09,08

Люминесцентные свойства твердых растворов боратов, легированных редкоземельными ионами

© В.С. Левушкина^{1,2}, В.В. Михайлин^{1,3}, Д.А. Спасский^{2,3}, Б.И. Заднепровский⁴, М.С. Третьякова⁴

¹ Московский государственный университет им. М.В. Ломоносова,

Москва, Россия

² Институт физики Тартуского университета,

Тарту, Эстония

³ Научно-исследовательский институт ядерной физики им. Д.В. Скобельцина

Московского государственного университета им. М.В. Ломоносова,

Москва, Россия

⁴ Центральный научно-исследовательский институт химии и механики им. Д.И. Менделеева,

Москва, Россия

E-mail: bestpum@mail.ru

(Поступила в Редакцию 30 декабря 2013 г. В окончательной редакции 29 апреля 2014 г.)

Изучены структурные и люминесцентные свойства серий твердых растворов $Lu_x Y_{1-x}BO_3$, легированных ионами Ce^{3+} или Eu^{+3} . Установлено, что твердые растворы кристаллизуются в фазе ватерита при доле лютеция x < 0.5, при более высоких значениях x в твердых растворах появляется дополнительная фаза кальцита в концентрации не более 5 wt.%. Спектры люминесценции характеризуются интенсивным примесным свечением при возбуждении синхротронным излучением рентгеновского и ультрафиолетового диапазонов. Для твердых растворов $Lu_x Y_{1-x}BO_3: Ce^{3+}$ показано постепенное уменьшение интенсивности свечения при увеличении x, что связано с постепенным смещением 5d(1)-уровня Ce^{3+} ко дну зоны проводимости, а также с уменьшением ширины запрещенной зоны. В серии $Lu_x Y_{1-x}BO_3: Eu^{3+}$ установлено повышение эффективности передачи энергии на центры свечения для растворов с промежуточными значениям x. Эффект объясняется ограничением длины разлета электронов и дырок в твердых растворов.

Работа проводилась при финансовой поддержке программы Mobilitas ESF (грант МТТ83), Эстонского совета по исследованиям — институциональное финансирование исследований IUT02-26, гранта РФФИ № 11-02-01506-а и проекта БМБФ RUS 10/037.

1. Введение

Сложные неорганические соединения на основе оксидов находят широкое применение в разных областях. В частности, ряд соединений на основе комплекса ВО3 обладает интенсивной люминесценцией при легировании их атомами редкоземельных элементов (РЗЭ) [1]. Такие соединения могут использоваться в сцинтилляционных детекторах, люминесцентных лампах и плазменных дисплеях. Например, (Y,Gd)BO₃: Eu³⁺ используется в плазменных панелях благодаря эффективному преобразованию УФ-излучения в видимый свет [2,3]. Li₆ $Re(BO_3)_3$: Ce (Re = Gd, Y, Lu) применяется в нейтронных детекторах для систем безопасности [4]. LuBO₃:Се является перспективным материалом для сцинтилляционных детекторов [5-9]. Интерес к этому соединению обусловлен совокупностью характеристик, таких как высокая плотность кристалла $(\rho \sim 7.2 \,\mathrm{g/cm^3})$, связанная с наличием лютеция, хорошая радиационная стойкость, а также высокий световой выход (до 30000 photon/MeV) и быстрое время затухания сцинтилляций ($\tau \sim 10^{-8} \, {
m s}$) [5]. Существенным недостатком бората лютеция является возможность его

кристаллизации в двух фазах (кальцит и ватерит). Переход между этими фазами при охлаждении выращенного кристалла препятствует росту монокристаллов больших размеров [6]. Тем не менее в ряде работ были предложены различные методы использования поликристаллического бората лютеция для регистрации высокоэнергетического излучения (например, в виде сцинтилляционных пленок [7–9]). Возможным методом решения проблемы роста монокристаллов боратов является частичное замещение катиона лютеция другим изовалентным катионом. Так, в работах [5,10] показано, что введение в состав бората лютеция катиона скандия позволяет получить монофазные твердые растворы $Lu_x Sc_{1-x} BO_3$ со структурным типом кальцита, которые уже могут быть выращены в виде объемных монокристаллов.

Другой интересной особенностью твердых растворов является возможность увеличения эффективности переноса энергии возбуждения на центры свечения, что приводит к увеличению выхода сцинтилляций. Увеличение светового выхода ранее наблюдалось для твердых растворов перовскитов $Lu_x Y_{1-x} AlO_3 : Ce^{3+}$ [11, 12], $Lu_{1-x}Sc_xBO_3:Ce^{3+}$ боратов [13], силика- $(Lu,Gd)_2SiO_5:Ce^{3+}$ тов [14]И гранатов $Y_3(Al_{1-x}Ga_x)_5O_{12}:Ce^{3+}$ [15]. Согласно [11,12], возможной причиной увеличения светового выхода является образование кластеров, т. е. областей с преимущественным содержанием одного из компонентов, составляющих твердый раствор. Это приводит к ограничению разлета разделенных генетических электрон-дырочных пар, возникающих в результате поглощения квантов возбуждающего излучения, если длина их диффузии соизмерима с размером такого кластера.

В настоящей работе проведено экспериментальное исследование структурных и люминесцентных свойств твердых растворов боратов $Lu_x Y_{1-x} BO_3$ (x = 0, 0.25, 0.50, 0.75, 1.00) в зависимости от катионного состава и наличия активаторов Ce^{3+} и Eu^{3+} . Особое внимание уделено процессам переноса энергии межзонных возбуждений на центры примесного свечения и их возможной модификации в твердых растворах из-за ограничения расстояния разлета электронов и дырок.

2. Техника эксперимента

Спектроскопические исследования твердых растворов боратов $Lu_x Y_{1-x} BO_3 : RE^{3+}$ (RE = Ce, Eu) проводились на ряде экспериментальных установок, которые позволили провести измерения в широком диапазоне энергий возбуждения.

