слоев для окон в тонкопленочных солнечных элементах. Материал *n*-типа обладает высокой проводимостью и широкой оптической запрещенной зоной при использовании µс-SiC: Н в качестве слоя окна с *n*-стороны микрокристаллических кремниевых (µс-SiC:H) солнечных элементов [20,21]. В [22] сообщается об изготовлении тонкопленочных солнечных элементов n-i-p-типа на основе аморфного кремния (a-Si:H) с использованием пленок легированного фосфором µс-3C-SiC: Н как оконного слоя. Элемент имел следующую конфигурацию: ТСО (прозрачный проводящий оксид)/TiO₂/µс-3C-SiC: Н *n*-типа/внутренний a-Si: H/µc-SiC_x p-типа (a-SiC_x: H, coдержащий фазу µс-Si:H)/Al. Характеристики элемента: КПД 4.5% и напряжение холостого хода $V_{\rm oc} = 0.953$ V. Также был получен солнечный элемент с нелегированной пленкой a-Si_{1-x}C_x: Н в качестве буферного слоя, чтобы улучшить n/i-переходный слой. Напряжение V_{oc} составило 0.966 V.

Аморфный карбид кремния также является перспективным материалом для применения в солнечной энергетике. Например, легированный бором неоднородный оконный слой *p*-типа *a*-SiC/nc-Si [23] имеет большие потенциальные возможности для улучшения эффективности солнечных элементов за счет широкой оптической запрещенной зоны, высокой подвижности носителей и эффективности примеси. Методом радиочастотного плазмостимулированного химического осаждения (RF-PECVD) при 150°С был получен тонкий (< 30 nm) высококачественный гибридный оконный слой *p*-типа *a*-SiC/nc-Si с контролируемыми наноразмерными кристаллами Si, встроенными в аморфную матрицу SiC, с большой шириной оптической запрещенной зоны ($\sim 2.2 \,\mathrm{eV}$). Для солнечного элемента n-i-p-типа *a*-Si получены высокое напряжение холостого хода (> 0.96 V) и высокие значения квантовой эффективности в коротковолновой области. В [24] система эмиттера состоит из *n*-легированного слоя *a*-SiC: H (*n*) с чистым гидрогенизированным внутренним слоем a-Si:H(i) или без него. Достигнутая эффективность солнечных батарей составила 18.5%.

Антиотражающие покрытия SiC могут повысить КПД солнечных батарей в 1.3 раза [25]. Осаждение просветляющих покрытий алмазоподобного углерода также позволило улучшить эффективность элементов в 1.35–1.5 раза [25] в связи с уменьшением потерь на отражение и пассивацией активных центров рекомбинации.

Таким образом, нанокристаллы SiC и Si могут быть использованы для увеличения эффективности солнечных элементов. Закономерен вопрос: какой профиль распределения внедренных атомов углерода в кремнии или SiO₂ является наиболее предпочтительным при использовании ионной имплантации? Это может быть неоднородный, или гауссовый, профиль распределения внедренных атомов по глубине [6,8,9,26-38] и тогда можно ожидать изменения по глубине не только концентрации атомов С и Si, но и, как следствие, концентрации нанокристаллов и нанокластеров Si, SiC и C после отжига. Это может дать определенные преимущества при получении белой люминесценции слоев SiO2 либо гибридных оконных слоев солнечных элементов, так как ионно-имплантированный слой состоит из нанослоев, содержащих широкий спектр нанокристаллов и нанокластеров, отличающихся друг от друга как по типу, так и по размерам наночастиц. С другой стороны, может быть сконструирован слой с однородным [6,29,32,39-43], или прямоугольным, профилем распределения атомов С и Si по глубине, который получают многократной имплантацией в подложку ионов различных энергий. Подобный слой может содержать заданные типы наночастиц с определенными размерами и концентрацией и является удобным объектом для исследования и применения. При этом особое значение имеет доля нанокристаллов карбида кремния в общем объеме SiC. Прогнозирование состава имплантированного слоя возможно на основе достоверных знаний о влиянии концентрации компонентов и температуры отжига на формирование нанокристаллов и нанокластеров С, Si и SiC.

В настоящей работе посредством имплантации ионов $^{12}C^+$ в Si осуществлен синтез однородных и неоднородных пленок SiC, различающихся формой профиля (прямоугольный, гауссов) распределения атомов углерода и глубиной залегания примеси. Исследуется влияние профиля распределения атомов C в Si на фазовый состав и степень кристалличности слоя и на формирование нанокристаллов SiC в процессе отжига. Выполнена количественная оценка соотношения объемов кристаллической и аморфной фаз карбида кремния в имплантированных слоях.

2. Эксперимент

Имплантация ионов углерода проведена в монокристаллические пластины Si ориентации (100) размером $7 \times 7 \times 0.3$ mm с удельным сопротивлением $4-5\,\Omega\cdot$ cm [10,11]. Для предотвращения разогрева образца выше температуры 25° C плотность ионного тока ускорителя не превышала $3\,\mu$ A/cm². Осуществлен синтез неоднородных пленок SiC с гауссовым профилем распределения атомов C (энергия в процессе имплантации 10 и 40 keV) в Si и однородных пленок SiC_{0.7} (прямоугольный профиль) на кремнии путем многократной имплантации ионов 12 C⁺ различных энергий (40, 20, 10, 5, 3 keV) в кремний.

Состав и структура пленок были исследованы методом ИК-спектроскопии с использованием ИК-спектро-

Рис. 1. Расчетные имплантационные профили распределения ¹²С в Si, построенные в соответствии с [46] с использованием величин E, D, $R_p(E)$ и $\Delta R_p(E)$ согласно табл. 1. a — гауссовы профили N_C (10 keV) и N_C (40 keV), b — прямоугольный профиль N_C (40 + 20 + 10 + 5 + 3 keV), N_C (20°C), N_C (1250°C) и N_0 (1250°C) — Оже-профили атомов углерода и кислорода в слое после имплантации (20°C) и отжига при T = 1250°C в течение 30 min.

метра Nicolet iS-50 (Thermo Scientific, США). Программное обеспечение к Nicolet iS-50 позволяет использовать современные программы по разложению ИК-спектров на компоненты.

Микроструктура поверхности имплантированного слоя исследовалась на атомно-силовом микроскопе JSPM 5200 (JEOL, Japan) с использованием полуконтактного метода. Разрешение микроскопа по плоскости составляет 0.14 nm, вертикальное разрешение — 0.01 nm.

Исследования методом просвечивающей электронной микроскопии (ПЭМ) проводились на микроскопе JEM-100CX (JEOI, Япония) при ускоряющем напряжении электронной пушки 100 kV. Для морфологических исследований применялся в основном метод светлого поля, когда структура образцов наблюдается в проходящем электронном пучке.

Определены плотность и толщина пленок методом рентгеновской рефлектометрии путем регистрации угловой зависимости коэффициента отражения с использованием двух спектральных линий CuK_{α} (0.154 nm) и CuK_{α} (0.139 nm) на установке Complexray C6. Селекция линий CuK_{α} и CuK_{β} из полихроматического спектра осуществлялась с помощью полупрозрачного и объемного монохроматоров из пиролитического графита с углом мозаичности 0.5° [44,45]. Компьютерное моделирование данных рефлектометрии позволяет определить состав, толщину и плотность пленок.

Отжиг образцов выполнен при температурах 1200, 1250, 1300 или 1400°C в течение 30 min в вакууме или в атмосфере Ar с незначительным содержанием O_2 .

