07,01

Дислокационная структура волн пластической релаксации в поликристаллах и сплавах при интенсивном ударном нагружении

© Г.А. Малыгин¹, С.Л. Огарков², А.В. Андрияш²

¹ Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

² Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова,

Москва, Россия

E-mail: malygin.ga@mail.ioffe.ru

(Поступила в Редакцию 29 апреля 2014 г.)

На основе дислокационно-кинетических соотношений и кинетического уравнения для плотности дислокаций теоретически обсуждается влияние структурных факторов (размера зерен и объемной плотности преципитатов) на характер формирующейся в поликристаллах и сплавах за фронтом ударной волны (упругим предвестником) дислокационной структуры. Сформулированы критические условия перехода от ячеистой дислокационной структуры к однородному распределению дислокаций. С помощью условий найдены зависимости критического давления, выше которого распределение дислокаций становится однородным, от размера зерен и объемной плотности преципитатов.

1. Введение

Эксперименты по интенсивному ударному нагружению поликристаллического A1 показывают [1], что напряжения за ударным фронтом (упругим предвестником) не чувствительны к размеру зерен в приведенном в этой работе диапазоне их размеров $1-10^3 \,\mu m$. В [1] также найдено, что наличие в алюминиевом сплаве преципитатов вызывает рост напряжений течения в диапазоне скоростей деформации $\dot{\epsilon}_G < 10^6 \, {
m s}^{-1},$ но преципитаты не влияют на напряжение течения при скоростях деформации выше $10^6 \, {\rm s}^{-1}$. При электронномикроскопическом исследовании дислокационной структуры сплава Al-Mg-Si, содержащего нанопреципитаты, обнаружено, что начиная с некоторой величины их объемной плотности ячеистая дислокационная структура в подвергнутом удару сплаве не образуется, вместо нее возникает однородное распределение дислокаций. Моделирование эволюции дислокационной структуры этого сплава методом динамики дискретных дислокаций (ДДД) [2] подтверждает этот результат. В [3] установлено, что в ударно-деформируемых сплавах Cu-Al рост концентрации алюминия, уменьшая величину энергии дефектов упаковки, снижает критическое напряжение перехода от пространственно неоднородного (ячеистого) распределения дислокаций к однородному их распределению в виде расщепленных (extended) дислокаций.

Приведенные выше факты свидетельствуют о не совсем обычном характере влияния размера зерен в поликристаллах и дисперсной структуры сплавов на их деформационное поведение в условиях интенсивного ударного нагружения по сравнению с квазистатической их деформацией. Целью настоящей работы является анализ особенностей формирования волн пластической релаксации в поликристаллах и сплавах по сравнению с монокристаллами чистых металлов. Анализ основывается на кинетическом уравнении для средней плотности дислокаций [4,5] с учетом структурных факторов (размера зерен в поликристаллах, преципитатов в сплавах), влияющих на характер формирующихся при ударе дислокационных структур. При анализе поликристаллов мы ограничимся размерами зерен больше 1μ m, поскольку результаты ударного нагружения нанокристаллических и наноструктурированных материалов требуют отдельного обсуждения. Отдельного рассмотрения требует также механизм влияния энергии дефектов упаковки на характер образующихся при ударе дислокационных структур [3].

2. Основные уравнения и соотношения

В [5] анализ механизма образования за ударным фронтом (упругим предвестником) дислокационной структуры базировался на кинетическом уравнении для плотности дислокаций вида

$$\begin{aligned} \frac{\partial \rho(x,t)}{\partial t} &= (1-\xi)\lambda_D u \,\frac{\partial^2 \rho}{\partial x^2} \\ &+ (1-\beta_{\rm im}) \,\frac{u}{\lambda_m} \rho + \delta_f u \rho^{3/2} - h_a u \rho^2, \quad (1) \end{aligned}$$

где $\rho(x, t)$ — зависящая от координаты x и времени t плотность дислокаций, u — их скорость, λ_D — характерная длина диффузии винтовых участков дислокационных петель механизмом поперечного скольжения (cross-slip), λ_m и $1/\delta_f \rho^{1/2}$ — длины пробега дислокаций между актами их размножения на препятствиях недеформационного и деформационного (лес дислокаций с плотностью ρ_f) происхождения соответственно, $\delta_f \approx 10^{-2}$ — коэффициент, определяющий интенсивность последнего процесса, h_a — характерное расстояние аннигиляции винтовых участков дислокационных петель механизмом

поперечного скольжения, ξ — параметр инверсии диффузионного потока дислокаций, β_{im} — параметр самоорганизации дисклокаций.