Измерения спектров люминесценции, возбуждения люминесценции, кинетики затухания и кривых термостимулированной люминесценции (ТСЛ) при возбуждении в области энергий от 3.7 до 22 eV проводились на установке SUPERLUMI с использованием синхротронного излучения (DESY, Гамбург, Германия) [16]. Образцы помещались в гелиевый проточный оптический криостат, позволяющий проводить измерения в широком диапазоне температур от 4.2 до 400 К. Спектры люминесценции с временным разрешением измерялись во временны́х интервалах, которые составляли от 7 до 20 ns (TI1) и от 125 до 150 ns (TI2) относительно максимума импульса возбуждения синхротронного излучения. Временные интервалы были выбраны с учетом времени затухания свечения Ce³⁺ в матрице боратов с целью разделения "быстрых" процессов, обусловленных релаксацией связанных электрон-дырочных пар (внутрицентровые переходы или перенос энергии от экситонов) на центрах Се³⁺, и "медленных" процессов, связанных с появлением промежуточных этапов переноса разделенных электрон-дырочных пар на центры Се³⁺. Кривые ТСЛ регистрировались после облучения образцов при температуре 10 К в течение 20 min. Облучение осуществлялось синхротронным излучением вакуумного ультрафиолетового (ВУФ) диапазона с энергией 14 eV. После облучения проводился нагрев образца с постоянной скоростью 10 К/min.

Измерения спектров люминесценции и возбуждения в видимой и ультрафиолетовой (УФ) областях проводились на установке отдела ФПКЭ НИИЯФ МГУ, собранной на основе спектрографа LOT-Oriel MS-257. Установка позволяет регистрировать спектры люминесценции спектры люминесценции в области 300–1050 nm и возбуждения люминесценции образцов в области 220–500 nm в диапазоне температур 80–350 К. [17]. Спектры люминесценции нормировались на функцию аппаратной чувствительности системы регистрации для всех приведенных выше установок.

Измерения при возбуждении в области мягкого рентгеновского излучения (130 eV) проводились на установке, расположенной в канале ВW3 ондуляторного излучения накопителя DORIS III. Вторичный монохроматор установки оптимизирован на УФ-область, угол разворота дифракционной решетки монохроматора позволяет проводить измерения спектров люминесценции в области 110-500 nm. Плотность потока фотонов возбуждения на образце достигает 10¹² photon/s [18]. Спектры люминесценции не нормировались на функцию аппаратной чувствительности системы регистрации установки на ВW3. Измерения проводились в диапазоне температур от 10 до 300 К. Измерения спектров люминесценции $Lu_r Y_{1-r} BO_3 : Eu^{3+}$ с рентгеновским источником с вольфрамовым анодом при $U = 30 \, \text{keV}$ выполнялись в лаборатории PCML Лионского университета им. Клода Бернара.

3. Экспериментальные результаты

3.1. Исследования структуры твердых растворов боратов. Серии твердых растворов боратов $Lu_x Y_{1-x} BO_3$ (x = 0, 0.25, 0.50, 0.75, 1.00), легированных 1 mol.% Ce³⁺ и Eu³⁺, были синтезированы зольгель методом в ЦНИИХИМ им. Д.И. Менделеева. Синтез проводился в несколько этапов, которые включали в себя перевод водонерастворимых оксидов в раствор, приготовление реакционной смеси, содержащей ионы редкоземельных элементов и растворенную форму борной кислоты, с последующим осаждением полученного продукта. На последней стадии происходила кристаллизация полученного в ходе синтеза материала. Для этого образец был подвергнут высокотемпературному отжигу при следующих условиях: температура отжига 960°С, время выдержки 2 h, атмосфера — воздух. Подробнее процедура синтеза описана в работе [19]. По данным гранулометрического анализа преимущественный размер частиц всех составов равен ~ 500 nm.

Измерение спектров рентгеновского излучения $(\lambda = 1.5405 \text{ Å})$ образцов проводилось на рентгеновском дифрактометре XRD Rigaku Ultima IV. Согласно данным проведенного рентгенофазового анализа, было получено хорошо структурированное соединение бората лютеция без присутствия промежуточных фаз, однако образцы, содержащие в составе менее 50% иттрия, включают в себя две структурно различные фазы, изоструктурные кальциту и ватериту (табл. 1). Во всех образцах преобладает фаза ватерита. Фаза кальцита

x	Ватерит			Кальцит							
	a, Å	<i>c</i> , Å	$V, Å^3$	a, Å	c,Å	$V, Å^3$					
Ce											
1.00	3.736	8.707	105.27	4.914	16.233	339.4					
0.75	3.739	8.733	105.78	4.920	16.277	341.2					
0.50	3.747	8.752	106.46	4.934	16.293	343.5					
0.25	3.762	8.780	107.66	_	_	-					
0	3.774	8.797	108.54	_	_	_					
Eu											
1.00	3.732	8.715	105.13	4.914	16.23	339.5					
0.75	3.745	8.726	105.96	4.92	16.32	342.2					
0.50	3.748	8.755	106.52	_	_	-					
0.25	3.761	8.778	107.52	_	—	_					
0	3.777	8.804	108.80	—	—	—					

Таблица 1. Параметры кристаллической структуры фаз, изоструктурных ватериту и кальциту, для $Lu_x Y_{1-x}BO_3: RE^{3+}$ (RE = Ce, Eu)

появляется для $Lu_x Y_{1-x} BO_3 : Ce^{3+}$ при $x \ge 0.5$, а для $Lu_x Y_{1-x} BO_3 : Eu^{3+}$ при $x \ge 0.75$. Доля фазы кальцита увеличивается по мере увеличения доли лютеция в растворе, но не превышает 5 wt.% (рис. 1).

Результаты определения параметров элементарной ячейки показали, что в условиях перехода от двухфазного состава к однофазному зависимость параметров a, cи объема элементарной ячейки V от соотношения катионов лютеция и иттрия имеет излом на составе $Lu_{0.50}Y_{0.50}BO_3$, что, возможно, указывает на то, что присутствие фазы кальцита сказывается на параметрах элементарной ячейки фазы ватерита.