3. Результаты

3.1. Синтез неоднородных пленок карбида кремния SiC в кремнии методом ионной имплантации и исследование их характеристик. Проведены расчет и построение профилей распределения атомов углерода по глубине подложки Si для имплантаций с параметрами E = 40 keV, $D = 3.56 \cdot 10^{17}$ cm⁻² и E = 10 keV, $D = 1.56 \cdot 10^{17}$ cm⁻². На рис. 1 представлены расчетные профили $N_{\rm C}$ распределения атомов углерода по глубине кремния для указанных значений энергий и доз ионов (табл. 1), которые являются распределениями Гаусса, построенными в соответствии с выражением

$$N(x) = \frac{D}{\Delta R_p (2\pi)^{1/2}} \exp\left[-\frac{(x - R_p)^2}{2\Delta R_p^2}\right],\qquad(1)$$

где *х* — расстояние от поверхности.

Доля атомов углерода N_C/N_{Si} в пике распределений составляет величину, несколько меньшую значения, соответствующего стехиометрическому составу SiC (табл. 1), что дает возможность избежать чрезмерной графитизации слоя.

Таблица	 Значения 	энергии Е,	дозы D, про	ективного	пробега	$R_p(E)$ и	среднего	квадратичного	отклонения	$\Delta R_p(E)$ [46]
для ионов	¹² С ⁺ в Si, и	спользованные	е при констр	уировании	гауссова	$(SiC_{0.84}$	и SiC _{0.95} в	в пике распреде	ления) и пря	амоугольного
$(SiC_{0.7}$ в ин	итервале ~ 8	-100 nm) pace	четных проф	илей распр	еделения					

E, keV	$D(\mathrm{SiC}_{0.84}),$	$D(\mathrm{SiC}_{0.95}),$	$D(\mathrm{SiC}_{0.7}),$	Профиль $N_{\rm C}$ (Gibbons) [46]		
	$10^{17} {\rm cm}^{-2}$	$10^{17} {\rm cm}^{-2}$	$10^{17} {\rm cm}^{-2}$	$R_p(E)$, nm	$\Delta R_p(E), nm$	
40 20 10 5 3	3.56	1.56	2.80 0.96 0.495 0.165 0.115	93.0 47.0 24.0 12.3 7.5	34.0 21.0 13.0 7.0 4.3	

Распределение N_C/N_{Si} построено исходя из допущения, что концентрация атомов Si после имплантации существенным образом не меняется по глубине и приблизительно равна концентрации в монокристалле кремния, т.е. $N_{\rm Si} = 5 \cdot 10^{22} \, {\rm cm}^{-3}$. Действительно, концентрация атомов кремния в монокристалле карбида кремния не отличается существенно от этой величины и равна $4.83 \cdot 10^{22} \, \text{cm}^{-3}$. Это допущение имеет важное значение при высокодозовой имплантации ионов ¹²C⁺ в Si и основано на том факте, что объем алмазоподобной элементарной ячейки карбида кремния SiC приблизительно в 2 раза меньше объема элементарной ячейки Si и высокодозовая имплантация углерода не сопровождается существенными процессами распухания слоя вследствие увеличения количества атомов. Разумеется, допущение справедливо только при условии $N_{\rm C} < N_{\rm Si}$.

На рис. 2 приведен ИК-спектр поглощения имплантированного ионами углерода (10 keV, $1.56 \cdot 10^{17} \, {\rm cm}^{-2}$) слоя кремния после отжига при температуре 1400°С в течение 30 min. В спектре наблюдается интенсивный пик кристаллической фазы карбида кремния с максимумом при 794.9 cm⁻¹. Выполнено математическое разложение ИК-спектра слоя карбида кремния, который представлен как сумма 14 компонент спектра. Определены положение, площадь и амплитуда каждой компоненты.

Из рис. 2 видно, что имеется компонента с положением максимума при 1107.0 cm⁻¹, отражающая присутствие междоузельного кислорода в исследуемом образце [47]. В [48] было показано, что основная полоса поглощения окисла является главным образом суммой четырех профилей, обусловленных поперечными (ТО) валентными колебаниями мостикового кислорода, входящего в состав таких молекулярных комплексов, как SiOSi₃ (положение максимума 995 cm⁻¹), SiO₂Si₂ (1033 cm^{-1}) , SiO₃Si (1067 cm^{-1}) , SiO₄ (1100 cm^{-1}) . Полосы, связанные с продольными валентными колебаниями связи Si-O, также обусловлены движениями атомов мостикового кислорода, входящего в состав комплексов SiOSi₃ (1145 cm^{-1}) и SiO₂Si₂ (1205 cm^{-1}) . На рис. 2 положение максимума при $1107.0 \,\mathrm{cm}^{-1}$ свидетельствует о превалировании в слое окисла комплексов SiO₄ (1100 cm⁻¹). Также предполагается присутствие молекулярных комплексов SiO_3Si (1067 cm⁻¹) и SiO_2Si_2 (1033 cm⁻¹), обусловивших появление компонент с близкими по положению максимумами при 1050.5 и 1016.8 cm⁻¹ (табл. 2).

Кроме того, в области между 590 и $630 \,\mathrm{cm}^{-1}$ наблюдается пик с площадью S = 5.39 arb.units и максимумом при значении волнового числа $\sim 612.3 \, {\rm cm}^{-1}$, близким к характерной для углерода в положении замещения величине 607 сm⁻¹ [47]. Величина площади этого пика имеет мало различающиеся значения (5-7 a.u.) в измеренных нами пластинах монокристаллического кремния c-Si с удельным сопротивлением $\sim 2000 \,\Omega \cdot \mathrm{cm}$ и отнесена к углероду в составе подложечного материала. Однако в работе [36] локальная мода углерода в положении замещения наблюдалась при 607 ст⁻¹ для образцов Si после имплантации ионов углерода с энергией 55 keV и дозой $6 \cdot 10^{17} \, \mathrm{cm}^{-2}$ и отжига при невысоких температурах $(400^{\circ}C)$; от 40 до 60% имплантированных атомов углерода занимали положение замещения. Поэтому не исключено влияние имплантированного в приповерхностный слой углерода на величину пика SiC, хотя площадь этой компоненты нами исключена из площади SiC-пика (табл. 2).

Среди остальных компонент следует отметить компоненты при 736.2 и 670.6 сm⁻¹, характерные для слабых удлиненных Si–C-связей аморфного карбида кремния, компоненту при 794.9 сm⁻¹, характерную для тетраэдрических Si–C-связей кристаллического SiC, а также компоненты при 833.3 и 889.6 сm⁻¹, характерные для укороченных Si–C-связей, превалирующих на поверхности нанокристаллов и в кластерах. Из отношения площади компоненты при 794.9 сm⁻¹ к общей площади SiC-пика 39.78 arb.units можно оценить, что около 42% общего количества SiC находится в составе кристаллического карбида кремния.

Проведено большое число исследований структуры пленок карбида кремния, синтезированных методом ионной имплантации. Тем не менее в литературе приведено недостаточно данных по количественной оценке соотношения объемов кристаллической и аморфной фаз карбида кремния. В частности, авторы [31] показали, что после имплантации ионов углерода (E = 100 keV) в приповерхностные слои *n*-Si ориентации (100) и отжига при температуре 900°С около 40–50% импланти-

Рис. 2. Математическое разложение ИК-спектра поглощения имплантированного ионами углерода $(10 \text{ keV}, 1.56 \cdot 10^{17} \text{ cm}^{-2})$ слоя кремния после имплантации и отжига при температуре 1400° С в течение 30 min (в поле рисунка в точках максимума пиков приведены значения амплитуды, площади и положения пиков).