3.2. Люминесцентные свойства боратов, легированных европием. Спектры люминесценции серии твердых растворов Lu_xY_{1-x}BO₃: Eu³⁺ показаны на примере образца с x = 0.75 (рис. 2). С использованием селективного возбуждения были получены спектры люминесценции, характерные для всех образцов серии (рис. 2, кривая 1) и для образцов, в которых была обнаружена фаза кальцита (рис. 2, кривая 2). Люминесценция в виде узких линий типична для соединений, легированных ионами Eu³⁺, и соответствует внутрицентровым f - f-электронным переходам в ионе европия. Все наблюдаемые в спектре люминесценции полосы могут быть приписаны внутрицентровым переходам ${}^{5}D_{0}-{}^{7}F_{j}$ (j = 0, 1, 2, 3, 4) в Eu³⁺. Спектр, характерный для всех образцов серии, видимо, связан со свечением Eu³⁺ в борате лютеция, кристаллизовавшемся в структурном типе ватерита, и согласуется с ранее полученными данными [19]. Структура дополнительного спектра люминесценции Eu³⁺, наблюдавшегося в образцах с присутствием фазы кальцита, заметно отличается от характерной для фазы ватерита, что связано с разной симметрией окружения Eu³⁺. Вероятно, при наличии фазы кальцита в образце часть ионов Eu³⁺

попадает в узлы с симметрией окружения, искаженной наличием близлежащей фазы кальцита. При этом спектр не может быть приписан свечению Eu³⁺, находящегося непосредственно в фазе кальцита. Согласно [19], такой спектр характеризуется наличием всего двух линий в

Рис. 1. Зависимость параметров кристаллической решетки a и c, а также доли фазы кальцита в Lu_xY_{1-x}BO₃:Eu (a) и Lu_xY_{1-x}BO₃:Ce (b) от значения x.

Рис. 2. Спектры люминесценции $Lu_{0.75}Y_{0.25}BO_3:Eu^{3+}$ при $E_{ex} = 5.4$ (1) и 5.9 eV (2). T = 300 K. На вставке — относительная интенсивность спектров люминесценции для серии $Lu_xY_{1-x}BO_3:Eu^{3+}$ при $E_{ex} = 11$ eV (*a*) и рентгеновском возбуждении 30 keV (*b*).

области 590 nm, тогда как в наблюдаемом спектре полос существенно больше.

Относительная интенсивность спектров люминесценции для серии твердых растворов $Lu_x Y_{1-x} BO_3 : Eu^{3+}$ при ВУФ- и рентгеновском возбуждении получена путем интегрирования по спектру люминесценции в области 570–720 nm (рис. 2). Энергия ВУФ-возбуждения (11 eV) превышает значение запрещенной зоны данных боратов. Максимальная интенсивность наблюдалась при промежуточных относительных концентрациях катионов. Так, при ВУФ-возбуждении максимум интенсивности достигается при x = 0.5, тогда как при рентгеновском возбуждении при x = 0.25. По мере приближения к однокатионному составу бората интенсивность люминесценции постепенно уменьшается.

На рис. 3 представлены спектры возбуждения люминесценции $Lu_x Y_{1-x} BO_3 : Eu^{3+}$. В области 2.5-4.5 eV (рис. 3, а) наблюдается ряд узких низкоинтенсивных полос, характерных для внутрицентровых f - f-переходов на Eu³⁺. Наиболее интенсивные пики приписываются переходам ${}^7F_0 - {}^5D_2$, ${}^7F_0 - {}^5L_6$, ${}^7F_0 - {}^5D_4$, ${}^7F_0 - {}^5H_j$ в ионе Eu³⁺. Положение и относительная интенсивность пиков в этом диапазоне не зависит от конкретного образца, что является косвенным подтверждением одинаковой концентрации европия. Электронные переходы между различными термами f-оболочки запрещены в дипольном приближении, поэтому интенсивность полос относительно невелика. В области 4.5-7.0 eV наблюдается интенсивный широкий неэлементарный пик, связанный с возбуждением люминесценции в полосе с переносом заряда с кислорода на европий (рис. 3, b). Интенсивность этого пика превышает примерно на два порядка интенсивность узких полос в низкоэнергетической области.

При дальнейшем повышении энергии возбуждения наблюдаются перекрывающиеся полосы с максимумами при 7.25 и 7.76 eV. Положение пика при 7.76 eV совпадает с первым пиком в спектре возбуждения автолокализованного экситона в неактивированном борате иттрия (рис. 3, b). По этому пику можно оценить положение края области фундаментального поглощения (ФП). Полоса с максимумом при 7.25 eV находится в области до края ФП и может быть вызвана внутрицентровым 4f - 5d-переходом на Eu^{3+} . Обычно энергия таких переходов в Eu³⁺ выше, чем энергия электронных переходов в полосе с переносом заряда. Согласно [20,21] *f*-*d*-переходы Eu³⁺ наблюдаются в ряде фосфатов, а также в оксиде иттрия в области 8.2-8.5 eV. Энергетическое положение уровня 5d сильно зависит от матрицы, в которую введен Eu³⁺, поэтому можно ожидать, что в боратах этот уровень будет смещен на 1 eV в низкоэнергетическую область относительно его положения в фосфатах и оксиде иттрия.

При дальнейшем повышении энергии возбуждения $(E_{\rm ex} > 8 \, {\rm eV})$ начинается область межзонных переходов. Более точно область межзонных переходов установлена далее с использованием времяразрешенной спектроскопии для твердых растворов, активированных Ce³⁺.

Рис. 3. Спектры возбуждения люминесценции Lu_x Y_{1-x} BO₃: Eu³⁺ в областях 2.5-4.7 (*a*) и 4.5-30 eV (*b*). $\lambda_{\rm em} = 590$ nm, T = 300 K. Результаты представлены для образцов с x = 0 (1), 0.25 (2), 0.50 (3), 0.75 (4) 1.00 (5). Также представлены спектр возбуждения И автолокализованного экситона для беспримесного YBO3 при $\lambda_{em} = 260 \text{ nm}, T = 10 \text{ K}$ (6) и спектр возбуждения Lu_{0.75}Y_{0.25}BO₃: Eu³⁺ при $\lambda_{\rm em} = 610$ nm, T = 300 K (7). На вставке — спектры возбуждения люминесценции $Lu_x Y_{1-x} BO_3 : Eu^{3+}$, нормированные по интенсивности при $E = 8.2 \,\mathrm{eV}.$

В данной энергетической области формирование спектров возбуждения возможно двумя способами: через экситонный (e + h-ex-Eu^{3+(*)}-Eu³⁺ + $h\nu$) и рекомбинационный (Eu³⁺ + e-Eu²⁺ + h-Eu^{3+(*)}-Eu³⁺ + $h\nu$) каналы [23]. В первом случае электрон и дырка соединяются и образуют экситон (ex), который попадает на центр свечения с последующим излучением кванта. Во втором случае происходит последовательный захват на центр свечения сначала электрона, а затем дырки с последу-

ющим излучением. Пик, наблюдаемый в области края ФП (~ 7.5 eV) в спектрах возбуждения люминесценции, является характерным для экситонного типа передачи энергии на центры свечения. Однако дальнейший спад интенсивности люминесценции после этого пика не наблюдается, что обычно происходит в случае передачи энергии на Eu³⁺ исключительно через экситонный канал. При дальнейшем увеличении энергии возбуждения $E_{ex} > 8$ eV наблюдается постепенный рост интенсивности, что является характерным уже для рекомбинационного переноса энергии на центры свечения. В связи этим можно предположить, что в нашем случае вклад в формирование спектра возбуждения Lu_xY_{1-x}BO₃:Eu³⁺ вносят два основных канала передачи энергии на центр свечения: экситонный и рекомбинационный.

3.3. Люминесцентные свойства боратов, легированных церием.

3.3.1. Спектры люминесценции. Характерный спектр люминесценции для серии образцов $Lu_{x}Y_{1-x}BO_{3}:Ce^{3+}$ при УФ-возбуждении представлен на рис. 4. Люминесценция наблюдалась в виде двух полос с максимумами при 380 и 420 nm (основной дублет), которые вызваны излучательными переходами 5*d*-⁷*F*_{5/2.7/2} на Се³⁺. Относительная интенсивность люминесценции постепенно уменьшается с увеличением значения х (рис. 4, вставка). Максимумы полос люминесценции при этом смещаются в длинноволновую область. Смещение может объясняться увеличением силы кристаллического поля в твердом растворе, которое связано с уменьшением параметров кристаллической решетки при постепенной замене катиона иттрия на катион лютеция (рис. 1). Действительно, при этом расстояние между положи-

Рис. 4. Спектр люминесценции $Lu_{0.5}Y_{0.5}BO_3:Ce^{3+}$ при $E_{ex} = 11$ (1) и 130 eV (2). T = 300 K. На вставке — относительная интенсивность спектров люминесценции для серии $Lu_xY_{1-x}BO_3:Ce^{3+}$ при $E_{ex} = 11$ (*a*) и 130 eV (*b*).

тельно заряженным катионом и оксианионовой группой ВО₄⁵⁻ уменьшается, что обычно приводит к увеличению силы кристаллического поля [23].

В спектрах люминесценции твердых растворов при возбуждении мягким рентгеновским излучением $(E_{\rm ex} = 130 \, {\rm eV})$ помимо основного дублета также наблюдается дополнительный дублет с максимумами при 315 и 344 nm, интенсивность которого ниже приблизительно на порядок величины. Природа этого дублета обсуждается далее.

3.3.2. Спектры возбуждения люминесценции. Спектры возбуждения люминесценции Се³⁺ представлены на рис. 5. В области энергий до 7 eV наблюдаются пять пиков, которые связаны с внутрицентровым возбуждением иона Ce^{3+} на уровни 5d(1)-5d(5). Наблюдаемое в спектрах возбуждения расщепление *d*-уровней Се³⁺ на два низкоэнергетических и три высокоэнергетических уровня характерно при расположении этого иона в окружении восьми лигандов [24]. Отметим, что ранее на основе анализа спектров возбуждения люминесценции было сделано предположение о расщеплении *d*-уровней Ce³⁺ на три низкоэнергетических и два высокоэнергетических уровня в LuBO₃ [25]. В этом случае окружение Се³⁺ должно находиться в симметрии, близкой к октаэдрической (координационное число 6). Точный тип пространственной группы ватерита до сих пор не определен. Координационное число катиона, на место которого встраивается Се³⁺, согласно различным данным, может быть 6 или 8 [26-30]. При этом в соответствии с последними данными [30] наиболее вероятной пространственной группой для ватерита является C2c, для нее характерно расположение катиона именно в окружении восьми лигандов. При этом происходит расщепление *d*-орбиталей на две низкоэнергетические и три высокоэнергетические, что и наблюдалось нами в эксперименте.

Энергии возбуждения при $E_{ex} > 7 \text{ eV}$ соответствуют области края ФП. В этой области могут наблюдаться как "быстрые", так и "медленные" процессы переноса энергии на центры свечения. Первые обусловлены созданием экситонов, вторые соответствуют возбуждению центров свечения через последовательный захват дырки и электрона. Использование времяразрешенной спектроскопии позволило разделить эти процессы в области края фундаментального поглощения (рис. 5, вставка). Пик при 7.6 eV связан с созданием экситона в области края ФП. Этот пик наблюдается только во временных воротах интервалах TI1 и его положение соответствует первому пику возбуждения свечения автолокализованного экситона в беспримесном образце YBO₃.

По росту интенсивности в спектре возбуждения, измеренном во временных интервалах TI2, можно определить начало межзонных переходов. В частности, для YBO₃: Ce³⁺ порог наблюдается при 8.2 eV (рис. 5, вставка). Это значение является оценкой ширины запрещенной зоны (E_g) . Оцененное значение E_g больше, чем полученные в результате теоретических рас-

Puc. 5. Спектры возбуждения люминесценции серии $Lu_x Y_{1-x} BO_3 : Ce^{3+}$ при x = 0 (1), 0.25 (2), 0.50 (3), 0.75 (4), 1.00 (5), $\lambda_{em} = 420 \text{ nm}, T = 300 \text{ K}.$ На вставке — времяразрешенные спектры возбуждения люминесценции YBO₃: Ce^{3+} , измеренные во временных интервалах TI1 7–20 ns (1) и TI2 125–150 ns (2), $\lambda_{em} = 420 \text{ nm}, T = 300 \text{ K}.$ Также представлен спектр возбуждения автолокализованного экситона YBO₃ (3), $\lambda_{em} = 260 \text{ nm}, T = 10 \text{ K}.$

четов значения 7.0–7.1 eV [31,32]. Однако расчеты, как правило, дают заниженные значения E_g . В области межзонного возбуждения перенос энергии на центры свечения возможен двумя способами: через экситонный $(e + h - ex - Ce^{3+(*)} - Ce^{3+} + hv)$ и рекомбинационный $(Ce^{3+} + h - Ce^{4+} + e - Ce^{3+(*)} - Ce^{3+} + hv)$ каналы. Проанализировав спектры возбуждения люминесценции в рассматриваемой энергетической области, мы сделали вывод, что вклад в формирование спектра возбуждения Lu_xY_{1-x}BO₃: Ce³⁺ вносят как экситонный, так и рекомбинационный канал аналогично системе твердых растворов боратов, легированных европием.