рованных атомов углерода включены в состав β -SiC и при увеличении температуры до 1200°С эта величина выросла до 70–80%. В работе [49] показано, что все имплантированные атомы углерода включены в состав β -SiC в процессе отжига при температурах 900–1200°С, если концентрация атомов углерода не превышает стехиометрический состав β -SiC в максимуме распределения. В случае более высоких доз внедрения избыточные атомы углерода формируют кластеры и не встраиваются в β -SiC даже после отжига при 1200°С.

Таким образом, можно заключить, что пониженный процент (42%) включения углерода в кристаллическую фазу SiC может свидетельствовать о высокой концентрации углерода и прочных углеродных кластеров в слое. Это вполне вероятно, так как в случае высокодозовой имплантации ионов углерода с невысокой энергией 10 keV можно ожидать в приповерхностном слое (рис. 1) увеличения концентрации углерода до величин выше стехиометрического состава вследствие эффекта распыления поверхности и изменения сос-

	$E = 10 \mathrm{keV}$				$E = 40 \mathrm{keV}$				
Вид связи	w, cm^{-1}	<i>S</i> , arb.units	<i>S</i> ,%	$\sum_{arb.units} S$,	w, cm^{-1}	<i>S</i> , arb.units	<i>S</i> ,%	$\sum_{arb.units} S$,	
Si–O (TO)	1107 1050.5	5.15 1.25	80.5 19.5	6.4 (100%)	1105.9 1020.6	3.66 0.76	82.8 17.2	4.42 (100%)	
Si–O (TO)	889.6 833.3 794.9 836.5 670.6	4.97 6.47 16.8 8.12 3.42	12.5 16.3 42.2 20.4 8.6	39.78 (100%)	887.1 853.3 793.1 742.6 671.6	1.68 0.86 27.88 7.18 1.47	4.3 2.2 71.4 18.4 3.8	39.07 (100%)	
	612.3	5.39	100.0	5.39	612.2	7.29	100.0	7.29	

Таблица 2. Площади S и сумма площадей $\sum S$ пяти компонент SiC-пика и двух компонент SiO-пика при волновых числах w

Рис. 3. Математическое разложение ИК-спектра поглощения слоя кремния после имплантации ионов углерода (40 keV, $3.584 \cdot 10^{17} \text{ cm}^{-2}$) и отжига при температуре 1300° С в течение 30 min (надписи в поле рисунка имеют тот же смысл, что на рис. 2).

тава слоя. Действительно, доли слабых удлиненных Si—C-связей аморфной фазы (компоненты при 736.2 и 670.6 сm⁻¹), сильных укороченных Si—C-связей на поверхности мелких нанокристаллов (компоненты при 833.3 и 889.6 сm⁻¹), тетраэдрических Si—C-связей кристаллической фазы (степень кристалличности) после высокотемпературного отжига при 1400°C составляют 11.5/11.4/16.8 или 29/29/42%, т. е. значительная часть аморфной фазы не вошла в состав нанокристаллов SiC и высока доля мелких нанокристаллов SiC с укороченными Si—C-связями на поверхности.

Например, авторы [42] формировали сплавы Si_{1-x}C_x в кремнии многократной имплантацией ионов C⁺ с дозами в интервале $(0.5-3) \cdot 10^{17}$ сm⁻² и энергиями в интервале 10-30 keV. Увеличение концентрации углерода (x > 0.55) приводит к появлению включений углерода (с характерным размером 2.5 nm). Авторы [6] наблюдали в спектрах комбинационного рассеяния двойную полосу (1380 и 1590 сm⁻¹) графитизированного аморфного углерода даже после имплантации ионов C в Si с энергией 80 keV и дозой $2.7 \cdot 10^{17}$ сm⁻², при которой величина концентрации углерода в максимуме распределения значительно ниже стехиометрического состава.

На рис. 3 приведен ИК-спектр поглощения исследуемого слоя после имплантации (40 keV, $3.534 \cdot 10^{17} \text{ cm}^{-2}$) и отжига при температуре 1300°C в течение 30 min. Видно, что имеется компонента с максимумом пика при 1105.9 cm^{-1} , отражающая присутствие междоузельного кислорода [47]. Также наблюдается компонента, характерная для углерода в положении замещения с максимумом при 612.2 сm⁻¹, который по положению практически совпадает с аналогичным пиком для слоя, полученного имплантацией ионов с энергией 10 keV, но превышает его по площади (S = 7.3 и 5.4 arb.units), что может быть обусловлено большей шириной переходного слоя SiC–Si за счет увеличения значений R_P и ΔR_p (табл. 1), в частности, в той части вблизи подложки, которую можно отнести к слабодефектной.

Из отношения площади компоненты при 793.1 $\rm cm^{-1}~\kappa$ общей площади SiC-пика 39.07 arb.units можно оценить, что около 71% общего количества SiC находится в составе кристаллического карбида кремния, т.е. степень кристалличности относительно высока. В целом, соотношение количества слабых удлиненных Si-C-связей (компоненты при 742.6 и 671.6 $\rm cm^{-1})$ аморфной фазы, сильных укороченных Si-C-связей (компоненты при 853.3 и 887.1 сm $^{-1}$) на поверхности мелких нанокристаллов, тетраэдрических Si-C-связей кристаллической фазы (степень кристалличности) составляет 8.7/2.5/27.9 или 22/7/71%. Количество аморфной фазы и особенно мелких нанокристаллов оказалось ниже, чем для слоя, имплантированного ионами с энергией 10 keV (29/29%), что обусловлено меньшей концентрацией углерода и соответственно прочных кластеров в слое.

Например, авторы [50] синтезировали захороненные слои SiC имплантацией ионов углерода в под-

Рис. 4. Исследование методом рентгеновской рефлектометрии с использованием спектральных линий CuK_{α} (0.154 nm) и CuK_{β} (0.139 nm) параметров пленки SiC_x , полученной имплантацией ионов C⁺ (40 keV, $3.584 \cdot 10^{17} \text{ cm}^{-2}$) в Si после отжига (1300°C, 30 min) в логарифмическом (*a*) и натуральном (*b*) масштабах.

ложки p-Si (100) с помощью ионного источника MEVVA при энергиях в пределах 30-60 keV и дозах $(0.3-1.6) \cdot 10^{18} \text{ сm}^{-2}$. Спектры ИК-поглощения слоев SiC после отжига при 700-1200°C были разложены на две или три компоненты, одна из которых относилась к аморфному SiC, а две другие — к β -SiC. При фиксированной дозе общее количество SiC оказалось линейно растущим с энергией имплантации, а при фиксированной энергии — растущим как дробная степень дозы, а именно D^{y} с показателем y, равным 0.41. Эти данные могут быть объяснены уменьшением концентрации атомов углерода и углеродных кластеров и, как следствие, увеличением количества Si-C-связей при увеличении энергии и пробега ионов в случае фиксированной дозы, а также увеличением количества атомов углерода и Si-C-связей с ростом дозы при фиксированной энергии.

В нашем случае увеличение энергии и толщины слоя в 4 раза и дозы ионов в 2.3 раза должно привести к существенному росту количества Si-C-связей и соответственно площади SiC-пика. Однако этого не происходит, и площадь SiC-пика после отжига оказалась почти одинаковой для имплантации ионами углерода с энергиями 10 и 40 keV: 39.78 и 39.07 arb.units (табл. 2). Это может быть обусловлено различием на 100°C температуры отжига вблизи температуры плавления кремния (1400 и 1300°C). Отжиг при 1400°C привел к интенсивному распаду прочных углеродных кластеров и формированию нанокристаллов SiC малого размера в слое, полученном имплантацией ионов с энергией 10 keV, а также к увеличению общей площади Si-C-связей (833.3 и 889.6 сm $^{-1}$) при низкой доле тетраэдрически ориентированных Si-C-связей (42.2%).