3.3.3. Кинетика затухания люминесценции. На рис. 6, *а* представлена кинетика затухания люминесценции для образца Lu_{0.5}Y_{0.5}BO₃:Ce³⁺ при трех энергиях возбуждения: 5.2 eV, что соответствует внутрицентровому возбуждению Ce³⁺; 8.0 eV, что отвечает области края фундаментального поглощения с возможным созданием экситонов; 11 eV, что соответствует области межзонных переходов. Характерные времена затухания свечения τ и вклад в кинетику затухания более длительных компонент y_0 для исследуемой серии твердых растворов при различных энергиях возбуждения представлены в табл. 2.

Времена затухания люминесценции при внутрицентровом возбуждении иона Ce³⁺ составляют 22-30 ns

для всех образцов, кроме LuBO₃:Ce³⁺. Полученное время свечения характерно для боратов, легированных ионами церия [25]. В случае бората лютеция при возбуждении в данной области кинетика люминесценции имеет на начальном этапе быстрый и неэкспоненциальный вид. Предположительно это связано с тушением люминесценции из-за наличия кальцитовой фазы, содержание которой максимально в исследованном образце (рис. 1).

Замедление времени высвечивания люминесценции при возбуждении в области края ФП до 36-39 ns может объясняться появлением в процессе переноса энергии промежуточного этапа, связанного с созданием экситонов. Дальнейшее увеличение времен высвечивания при возбуждении в области межзонных переходов по сравнению с рассмотренными выше областями обусловлено преимущественным созданием разделенных *е*-*h*-пар при таком возбуждении. Электрон или дырка могут быть последовательно захвачены на примесный центр церия или создать экситон с его последующим захватом на церий. Кроме того, компоненты пары могут попадать на ловушки, которые будут задерживать передачу возбуждения на центры свечения. С этим могут быть связаны как наблюдаемое разгорание свечения, так и повышенный уровень вклада более длительных компонент у₀.

Кинетика затухания люминесценции при высокоэнергетическом возбуждении 130 eV представлена

E., eV	Параметр	x					
Lex, CV	Tapamerp	0	0.25	0.50	0.75	1.00	
5.2	τ	29.66	29.62	27.32	21.83	1.67/21.7*	
	уо	0.04	0.059	0.05	0.09	0.04	
8.3	τ	36.53	39.45	36.06	38.16	31.57	
	Уо	0.05	0.055	0.05	0.07	0.04	
13.8	τ	43.65	67.09	58.29	50.42	31.29	
	Уо	0.25	0.17	0.16	0.15	0.05	
130	$\tau \left(\lambda_{\mathrm{em}} = 380 \mathrm{nm} ight)$	33.43	_	53.01	32.25	19.27	
	$\tau \left(\lambda_{\mathrm{em}} = 320 \mathrm{nm} \right)$	3.17/33.4*	—	5.66/53.0*	6.86/32.3*	4.94/19.3*	

Таблица 2. Параметры кинетики затухания для серии $Lu_x Y_{1-x}BO_3: Ce^{3+}$ при различных энергиях возбуждения (y_0 — уровень вклада в кинетику затухания более длительных компонент, τ — время затухания люминесценции в ns)

* Разложение кинетики затухания люминесценции производилось с использованием двух экспонент.

на рис. 6, *b*. Кривые затухания люминесценции на начальном этапе в полосах дополнительного дублета ($\lambda_{\rm em} = 320 \, {\rm nm}$) заметно отличаются от кривых, измеренных в полосах основного дублета ($\lambda_{\rm em} = 380 \, {\rm nm}$). Для основного дублета наблюдается разгорание на начальном этапе, так же как при межзонном возбуждении в ВУФ-области. Кинетика, измеренная в полосе дополни-

Рис. 6. Кинетика затухания люминесценции $Lu_{0.5}Y_{0.5}BO_3:Ce^{3+}$ при $E_{ex} = 5.2$ (1), 8.0 (2) и 11 eV (3), $\lambda_{em} = 380$ nm, T = 300 nm (a) и при $E_{ex} = 130$ eV, $\lambda_{em} = 380$ (1) и 320 nm (2), T = 300 K (b).

тельного дублета, не имеет разгорания на начальной стадии, а времена затухания свечения заметно меньше. Отметим, что кинетика имеет неэкспоненциальный вид, и для ее аппроксимации требуются две экспоненты. При этом более длительное время затухания соответствует времени затухания свечения основного дублета.

По-видимому, дополнительный дублет также связан со свечением Се³⁺; расстояние между максимумами дублета соответствует расщеплению между термами $^{7}F_{5/2}$ и $^{7}F_{7/2}$ Ce³⁺. Отметим, что этот дублет наблюдается только при возбуждении высокоэнергетическими квантами, когда происходит образование радиационных дефектов в боратах. Так, для нелегированных образцов $Lu_x Y_{1-x} BO_3$ нами ранее было показано, что собственная люминесценция заметно деградирует со временем [33], что подтверждает создание дефектов в твердых растворах при $E_{\rm ex} = 130 \, {\rm eV}$. Мы полагаем, что появление дополнительного дублета обусловлено модификацией симметрии окружения ионов церия, создающейся радиационными дефектами. Возможность появления дополнительных полос свечения Се³⁺ под действием высокоэнергетического излучения была показана ранее для сульфидов [34]. При создании наведенного дефекта (например, кислородной вакансии) в окружении церия изменяется величина кристаллического поля, что вызывает смещение *d*-уровней и, как следствие, смещение положения полос в спектре люминесценции. В дальнейшем происходит достаточно быстрое "залечивание" таких дефектов (например, кислород возвращается на свое место). В результате такой последовательности процессов в полосе свечения при 320 nm вначале наблюдается быстрое, нетипичное для данной серии твердых растворов свечение церия, но спустя $\sim 20\,\mathrm{ns}$ после импульса возбуждающего излучения дефект залечивается, и тогда наблюдается характерная кинетика затухания основного дублета: 30-50 ns на его коротковолновом краю.

3.3.4. Кривые термостимулированной люминесценции. Ловушки в запрещенной зоне, как правило, отрицательно сказываются на сцинтилляционных

Рис. 7. Кривая ТСЛ $YBO_3 : Ce^{3+}(1)$ и ее аппроксимация в приближении кинетики первого порядка (2). На вставке — зависимость энергии активации ловушек в серии $Lu_xY_{1-x}BO_3 : Ce^{3+}$ от значения *x*. Звездочка — энергия активации ловушки, соответствующей высокотемпературному пику кривой ТСЛ, кружок — низкотемпературному пику кривой ТСЛ.

свойствах кристаллов образцов. При этом их изучение для серий твердых растворов позволяет получить важную информацию о смещении электронных состояний энергетических зон в области дна зоны проводимости или потолка валентной зоны [35]. Характерная кривая ТСЛ представлена для $YBO_3: Ce^{3+}$ на рис. 7. В процессе нагрева наблюдались два пика ТСЛ с максимумами при 115 и 174 К. Для остальных образцов серии также наблюдались две широкие полосы, интенсивность которых уменьшалась с увеличением значения *x*, при этом пики ТСЛ смещались в низкотемпературную область.

Аппроксимация кривых ТСЛ была проведена в приближении кинетики первого порядка, предполагающей, что свободные носители заряда с большей вероятностью связываются в экситон, чем попадают на ловушку. Элементарный пик в таком приближении описывается формулой

$$I_l = n(0)\omega_0$$

$$\times \exp\left(-\frac{E_A}{k_B T(t)} - \frac{\omega_0 k_B T^2(t)}{E_A T'(t)} \exp\left(-E_a/k_B T(t)\right)\right),$$

где n(0) — концентрация ловушек, ω_0 — частотный фактор, E_A — энергия активации, T(t) — температура образца, T'(t) — скорость нагрева (в данном случае скорость нагрева была постоянной и составляла 10 K/min) [22]. Экспериментальные кривые ТСЛ характеризуются наличием двух выраженных пиков, поэтому результат аппроксимации представляет собой сумму двух элементарных пиков. Как следует из рис. 7, аппроксимация в приближении кинетики первого поряд-ка в предположении существования двух типов ловушек

с разной энергией активации хорошо описывает экспериментальную кривую ТСЛ. Проведенная аппроксимация не учитывает возможное взаимодействие между ловушками разного типа. Профиль каждого из экспериментальных пиков может быть удовлетворительно аппроксимирован с использованием только одной совокупности параметров, включающих энергию активации ловушек E_A . Зависимость энергии активации ловушек от значения x в твердом растворе представлена на вставке к рис. 7.

3.4. Анализ изменения эффективности переноса энергии на центры свечения в сериях $Lu_x Y_{1-x} BO_3 : Eu^{3+}$ и $Lu_x Y_{1-x} BO_3 : Ce^{3+}$.

3.4.1. Серия твердых растворов $Lu_{x}Y_{1-x}BO_{3}:Eu^{3+}$. Обнаруженный эффект увеличения интенсивности люминесценции В серии $Lu_{x}Y_{1-x}BO_{3}:Eu^{3+}$ для промежуточных значений xможет быть объяснен ограничением расстояния разлета между генетическими электронами и дырками. Это приводит к увеличению вероятности их попадания на центры свечения путем последовательного захвата или через предварительное формирование экситона. Такое ограничение может быть связано, например, с кластеризацией твердого раствора, как это предполагалось ранее в [11,12]. Однако при анализе результатов необходимо учитывать эффект от появления фазы кальцита в твердых растворах. Наличие фазы кальцита приводит к созданию конкурирующего излучательного канала релаксации. Спектры возбуждения люминесценции Eu³⁺, характерной для фазы ватерита, и Eu³⁺, находящегося в узлах с симметрией окружения, искаженной наличием близлежащей фазы кальцита (рис. 3, b, кривая 7), свидетельствуют о конкуренции между этими центрами свечения. Так, пики при 7.25 и 7.76 eV практически пропадают именно в тех образцах, в которых присутствует фаза кальцита (рис. 3, *b*). При этом свечение Eu^{3+} в узлах с симметрией окружения, искаженной наличием близлежащей кальцитовой фазы, эффективно возбуждается в области 5.5-8.0 eV. Наличие фазы кальцита может приводить не только к созданию конкурирующего излучательного но также и к созданию безызлучательного канала релаксации энергии. Поэтому необходимо учитывать, что уменьшение интенсивности интегральной люминесценции в образцах с x = 0.75 и 1.00 может быть связано не только с проявлением эффекта ограничения длины разлета электронов и дырок, но и с негативным влиянием от присутствия фазы кальцита в образцах. Тем не менее результаты, представленные далее, позволяют утверждать, что эффективность переноса энергии увеличивается в образцах с промежуточными значениями х.

Для получения дополнительной информации и удобства анализа процессов переноса энергии на центры свечения все спектры возбуждения исследуемых твердых растворов были приведены к одному значению при 8.2 eV, что соответствует области начала межзонных переходов (рис. 3, *b*, вставка). По наклону спектров можно судить об эффективности переноса энергии межзонного возбуждения на центры свечения. Видно, что для образцов твердых растворов (x = 0.25, 0.50, 0.75) происходит повышение эффективности передачи энергии при межзонном возбуждении по сравнению с крайними составами (x = 0 и 1). Обнаруженный эффект подтверждает предположение об ограничении длины разлета генетических электронов и дырок в твердых растворах. Отметим, что наиболее сильный рост наблюдается для образца с x = 0.75 и именно для этого образца можно было ожидать наибольшей интенсивности люминесценции. Однако наличие кальцитовой фазы приводит к появлению дополнительных каналов релаксации энергии, из-за чего не наблюдается увеличения интенсивности в области межзонных переходов для этих образцов по сравнению с x = 0.25, 0.50.

3.4.2. Серия твердых растворов $Lu_x Y_{1-x} BO_3 : Ce^{3+}$. В $Lu_x Y_{1-x} BO_3 : Ce^{3+}$ происходит постепенное уменьшение интенсивности люминесценции по мере увеличения х при всех энергиях возбуждения, за исключением $E_{\rm ex} = 3.4 \, {\rm eV}$, что соответствует внутрицентровому возбуждению Ce^{3+} через уровень 5d(1). Интенсивность при $E_{\rm ex} = 3.4 \, {\rm eV}$ остается постоянной при x = 0, 0.25 и 0.50 и уменьшается начиная с x = 0.75 (рис. 5). Такое поведение может быть также объяснено влиянием фазы кальцита, формирующей конкурирующие каналы релаксации энергии. Однако в случае Lu_xY_{1-x}BO₃:Ce³⁺ конкурирующая роль фазы кальцита не очевидна. Интенсивность первой полосы изменяется, только начиная с x = 0.75, тогда как фаза кальцита появляется уже для x = 0.5. Кроме того, не наблюдаются дополнительные полосы люминесценции Се³⁺, расположенного в узлах с симметрией окружения, искаженной наличием близлежащей кальцитовой фазы, как это было в случае $Lu_x Y_{1-x} BO_3 : Eu^{3+}$.