Отсюда следует, что полученный в [23] методом RF-PECVD при 150°C тонкий (< 30 nm) высококачественный гибридный оконный слой *a*-SiC/nc-SiC с контролируемыми наноразмерными кристаллами кремния, встроенными в аморфную матрицу карбида кремния, в принципе может быть получен имплантацией ионов углерода с энергиями 10 keV в разогретую подложку кремния.

Полученные данные показывают, что анализ отдельных образцов после отжига при сравнимых температурах дает достаточно много информации о структурном состоянии и химическом составе слоя.

Параметры пленок были определены методом рентгеновской рефлектометрии с использованием двух спектральных линий CuK_{α} (0.154 nm) и CuK_{β} (0.139 nm). На рис. 4 приведены результаты рефлектометрии параметров пленки SiC_x, полученной имплантацией ионов углерода (40 keV, $3.584 \cdot 10^{17} \, \mathrm{cm}^{-2}$) в кремний после отжига (1300°С, 30 min) в логарифмическом (a) и натуральном (линейном) (b) масштабах. Не наблюдается осцилляций интенсивности, по расстоянию между пиками которых можно было бы определить толщину пленки. Это обусловлено гауссовым распределением атомов углерода и отсутствием четких границ раздела между слоями с различной плотностью. Однако изменение плотности по глубине имплантированного слоя может вызвать флуктуации интенсивности в области главного максимума, по положению которого определяют величины критического угла отражения и плотности. Это может быть вызвано тем, что слой с гауссовым

Таблица 3. Определение плотности пленки SiO_x, полученной имплантацией ионов углерода (40 keV, $3.584 \cdot 10^{17} \text{ cm}^{-2}$) в кремнии после отжига (1300°С, 30 min), методом рентгеновской рефлектометрии и с помощью программы Henke [51]

Слой	I _{max}	$I_{\rm max}/2$	$2\theta_c$, deg	θ_c , deg	θ_c , mrad	$\rho, {\rm g/cm^{-1}}$
SiC _{0.25}	78 393	39 200	0.466	0.233	4.067	2.55
SiC _{0.65} SiC _{1.36}	78 393	39 200 39 200	0.498	0.249	4.540	2.9 3.29

распределением углерода (рис. 1) после высокодозовой имплантации и отжига обычно состоит из следующих слоев: слой нанокристаллов кремния с включениями нанокристаллов карбида кремния nc-Si+nc-SiC; затем слой nc-SiC с включениями nc-Si; слой nc-SiC+nc-Si+ncl-C; слой nc-SiC+nc-Si; слой nc-Si+nc-SiC; подложка *c*-Si. После отжига также возможно присутствие слоя SiO₂ у поверхности. Например, авторы [6] после имплантации в Si ионов C⁺ с энергией 80 keV и дозой 2.7 \cdot 10¹⁷ cm⁻² методом ПЭМ показали наличие слоистой структуры образца после имплантации: дефектный Si (*d*-Si), аморфный SiC (*a*-SiC), 3*C*-SiC, *a*-SiC, *d*-Si и кристаллический Si (*c*-Si). Отожженный образец представляет собой аналогичную слоистую структуру, но аморфных слоев (Si, C) не найдено.

Действительно, как видно из рис. 4, *a*, *b*, для тонкого слоя SiC_x, полученного более высокодозовой имплантацией ионов углерода (40 keV, $3.584 \cdot 10^{17} \text{ cm}^{-2}$) в кремний, наблюдаются флуктуации интенсивности в области главного максимума. Экстраполяцией кривых интенсивности до величины $I/2 = 39\,200$ импульсов с помощью программы Henke [51] были определены величины плотности слоев 2.55, 2.90, 3.29 g/cm³ (табл. 3). Это соответствует приблизительно плотностям слоя SiC_{0.25} у поверхности, содержащего преимущественно нанокристаллы кремния nc-Si с включениями nc-SiC, слоя SiC_{0.65}, содержащего nc-SiC с включениями нанокластеров углерода ncl-C.

Состав пленки SiC_x с плотностью $\rho_x = 2.55 \, \text{g/cm}^3$ был определен по формуле

$$\rho_x = \rho_1 + (x - x_1)[(\rho_1 - \rho_2)/(x_1 - x_2)])$$

или

$$\rho_{y} = \rho_{1} + (y - y_{1})[(\rho_{1} - \rho_{2})/(y_{1} - y_{2})]), \qquad (2)$$

полученной из условий

$$\begin{pmatrix} \text{Si} = \text{SiC}_0, & x_1 = 0, & \rho_1 = 2.33 \text{ g/cm}^3 \\ \text{SiC}_x, & 0 < x < 1, & 2.33 < \rho_x < 3.21 \text{ g/cm}^3 \\ \text{SiC} = \text{SiC}_1, & x_2 = 1, & \rho_2 = 3.21 \text{ g/cm}^3 \end{pmatrix}$$

либо

$$\begin{pmatrix} \mathrm{SiC} = \mathrm{Si}_1 C, & y_1 = 0, & \rho_1 = 3.21 \, \mathrm{g/cm}^3 \\ \mathrm{Si}_y C, & 0 < y < 1, & 3.21 < \rho_y < 3.51 \, \mathrm{g/cm}^3 \\ \mathrm{C} = \mathrm{Si}_0 \mathrm{C}, & y_2 = 1, & \rho_2 = 3.51 \, \mathrm{g/cm}^3 \end{pmatrix}.$$

Здесь $x = N_{\rm C}/N_{\rm Si}$, $y = N_{\rm Si}/N_{\rm C}$, SiC₁ — карбид кремния стехиометрического состава, SiC₀ = Si, тогда для значений x = 0.25, $x_1 = 0$, $x_2 = 1$, $\rho_1 = 2.33$ g/cm³, $\rho_2 = 3.21$ g/cm³ из равенства (2) можно получить $\rho_x = \rho_{0.25} = 2.55$ g/cm³. Либо для y = 0.7353, $y_1 = 1$, $y_2 = 0$, $\rho_1 = 3.21$ g/cm³, $\rho_2 = 3.51$ g/cm³ (алмаз) можно получить $\rho_y = \rho_{0.7353} = 3.29$ g/cm³. При этом Si_yC = SiC_{1/y} или Si_{0.7353}C = SiC_{1.36}.

3.2. Синтез однородных пленок карбида кремния (SiC) в кремнии методом ионной имплантации и исследование их характеристик.

Для получения однородных слоев SiC с прямоугольным профилем распределения атомов C в Si (рис. 1, *b*) имплантация ионов углерода различных энергий и доз в кремний была осуществлена последовательно в порядке, указанной в табл. 1. Отжиг образцов был выполнен при температуре 1250° C в течение 30 min в атмосфере Ar с незначительным содержанием O₂. Как было показано нами ранее [10], получен однородный слой SiC_{0.7} с повышенным содержанием углерода у поверхности после имплантации и слоем SiO₂ после отжига.