Другим предположением, которое может объяснить наблюдаемый эффект, является постепенное смещение d-уровней Ce³⁺ ко дну зоны проводимости при постепенном увеличении значения x. Такое смещение может обусловливаться как сужением ширины запрещенной зоны, так и смещением d-уровней в область высоких энергий. Полученные экспериментальные данные по TCЛ и времяразрешенным спектрам возбуждения люминесценции свидетельствуют в пользу сужения запрещенной зоны при увеличении x.

Пики ТСЛ смещаются в низкотемпературную область, что приводит к уменьшению энергии активации ловушек с увеличением значения x (рис. 7, вставка). Известно, что цериевый центр свечения захватывает сначала дырку и только затем электрон, поэтому анализ кривых ТСЛ в полосах свечения Ce^{3+} несет информацию об изменении параметров именно электронных ловушек [35]. Наблюдаемое уменьшение энергии активации ловушек с увеличением x свидетельствует о смещении дна зоны проводимости в низкоэнергетическую область.

Из времяразрешенных спектров возбуждения люминесценции также следует уменьшение ширины E_g с

Рис. 8. Времяразрешенные спектры возбуждения люминесценции $Lu_xY_{1-x}BO_3:Ce^{3+}$ при x = 0 (1), 0.25 (2), 0.50 (3), 0.75 (4), 1.00 (5), измеренные во временны́х интервалах TI2 125–150 ns (*a*) и TI1 7–20 ns (*b*), $\lambda_{em} = 420$ nm, T = 300 K.

увеличением значения х. Изменение ширины запрещенной зоны может быть получено из анализа спектров возбуждения, измеренных во временных интервалах TI2. На рис. 8 представлены времяразрешенные спектры для серии твердых растворов, активированных ионами Ce^{3+} . Наблюдается смещение края $\Phi\Pi$ в область низких энергий с увеличением концентрации Lu, что указывает на постепенное уменьшение ширины запрещенной зоны (рис. 8, *a*). Отметим, что попытка анализа смещения края ФП в спектрах возбуждения, измеренных во временных интервалах IT1, может приводить к противоположному выводу (рис. 8, b). Действительно, в этом случае порог смещается в область высоких энергий с увеличением x. Спектры, полученные во временных интервалах TI1, позволяют зарегистрировать экситонный пик на краю области ФП. Таким образом, можно сделать вывод о том, что создание экситонов постепенно подавляется с увеличением х. Ранее для беспримесных боратов было показано, что в боратах с фазой ватерита экситон создается с участием катионных состояний, формирующих дно зоны проводимости [33]. Постепенное замещение катиона иттрия, состояния которого формируют отдельную узкую подзону в области дна зоны проводимости катионом лютеция с существенно большей дисперсией состояний в области дна зоны проводимости [31] может уменьшать вероятность создания экситонов. Этот вывод согласуется с уменьшением интенсивности свечения автолокализованного экситона в беспримесных боратах по мере увеличения x [33]. Начиная с образца серии с x = 0.75 вклад быстрой компоненты существенно уменьшается в области экситонного пика при 7.5 eV и полностью пропадает для LuBO₃, что может быть связано с дополнительным негативным влиянием на создание экситона фазы кальцита. Как показывают результаты расчетов [31], в кальцитовой фазе дно зоны проводимости сформировано состояниями бора, которые оказывают негативное влияние на локализацию горячих электронов.

Отметим, что, несмотря на отсутствие проявления возможного эффекта кластеризации твердого раствора в спектрах люминесценции, были получены косвенные доказательства его проявления в серии $Lu_xY_{1-x}BO_3:Ce^{3+}$. Согласно данным, приведенным в табл. 2, происходит увеличение времен затухания для промежуточных значений *x* в твердых растворах при межзонном возбуждении. Действительно, границы кластеров характеризуются повышенной концентрацией дефектов, которые ограничивают скорость переноса возбуждения на ионы Ce^{3+} . Это должно приводить к увеличению времени затухания люминесценции, что и наблюдалось в эксперименте.

4. Заключение

люминесцентных Проведены исследования серий твердых растворов $Lu_x Y_{1-x} BO_3$ свойств (x = 0, 0.25, 0.50, 0.75, 1.00), легированных ионами Се³⁺ или Еи³⁺. Установлено постепенное уменьшение параметров кристаллической решетки при увеличении доли катиона лютеция в твердом растворе. Обнаружено появление дополнительной кальцитовой фазы начиная с x = 0.50 для $Lu_x Y_{1-x} BO_3 : Ce^{3+}$ и с x = 0.75 $Lu_x Y_{1-x} BO_3$: Eu. Максимальное содержание для кальцитовой фазы при этом составляет менее 5 wt.%.

Пики в спектрах люминесценции твердых растворов связаны с излучательной рекомбинацией на примесных ионах. Обнаружено увеличение интенсивности излучения при межзонном возбуждении для серии $Lu_x Y_{1-x} BO_3 : Eu^{3+}$ для промежуточных значений x, что связано с увеличением эффективности передачи энергии на центры свечения Eu³⁺. Эффект подтверждает ограничение длины разлета генетических электронов и дырок в твердом растворе. Появление кальцитовой фазы в твердых растворах приводит к существенному снижению эффективности передачи энергии на центры свечения как Eu³⁺, так и Ce³⁺. Для серии Lu_xY_{1-x}BO₃:Ce³⁺ обнаружено, что при высокоэнергетическом возбуждении 130 eV в спектре люминесценции помимо основного дублета свечения Ce³⁺ при 380 и 420 nm, который наблюдается также при УФ- и ВУФ-возбуждении, появляется дополнительный дублет при 315 и 344 nm. Показано, что дополнительный дублет связан с образованием радиационных дефектов в окружении излучающего иона Ce³⁺. Обнаружено постепенное уменьшение интенсивности излучения для Lu_xY_{1-x}BO₃:Ce³⁺ с увеличением x. Эффект связан с модификацией зонной структуры в области дна зоны проводимости, в частности с уменьшением ширины запрещенной зоны за счет низкоэнергетического смещения дна зоны проводимости. Положение уровня церия 5d(1) при этом постепенно смещается в область зоны проводимости, что приводит к возможности ионизации возбужденного состояния Ce³⁺ и, как следствие, к уменьшению интенсивности люминесценции Ce³⁺.

Авторы выражают благодарность А.В. Котлову за помощь в проведении экспериментов на установке SUPERLUMI и А.Н. Бельскому за предоставление возможности и помощь при измерении спектров люминесценции $Lu_xY_{1-x}BO_3:Eu^{3+}$ при рентгеновском возбуждении.