На рис. 5 и 6 приведены ИК-спектры поглощения слоя SiC_{0.7} после ионной имплантации и отжига при температуре 1250°С в течение 30 min. соответственно. Осуществлено математическое разложение ИК-спектра поглощения, который представлен как сумма 12 гауссовых компонент спектра. После имплантации предполагается присутствие молекулярных комплексов SiO₂Si₂ (характерное положение максимума 1033 cm^{-1}) [48], обусловивших появление компоненты с близким по положению максимумом при 1021.1 ст⁻¹ (табл. 4). Также имеется компонента с максимумом пика при 1105.9 cm⁻¹, отражающая присутствие междоузельного кислорода в исследуемом образце [47] и свидетельствующая о превалировании в слое окисла комплексов SiO_4 (1100 cm⁻¹). После отжига эта компонента распалась на две составляющие с максимумами при 1092.6 и 1058 ст⁻¹, обусловленные ТО-валентными колебаниями мостикового кислорода в составе молекулярных комплексов SiO₄ (положение максимума $1100 \,\mathrm{cm}^{-1}$) и SiO₃Si (положение максимума 1067 cm⁻¹) [48]. Суммарная площадь этих пиков (S = 20.09 arb.units) более чем в 3 раза превосходит площадь пиков окисла кремния до отжига (S = 6.04 arb.units), что указывает на процессы распада карбида кремния и окисления кремния во время отжига в результате взаимодействия с остаточными атомами кислорода.

После отжига немного уменьшается площадь компоненты, характерной для углерода в положении

Рис. 5. Математическое разложение ИК-спектра поглощения слоя SiC_{0.7} (табл. 4), синтезированного методом ионной имплантации (надписи в поле рисунка имеют тот же смысл, что на рис. 2).

Рис. 6. Математическое разложение ИК-спектра поглощения слоя $SiC_{0.7}$ после имплантации и отжига при температуре $1250^{\circ}C$ в течение 30 min (надписи в поле рисунка имеют тот же смысл, что на рис. 2).

		T = 2	20°C		$T = 1250^{\circ}\mathrm{C}$			
Вид связи	w, cm^{-1}	<i>S</i> , arb.units	<i>S</i> , %	$\sum_{arb.units} S$,	w, cm^{-1}	S, arb.units	<i>S</i> ,%	$\sum_{\text{arb.units}} S,$
Si–O (TO)	1105.9 1021.1	3.61 2.43	59.8 40.2	6.04 (100%)	1092.6 1058.0	9.97 10.12	49.6 50.4	20.09 (100%)
Si–O (TO)	883.5 817.7 780.1 739.0 674.1	6.39 5.93 5.24 13.16 9.57	15.9 14.7 13.0 32.7 23.8	40.29 (100%)	884.2 826.5 795.6 738.5 678.7	7.09 8.15 23.95 8.77 1.73	14.3 16.4 48.2 17.6 3.5	49.69 (100%)
	612.6	6.96	100.0	6.96	612.3	5.73	100.0	5.73

Таблица 4. Площади S пяти компонент SiC-пика и двух компонент SiO-пика при волновых числах w и их сумма $\sum S$

замещения (S = 6.96 и 5.73 arb.units) с максимумом при 612.6 сm⁻¹, близким к характерному значению 607 сm⁻¹ [47] по-видимому в результате встраивания атомов углерода в структуру нанокристаллов карбида кремния.

Сразу после имплантации отсутствие компоненты при 794 ст⁻¹ и положение результирующего максимума при 739 ст⁻¹ указывают на некристаллическую природу имплантированного слоя. После отжига при температуре 1250°С общее количество Si-C-связей (табл. 4) увеличилось на 23% вследствие распада оптически неактивных прочных кластеров и их трансформации в оптически активные Si-C-связи. Максимум SiC-пика сместился к значению 795.6 ст⁻¹, что свидетельствует о превалировании Si-C-связей тетраэдрической ориентации в слое после отжига.

Действительно, авторы [6] (С. 73) после имплантации ионов C в Si с энергией $80 \,\text{keV}$ и дозой $2.7 \cdot 10^{17} \,\text{cm}^{-2}$ наблюдали в ИК-спектре широкую полосу гауссовой формы с центром при 700 ст⁻¹, обусловленную наличием аморфных включений SiC. Лоренцев вклад кристаллического β -SiC при 796.2 сm⁻¹ появляется только после отжига. Авторы [8] после имплантации ¹²С⁺ $(E = 200 \, {\rm keV}, D \approx 10^{17} \, {\rm cm}^{-2})$ наблюдали в ИК-спектре широкую полосу поглощения SiC с максимумом при $700-725\,\mathrm{cm}^{-1}$, положение которого после отжига при температуре 825°С переместилось к значению при 800 cm⁻¹, соответствующему поперечным оптическим фононам SiC. Уменьшение полуширины этого пика в области $850 \pm 25^{\circ}$ С свидетельствовало о формировании кристаллического SiC. В работе [26] были получены пленки кристаллического SiC имплантацией в пластины Si ионов C⁺ ($E = 40 \,\text{keV}, D > 10^{17} \,\text{cm}^{-2}$), при этом в интервале 600-700°С наблюдалось изменение положения максимума пика поглощения с 715 до 815 cm⁻¹. Авторы [52] после имплантации в *p*-Si ионов C⁺ с энергиями 40 и 65 keV и отжига при 600-1200°C разложили спектры инфракрасной Фурье-спектроскопии на три гауссовы компоненты, одна из которых с максимумом при 700 сm⁻¹ была отнесена к аморфному SiC, а две другие компоненты с бо́льшим (бо́льшие зерна) и меньшим (меньшие зерна) значениями FWHM и с максимумом при 795 ± 1 сm⁻¹, были отнесены к β -SiC. Полная площадь спектров (или количество сформированного SiC), после отжига увеличивалась, т.е. в образцах до отжига не все атомы С объединены с атомами Si.

Соотношение количества слабых удлиненных Si-С-связей (компоненты при 739.0 и 674.1 сm⁻¹) аморфной фазы, сильных укороченных Si-C-связей (компоненты при 817.7 и $883.5 \,\mathrm{cm}^{-1}$) на поверхности мелких нанокристаллов, тетраэдрических Si-C-связей (степень кристалличности) кристаллической фазы составляет 22.7/12.3/5.24 (или 56/31/13%) после имплантации и 10.5/15.2/24.0 (или 21/31/48%) после отжига. Степень кристалличности слоя, определяемая как доля связей, близких к тетраэдрической ориентации, составляет 13% до отжига и 48% после отжига (табл 4). Смещению максимума способствовало уменьшение аморфной части слоя с 56 до 21%, увеличение количества нанокристаллов с 13 до 48% при сохранении неизменным количества укороченных связей на поверхности мелких нанокристаллов (31%).

Невысокое значение доли Si-C-связей тетраэдрической ориентации (48%) в слое SiC_{0.7}, составившее промежуточное значение между степенью кристалличности неоднородных слоев, полученных имплантацией в кремний ионов углерода с энергиями 10 keV (42%) и 40 keV (71%), обусловлено повышенной концентрацией прочных углеродных кластеров ввиду того, что среднее значение концентрации углерода $N_C/N_{\rm Si} = 0.7$ заметно выше среднего значения концентрации углерода в слое, полученном имплантацией ионов углерода с энергией 40 keV (рис. 1).

Высокое содержание аморфной составляющей (21%) после отжига при температуре 1250°С для слоев с концентрацией углерода ниже стехиометрического состава SiC может выглядеть спорным. Например, в [49] показано, что все имплантированные атомы углероa

Высокодозовая имплантация ионов углерода в кремний приводит к изменению состава и увеличению плотности приповерхностного слоя. Увеличение плотности слоя в процессе имплантации приводит к уменьшению проективного пробега R_p и среднего квадратичного отклонения ΔR_p . Уменьшение ΔR_p приводит к тому, что граница пленка SiC-подложка Si становится более резкой, и это позволяет предположить, что можно использовать метод рентгеновской рефлектометрии для измерения толщины и плотности пленки SiC_{0.7}. Действительно, исследования методом ПЭМ двух образцов (рис. 7, а) показывают, что прослеживается резкий переход пленка SiC_{0.7}-подлолжка Si в виде четкой границы между светлыми (слой SiC_{0.7}) и темными (подложка Si) участками.

Наложение точечной и кольцевой электронограмм (рис. 7, a) наблюдается на картинах с участков 3, на которых происходило совмещение исследуемых объектов с моно- и поликристаллическими структурами (Si + SiC_{0.7}). Исследуемую область можно разделить на три участка (рис. 7, b): участок 1 слой SiC_{0.7}; участок 2 — слой SiC_{0.7}+переходный слой Si-SiC_{0.7}; участок 3 — слой SiC_{0.7}+переходный

Рис. 8. Топография поверхности слоя SiC_{0.7} после многократной имплантации в кремний ионов углерода с энергиями 40, 20, 10, 5 и 3 keV (a) и отжига в течение 30 min при температуре 800 (*b*) и 1250°С (*c*).

Рис. 7. Электронограммы на просвет и микроструктура (×50000) от многократно имплантированных ¹²C⁺ слоев кремния на участках слой SiC_{0.7}+переходный слой+*c*-Si после отжига при температуре 1200°С в течение 30 min. а) кольца — SiC, точечные рефлексы — Si, светлые участки — SiC_{0.7}, темные участки — c-Si. b) схематический разрез исследуемого образца: 1 — участки SiC_{0.7}, 2 — участки переходного слоя Si-SiC_{0.7}, 3 — участки двойной дифракции, 4 — сквозное отверстие, 5 — просвечиваемый участок.

да включены в состав *β*-SiC в процессе отжига при температурах 900-1200°С, если концентрация атомов углерода не превышает стехиометрический состав β-SiC в максимуме распределения. В случае более высоких доз внедрения избыточные атомы углерода формируют кластеры и не встраиваются в β-SiC даже после отжига при 1200°С. Авторы [42] формировали сплавы Si_{1-x}C_x в кремнии многократной имплантацией ионов С⁺ с дозами в интервале $(0.5-3) \cdot 10^{17} \,\mathrm{cm}^{-2}$ и энергиями в интервале 10-30 keV. После отжига при 1000°С наблюдались сдвиг пика ИК-сигнала к 795 cm⁻¹ и его сужение, указывающие на формирование кристаллической фазы SiC. Методами ПЭМ и рентгеновской дифракции показано формирование кристаллитов *β*-SiC с размерами 2241

Рис. 9. Исследование методом рентгеновской рефлектометрии с использованием двух спектральных линий CuK_{α} (0.154 nm) и CuK_{β} (0.139 nm) пленок $SiC_{0.7}$ на кремнии после отжига при температуре 1250°C в логарифмическом (*a*) и натуральном (*b*) масштабах.

слой Si-SiC_{0.7}+слой *c*-Si. В переходном слое с пониженной концентрацией углерода атомы избыточного кремния между крупными зернами SiC в процессе высокотемпературной рекристаллизации объединяются с подложкой, образуя пилообразную SiC-Si-структуру (рис. 7, *a*). Анализ кристаллографической структуры образцов по кольцевым электронограммам показал, что экспериментально измеренные диаметры колец на электронограмме хорошо совпадают с расчетными значениями диаметров колец для ГЦК-решетки β -SiC, образованных отражением от плоскостей с индексами (111), (220), (311), (222), (331), (422).

Исследования методом атомно-силовой микроскопии показывают (рис. 8), что поверхность слоя после имплантации и отжига при температурах 800 и 1250°C в течение 30 min является ровной с колебаниями в пределах 9–14 nm. Формирование зерен не приводит к чрезмерной деформации поверхности. Это обстоятельство также может способствовать получению осцилляций интенсивности при измерении параметров слоев методом рентгеновской рефлектометрии.

Действительно, были обнаружены осцилляции интенсивности, отнесенные к интерференции рентгеновских отражений в слоях SiC_{0.7} и SiO₂ (рис. 9, *a*). Первый максимум отражения с интенсивностью $I_1 = 93207$ импульсов наблюдается при $2\theta = 0.418^\circ$. Угол полного внешнего отражения был оценочно определен как угол, где интенсивность отражения приблизительно равна половине максимума $I = I_1/2 = 46\,603$ импульса, т.е. $2\theta_c = 0.449^\circ$ (рис. 9, *b*), или $\theta_c = 0.2245^\circ = 3.918$ mrad. С помощью программы Henke [51] определено, что это значение θ_c соответствует плотности пленки 2.37 g/cm³ и близко к плотности кристобалита (SiO₂) 2.32 g/cm³. Далее с ростом угла падения интенсивность отражения снова увеличивается до I₂ = 76 831 импульса и указывает на наличие более плотной структуры. Дальнейшее падение интенсивности до значения $I_2/2 = 38415$ импульсов происходит при $2\theta_c = 0.486^\circ$ (рис. 9, *b*), или $\theta_c = 0.243^\circ = 4.241 \,\mathrm{mrad},$ что соответствует плотности 2.77 g/cm³ и близко к плотности кварца (2.65 g/cm³) либо SiC_{0.5} (2.77 g/cm³). Далее наблюдаются повторный рост интенсивности с 17298 до I₃ = 34416 импульсов (рис. 9, b) и затем непрерывный спад до появления осцилляций.

Моделирование с помощью программы Release [55] позволяет получить теоретическую кривую, близкую к экспериментальной (рис. 10), соответствующую основным параметрам системы:

1) слой SiC_{2.0} (толщина d = 2.0 nm, плотность $\rho = 3.26$ g/cm³, шероховатость поверхности $\sigma = 0.44$ nm); 2) слой SiO₂ (d = 5.3 nm, $\rho = 2.88$ g/cm³, $\sigma = 1.1$ nm); 3) слой SiC_{0.8} (d = 1.5 nm, $\rho = 3.03$ g/cm³, $\sigma = 0$ nm); 4) слой SiC_{0.6} (d = 43.7 nm, $\rho = 2.85$ g/cm³, $\sigma = 0$ nm); 5) подложка Si ($\rho = 2.33$ g/cm³, $\sigma = 1.8$ nm).

Рис. 10. Моделирование с помощью программы Release [18] (*I*) данных рентгеновской рефлектометрии (*2*) пленок SiC_{0.7} после отжига при температуре 1250°C.

Общая толщина слоя оказалась равной 52.5 nm, что меньше ожидаемой. Это может быть обусловлено эффектом распыления при высокодозовой имплантации С в Si.

4. Заключение

Проведены исследования структуры и состава полученных методом ионной имплантации приповерхностных слоев кремния с гауссовым профилем распределения атомов С в Si (энергия ионов 10 и 40 keV) и с прямоугольным профилем (SiC_{0.7}). Предполагается, что в однородном слое SiC_{0.7} после отжига структурно-фазовый состав не меняется по глубине, в то время как в неоднородных слоях с гауссовым профилем распределения углерода изменяются по глубине не только концентрации атомов С и Si, но и как следствие концентрации нанокристаллов и нанокластеров Si, SiC и C.