Список литературы

- Б.В. Гринев, М.Ф. Дубовик, А.В. Толмачев. Оптические монокристаллы сложных оксидных соединений. Ин-т монокристаллов, Харьков (2002). 265 с.
- [2] C.H. Kim, I.E. Kwon, C.H. Park, Y.J. Hwang, H.S. Bae, Y.B. Yu, C.H. Pyun, G.Y. Hong. J. Alloys Comp. **311**, 33 (2000).
- [3] Л.В. Иваненко. Автореф. канд. дис. Ставрополь. ун-т, Ставрополь (2004). 20 с.
- [4] F. Yang, S. Pan, D. Ding. Abstracts of the 11th Int. Conf. on inorganic scintillators and their applications. Germany (2011). O 4.22.
- [5] Y. Wu, D. Ding, S. Pan, F. Yang, G. Ren. J. Alloys Comp. 509, 366 (2010).
- [6] W.W. Moses, M.J. Weber, S.E. Derenzo, D. Perry, P. Berdahl, L. Schwarz, U. Sasum, L.A. Boatner. Proc. of the 4th Int. Conf. on inorganic scintillators and their applications. Shanghai, China (1997). P. 358.
- [7] Б.И. Заднепровский, В.В. Сосновцев, Д.Г. Перменов, А.А. Меотишвили, Г.И. Воронова. Письма в ЖТФ 35, 17, 64 (2009).
- [8] C. Mansuy, E. Tomasella, R. Mahiou, L. Gengembre, J. Grimblot, J.M. Nedelec. Thin Solid Films 515, 666 (2006).
- [9] S. Hatamoto, T. Yamazaki, J. Hasegawa, Y. Anzaiy, M. Katsurayama, M. Oshika. J. Cryst. Growth 311, 530 (2009).
- [10] G. Chadeyron-Bertrand, D. Boyer, C. Dujardin, C. Mansuy, R. Mahiou. Nicl. Instrum. Meth. Phys. Res. B 229, 232 (2005).
- [11] A.N. Belsky, C. Dujardin, C. Pedrini, A. Petrosyan, W. Blane, J.C. Gacon, E. Auffray, P. Lecoq. Proc. of the 5th Int. Conf. on inorganic scintillators and their applications. M. (1999). P. 363.
- [12] A.N. Belsky, C. Dujardin, C. Pedrini, A. Petrosyan, W. Blanc, J.C. Gacon, E. Auffray, P. Lecoq, N. Garnier, H. Canibano. IEEE Trans. Nucl. Sci. 48, 1095 (2001).

- [13] Y.T. Wu, D.Z. Ding, S.K. Pan, F. Yang, G.H. Ren. Cryst. Res. Technol. 46, 1, 48 (2011).
- [14] O. Sidletskiy, A. Belsky, A. Gektin, S. Neicheva, D. Kurtsev, V. Kononets, C. Dujardin, K. Lebbou, O. Zelenskaya, V. Tarasov, K. Belikov, B. Grinyov. Cryst. Growth Design 12, 4411 (2012).
- [15] O. Sidletskiy, V. Kononets, K. Lebbou, S. Neicheva, O. Voloshina, V. Bondar, V. Baumer, K. Belikov, A. Gektin, B. Grinyov, M. Joubert. Mater. Res. Bull. 47, 3249 (2012).
- [16] G. Zimmerer. Rad. Measurements 42, 859 (2007).
- [17] А.Е. Савон. Автореф. канд. дис. МГУ им. М.В. Ломоносова, М. (2012). 27 с.
- [18] C.U.S. Larsson, A. Beutler, O. Björneholm, F. Federmann, U. Hahn, A. Rieck, S. Verbin, T. Möller. Nucl. Instrum. Meth. Phys. Res. A 337, 603 (1994).
- [19] J. Holsa. Inorg. Chim. Acta 139, 257 (1987).
- [20] G. Blasse, B.C. Grabmaier. Luminescent materials. Springer, Berlin–Heidelberg (1994). P. 233.
- [21] S. Hachani, B. Moine, A. El-Akrmi, M. Ferid. J. Lumin. 130, 1774 (2010).
- [22] В.В. Михайлин, А.Н. Васильев. Введение в спектроскопию твердого тела. Изд-во МГУ, М. (2010). 237 с.
- [23] Д. Шрайвер, П. Эткинс. Теория кристаллического поля. Неорганическая химия. Мир, М. Т. 1. С. 359–679.
- [24] M. Randic. J. Chem. Phys. 36, 2094 (1962).
- [25] L. Zhang, C. Madej, C. Pedrini, C. Dujardin, J.C. Gacon, B. Moine, I. Kamenskikh, A. Belsky, D.A. Shaw, M.A. Mac Donald. Rad. Eff. Def. Solids 150, 47 (1999).
- [26] R.E. Newnham, M.J. Redman, R.S. Roth. J. Am. Ceram. Soc. 46, 253 (1963).
- [27] W.F. Bradley, D.L. Graf, R.S. Roth. Acta Cryst. 20, 283 (1966).
- [28] G. Chadeyron, M. El-Ghozzi, R. Mahiou, A. Arbus, J.C. Cousseins. J. Solid State Chem. 128, 261 (1997).
- [29] M. Ren, J.H. Lin, Y. Dong, L.Q. Yang, M.Z. Su, L.P. You. Chem. Mater. 11, 1576 (1999).
- [30] J.H. Lin, D. Sheptyakov, Y.X. Wang, P. Allenspach. Chem. Mater. 16, 2418 (2004).
- [31] K.C. Mishra, B.G. DeBoer, P.C. Schmidt, I. Osterloh, M. Stephan, V. Eyert, K.H. Johnson. Phys. Chem. 102, 1772 (1998).
- [32] M. Balcerzyk, Z. Gontarz, M. Moszynski, M. Kapusta. J. Lumin. 87–89, 963 (2000).
- [33] Д.А. Спасский, В.С. Левушкина, В.В. Михайлин, Б.И. Заднепровский, М.С. Третьякова. ФТТ **55**, 134 (2013).
- [34] A.N. Belsky, O. Krachni, V.V. Mikhailin. J. Phys.: Cond. Mater 5, 9417 (1993).
- [35] M. Fasoli, A. Vedda, M. Nikl, C. Jiang, B.P. Uberuaga, D.A. Andersson, K.J. McClellan, C.R. Stanek. Phys. Rev. B 84, 081 102 (2011).