Выполнено математическое разложение ИК-спектра поглощения пленки $SiC_{0.7}$. Исходя из пропорциональности между площадью компоненты и количеством соответствующих Si-C-связей определены площади S до и после отжига при температуре 1250°C для 12 компонент спектра, включая компоненты с максимумами при 612 cm⁻¹ — углерод в положении замещения; 739, 674 и 678 cm⁻¹ — слабые удлиненные Si-C-связи аморфного карбида кремния; 780 cm⁻¹ Si-C-связи тетраэдрической ориентации; 795 cm⁻¹ — Si-C-связи тетраэдрической ориентации

11* Физика твердого тела, 2014, том 56, вып. 11

кристаллического SiC; 817, 826 и 884 сm⁻¹ укороченные Si–C-связи. Показано, что сразу после имплантации отсутствие компоненты при 794 сm⁻¹ и положение результирующего максимума при 739 сm⁻¹ указывают на некристаллическую природу полученного слоя. После отжига при температуре 1250°С общее количество оптически активных Si–C-связей увеличилось на 23% вследствие распада оптически неактивных прочных кластеров. До и после отжига соотношение количества слабых удлиненных Si–C-связей аморфной фазы, сильных укороченных Si–C-связей на поверхности мелких нанокристаллов, тетраэдрических Si–C-связей кристаллической фазы (степень кристалличности) составляет 56/31/13 и 21/31/48% соответственно.

Показано наличие резкой границы пленка SiC_{0.7}-подложка Si. Поверхность слоя после имплантации и отжига при температуре 1250°С является ровной с колебаниями в пределах 9-14 nm, и формирование зерен не приводит к чрезмерной деформации поверхности. Обнаруженные методом рентгеновской рефлектометрии осцилляции интенсивности отнесены к интерференции рентгеновских отражений в слоях SiC_{0.7} и SiO₂. Моделированием с помощью программы Release получена теоретическая кривая, близкая к экспериментальной и соответствующая следующей системе: 1) слой $SiC_{2.0}$ (толщиной $d = 2.0 \,\mathrm{nm}$, плотностью $\rho = 3.26 \,\mathrm{g/cm^3}$ и шероховатостью поверхности $\sigma = 0.44$ nm; 2) слой SiO₂ $(d = 5.3 \,\mathrm{nm}, \,
ho = 2.88 \,\mathrm{g/cm^3}, \, \sigma = 1.1 \,\mathrm{nm}; \, 3)$ слой SiC $_{0.8}$ $(d = 1.5 \,\mathrm{nm}, \ \rho = 3.03 \,\mathrm{g/cm^3}, \ \sigma = 0 \,\mathrm{nm}); \ 4)$ слой SiC_{0.6} $(d = 43.7 \,\mathrm{nm}, \rho = 2.85 \,\mathrm{g/cm^3}, \sigma = 0 \,\mathrm{nm}); 5)$ подложка Si $(\rho = 2.33 \,\text{g/cm}^3, \sigma = 1.8 \,\text{nm}).$

Для неоднородных приповерхностных слоев кремния с гауссовым профилем распределения атомов С в Si, синтезированных имплантацией ионов углерода с параметрами E = 40 keV, $D = 3.56 \cdot 10^{17} \text{ cm}^{-2}$ и E = 10 keV, $D = 1.56 \cdot 10^{17} \text{ cm}^{-2}$, с последующим отжигом в течение 30 min при температурах 1300 и 1400°С соответственно, показано, что общее количество оптически активных Si–C-связей оказалось почти одинаковым, несмотря на существенные различия в энергии и дозе ионов, что обусловлено различиями в температуре отжига на 100°С вблизи температуры плавления кремния.

Посредством математического разложения ИК-спектра поглощения в случае имплантации ионов с энергией 10 и 40 keV показано, что соотношение количества слабых удлиненных Si-C-связей аморфной фазы, сильных укороченных Si-C-связей на поверхности мелких нанокристаллов, тетраэдрических Si-C-связей кристаллической фазы (степень кристалличности) после высокотемпературного отжига составляет 11.5/11.4/16.8 и 8.7/2.5/27.9 (или 29/29/42 и 22/7/71%) соответственно.

Показано, что низкая степень кристалличности (42%) слоя, полученного имплантацией кремния ионами углерода с энергией 10 keV, обусловлена эффектами распыления и более высокой концентрацией углерода и прочных углеродных кластеров, распад которых при повышенной температуре 1400°С привел к образованию

нанокристаллов SiC малого размера с высокой долей укороченных Si-C-связей на их поверхности.

После высокотемпературного отжига $(1300^{\circ}C)$ высокая степень кристалличности слоя, полученного при имплантации кремния ионами C⁺ с энергией 40 keV (71%) по сравнению с кристалличностью слоя SiC_{0.7} (48%) или слоя после имплантации ионов C⁺ с энергией 10 keV (42%) обусловлена пониженной средней концентрацией углерода и прочных углеродных кластеров после имплантации.

Данные рентгеновской рефлектометрии о флуктуации интенсивности рентгеновских отражений в области главного максимума объясняются вариацией плотности по глубине слоя с гауссовым распределением атомов углерода (40 keV). С помощью программы Непке идентифицированы слой SiC_{0.25} (нанокристаллы кремния nc-Si с включениями nc-SiC, $\rho = 2.55$ g/cm³); слой SiC_{0.65} (nc-SiC с включениями nc-Si, 2.90 g/cm³); слой SiC_{1.36} (nc-SiC с включениями ncl-C, 3.29 g/cm³).

Список литературы

- F. Liao, S.L. Girshick, W.M. Mook, W.W. Gerberich, M.R. Zachariah. Appl. Phys. Lett. 86, 171913 (2005).
- [2] А.В. Афанасьев, В.А. Ильин, А.В. Корляков, А.О. Лебедев, В.В. Лучинин, Ю.М. Таиров. В сб.: Физика и Технология микро- и наносистем / Под ред. В.В. Лучинина и В.В. Малиновского. Русская коллекция, СПб. (2011). С. 50.
- [3] K. Oguri, T. Sekigawa. US Patent. Publ. N US 2004/0180242 A1 (2004).
- [4] H. Yan, B. Wang, X.M. Song, L.W. Tan, S.J. Zhang, G.H. Chen, S.P.Wong, R.W.M. Kwok, W.M.L. Leo. Diamond Related Mater. 9, 1795 (2000).
- [5] D. Chen, S.P. Wong, Sh. Yang, D. Mo. Thin Solid Films 426, 1 (2003).
- [6] Y. Liangdeng, S. Intarasiri, T. Kamwanna, S. Singkarat. In: Ion beam applications in surface and bulk modification of insulators. IAEA-TECDOC-1607, Vienna, Austria (2008). P. 63.
- [7] J.K.N. Lindner. Appl. Phys. A 77, 27 (2003).
- [8] J.A. Borders, S.T. Picraux, W. Beezhold. Appl. Phys. Lett. 18, *11*, 509 (1971).
- [9] R.M. Bayazitov, I.B. Haibullin, R.I. Batalov, R.M. Nurutdinov, L.Kh. Antonova, V.P. Aksenov, G.N. Mikhailova. Nucl. Instrum. Meth. Phys. Res. B 206, 984 (2003).
- [10] K.Kh. Nussupov, N.B. Beisenkhanov. In: Silicon carbid-materials, processing and applications in electronic devices / Ed. M. Mukherjee. InTech, Croatia (2011). Ch. 4. P. 69.
- [11] К.Х. Нусупов, Н.Б. Бейсенханов, И.В. Валитова, Е.А. Дмитриева, Д. Жумагалиулы, Е.А. Шиленко. ФТТ 48, 7, 1187 (2006).
- [12] J. Zhao, D.S. Mao, Z.X. Lin, B.Y. Jiang, Y.H. Yu, X.H. Liu, H.Z. Wang, G.O. Yang. Appl. Phys. Lett. **73** (13), 1838 (1998).
- [13] Д.И. Телебаум, А.Н. Михайлов, А.И. Белов, В.К. Васильев, А.И. Ковалев, Д.Л. Вайнштейн, Ү. Golan, А. Osherov. Поверхность. Рентгеновские, синхротронные и нейтронные исследования 9, 50 (2009).

- [14] L. Pavesi. Mater. Today 8 (1), 18 (2005).
- [15] A. Perez-Rodriguez, O. Gonzalez-Varona, B. Garrido, P. Pellegrino, J.R. Morante, C. Bonafos, M. Carrada, A. Claverie. J. Appl. Phys. 94, 1, 254 (2003).
- [16] O. Gonzalez-Varona, A. Perez-Rodriguez, B. Garrido, C. Bonafos, M. Lopez, J.R. Morante, J. Montserrat, R. Rodrguez. Nucl. Instrum. Meth. Phys. Res. B 161–163, 904 (2000).
- [17] А.И. Белов, А.Н. Михайлов, Д.Е. Николичев, А.В. Боряков, А.П. Сидорин, А.П. Грачев, А.В. Ершов, Д.И. Телебаум. ФТП 44, 11, 1498 (2010).
- [18] G. Conibeer, M. Green, R. Corkish, Y. Cho, E. Cho, C. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, K. Lin. Thin Solid Films 511–512, 654 (2006).
- [19] Г.П. Яровой, Н.В. Латухина, А.С. Рогожин, А.С. Гуртов, С.В. Ивков, С.И. Миненко. Изв. Самар. науч. центра РАН 14, 1, 521 (2012).
- [20] T. Chen, Y. Huang, A. Dasgupta, M. Luysberg, L. Houben, D. Yang, R. Carius, F. Finger. Solar Energy Mater. Solar Cells 98, 370 (2012).
- [21] T. Chen, Y. Huang, H. Wang, D. Yang, A. Dasgupta, R. Carius, F. Finger. Thin Solid Films 517, 12, 3513 (2009).
- [22] S. Ogawa, M. Okabe, Y. Ikeda, T. Itoh, N. Yoshida, S. Nonomura. Thin Solid Films 516, 5, 740 (2008).
- [23] J. Ma, J. Ni, J. Zhang, Z. Huang, G. Hou, X. Chen, X. Zhang, X. Geng, Y. Zhao. Solar Energy Mater. Solar Cells 114, 9 (2013).
- [24] D. Pysch, M. Bivour, M. Hermle, S.W. Glunz. Thin Solid Films 519, 8, 2550 (2011).
- [25] N.I. Klyui, V.G. Litovchenko, A.G. Rozhin, V.N. Dikusha, M. Kittler, W. Seifert. Solar Energy Mater. Solar Cells 72, *1*-4, 597 (2002).
- [26] Е.К. Баранова, К.Д. Демаков, К.В. Старинин, Л.Н. Стрельцов, И.Б. Хайбуллин. ДАН СССР 200, 869 (1971).
- [27] T. Kimura, Sh. Kagiyama, Sh. Yugo. Thin Solid Films 122, 165 (1984).
- [28] I.P. Akimchenko, K.V. Kisseleva, V.V. Krasnopevtsev, Yu.V. Milyutin, A.G. Touryanski, V.S. Vavilov. Rad. Effects 33, 75 (1977).
- [29] К.Х. Нусупов. Имплантация кремния высокими дозами углерода: структурные особенности и фазовые превращения. Автореф. докт. дис. ФИАН им. П.Н. Лебедева, М. (1996). 43 с.
- [30] И.П. Акимченко, Х.Р. Каздаев, И.А. Каменских, В.В. Краснопевцев. ФТП 13, 2, 375 (1979).
- [31] T. Kimura, Sh. Kagiyama, Sh. Yugo. Thin Solid Films 81, 319 (1981).
- [32] K. Srikanth, M. Chu, S. Ashok, N. Nguyen, K. Vedam. Thin Solid Films 163, 323 (1988).
- [33] Н.Н. Герасименко, О.Н. Кузнецов, Л.В. Лежейко, Е.В. Любопытова, Л.С. Смирнов, Ф.Л. Эдельман. Микроэлектроника 3, 5, 467 (1974).
- [34] I.P. Akimchenko, K.V. Kisseleva, V.V. Krasnopevtsev, A.G. Touryanski, V.S. Vavilov. Rad. Effects 48, 7 (1980).
- [35] Р.М. Баязитов, И.Б. Хайбуллин, Р.И. Баталов, Р.М. Нурутдинов, ЖТФ 73, 6, 82 (2003).
- [36] K.V. Vaidyanathan. J. Appl. Phys. 44, 2, 583 (1973).
- [37] M.J. Koyama. J. Appl. Phys. 51, 6, 3202 (1980).
- [38] M. Reeson, J. Stoemenos, P.L.F. Hemment. Thin Solid Films 191, 147 (1990).
- [39] K.Kh. Nussupov, V.O. Sigle, N.B. Beisenkhanov. Nucl. Instrum. Meth. Phys. Res. B 82, 69 (1993).

- [40] P. Durupt, B. Canut, J.P. Gauthier, J.A. Roger, J. Pivot. Mater. Res. Bull. 15, 1557 (1980).
- [41] И.П. Акимченко, Х.Р. Каздаев, В.В. Краснопевцев. ФТП 11, 10, 1964 (1977).
- [42] L. Calcagno, G. Compagnini, G. Foti, M.G. Grimaldi, P. Musumeci. Nucl. Instrum. Meth. Phys. Res. B 120, 121 (1996).
- [43] W. Rothemund, C.R. Fritzsche. J. Electrochem. Soc. 121, 4, 586 (1974).
- [44] A.G. Touryanski, A.V. Vinogradov, I.V. Pirshin. X-ray reflectometer. Official Gazette. Patent N 6041098. US Cl. 378-70. 2960 (2000).
- [45] А. Турьянский, Н. Герасименко, И. Пиршин, В. Сенков. Наноиндустрия 5, 40 (2009).
- [46] J.F. Gibbons, W.S. Johnson, S.W. Mylroie. Projected range statistics: semiconductors and related materials. 2nd ed. Dowden, Hutchinson and Ross, Inc. Stroudsburg(1975).
- [47] Д.И. Бринкевич, Н.В. Вабищевич, В.С. Просолович. Вестн. БГУ. Сер. 1. Физика. Математика. Информатика 1, 41 (2010).
- [48] И.П. Лисовский, И.З. Индутный, Б.Н. Гненный, П.М. Литвин, Д.О. Мазунов, А.С. Оберемок, Н.В. Сопинский, П.Е. Шепелявый. ФТП 37, 1, 98 (2003).
- [49] T. Kimura, Sh. Kagiyama, Sh. Yugo. Thin Solid Films 94, 191 (1982).
- [50] S.P. Wong, D. Chen, L.C. Ho, H. Yan, R.W.M. Kwok. Nucl. Instrum. Meth. Phys. Res. B 140, 70 (1998).
- [51] B.L. Henke, E.M. Gullikson, J.C. Davis. Atom. Data Nucl. Data Tabl. 54, 2, 181 (1993); http://henke.lbl.gov/optical_constants/
- [52] D. Chen, W.Y. Cheung, S.P. Wong. Nucl. Instrum. Meth. Phys. Res. B 148, 589 (1999).
- [53] J.K.N. Lindner, K. Volz, U. Preckwinkel, B. Gotz, A. Frohnwieser, B. Stritzker, B. Rauschenbach. Mater. Chem. Phys. 46, 2-3, 147 (1996).
- [54] P. Martin, B. Daudin, M. Dupuy, A. Ermolieff, M. Olivier, A.M. Papon, G.J. Rolland. J. Appl. Phys. 67, 6, 2908 (1990).
- [55] С.А. Апрелов. Многоволновая рентгеновская рефректометрия для анализа многокомпонентных пространственно упорядоченных структур. Автореф. канд. дис. Моск. гос. ин-т электрон. техники, М. (2007). 28 с.