При $\xi = 0$, $\beta_{im} = 0$ решение уравнения (1) описывает бегущую со скоростью U_w устойчивую, пространственно неструктурированную волну плотности дислокаций с шириной фронта w и максимальной плотностью дислокаций в волне ρ_{wm} [4,5]

$$\rho_w(z,t) = \frac{\rho_{wm}}{\left[1 + \exp\left(\frac{z - U_w t}{w}\right)\right]^2}.$$
 (2a)

Здесь

$$U_{w} = \frac{h(a)}{q(a)} \left(\frac{\lambda_{D}}{bk_{a}}\right)^{1/2} \delta_{f} u, \quad w = \frac{(\lambda_{D} bk_{a})^{1/2}}{\delta_{f} q(a)},$$
$$\rho_{wm} = \left(\frac{\delta_{f}}{bk_{a} f(a)}\right)^{2}, \qquad (2b)$$

$$h(a) = \frac{2a}{3} \left(\frac{1}{(1+4a)^{1/2} - 1} + \frac{5}{4} \right),$$
$$q(a) = \left[\frac{a}{6} \left(\frac{2}{(1+4a)^{1/2} - 1} + 1 \right) \right]^{1/2}, \qquad (2c)$$

$$f(a) = \frac{1}{2a} \left[(1+4a)^{1/2} - 1 \right], \quad a = \frac{bk_a}{\lambda_m \delta_f^2}, \qquad (2d)$$

где $k_a = h_a/b$ — коэффициент аннигиляции винтовых дислокаций, **b** — вектор Бюргерса. Особенность распределения плотности дислокаций за фронтом ударной волны, описываемая соотношениями (2a)–(2d), состоит в том, что ряд коэффициентов в уравнении (1) зависит от плотности генерируемых на фронте ударной волны геометрически необходимых (ГН) дислокаций ρ_G [6,7]

$$\rho_G = \rho_{G0} \left[1 - \left(\frac{V}{V_0}\right)^{1/3} \right]^3,$$

$$\rho_{G0} = \frac{\pi^2}{0.8\sqrt{2}(1-\nu)m^3b^2} \approx \frac{13}{m^3b^2},$$
(3)

где V и V₀ — соответственно удельные объемы сжатой и не подвергнутой сжатию частей кристалла, ν — коэффициент Пуассона, m — ориентационный фактор. Длина пробега дислокаций между актами их размножения на ГН-дислокациях как на дислокациях леса описывается формулой $\lambda_G = (\delta_f \rho_G^{1/2})^{-1}$. Геометрически необходимые дислокации выступают здесь в качестве внешнего препятствия (леса из ГН-дислокаций) для дислокаций второй волны.

В поликристаллах эффективная длина пробега дислокаций $\lambda_g = d_g/\beta_g$ (где $\beta_g \approx 1$) дополнительно ограничена размером зерен d_g [8]. Наличие в кристалле препятствий в виде достаточно жестких неперерезаемых преципитатов, преодолеваемых поперечным скольжением винтовых участков дислокационных петель, вызывает рост плотности дислокаций. Эффективная длина пробега дислокаций $l_p = 1/n^{2/3} w_p$ между актами их размножения на наночастицах зависит от объемной плотности частиц *n* и их размера w_p (см. раздел 4). Таким образом, полная эффективная длина пробега винтовых дислокаций между актами размножения на препятствиях недеформационного происхождения описывается соотношением

$$\lambda_m^{-1} = \delta_f \rho_G^{1/2} + \frac{1}{d_g} + \frac{1}{l_p}.$$
 (4)

Соответственно для безразмерной комбинации параметров *а* в уравнениях (2) получаем выражение

$$a = \delta_f^{-2} b \left(\delta_f \rho_G^{1/2} + \frac{1}{d_g} + \frac{1}{l_p} \right) k_a.$$
 (5)

Характерная длина диффузии дислокаций λ_D в уравнении (1) зависит от плотности дислокаций ρ_G на ударном фронте, а в поликристаллах и сплавах может зависеть соответственно от размера зерен d_g и от расстояния между преципитатами на плоскости поперечного скольжения l_p :

$$\lambda_D^{-1} = \rho_G^{1/2} + \frac{1}{d_g} + \frac{1}{l_p}.$$
 (6)

Коэффициент аннигиляции винтовых дислокаций k_a в (5) зависит от скорости ударной деформации $\dot{\epsilon}_G = \dot{V}/V_0$, температуры T и энергии дефекта упаковки γ_D согласно выражению [9,11]

$$k_a = k_0 \exp\left(\frac{k_{\rm B}T}{A} \ln\left(\frac{\dot{\varepsilon}_0}{\dot{\varepsilon}_G}\right)\right),\tag{7}$$

где $k_0 \approx 2$ — коэффициент аннигиляции дислокаций в ГЦК-металлах при T = 0, k_B — постоянная Больцмана, $A = A(\gamma_D)$ — параметр, зависящий от энергии образования на дислокации критического зародыша на плоскости поперечного скольжения [10]. Согласно [9–11], при снижении энергии дефектов упаковки параметр Aвозрастает. Таким образом, безразмерный параметр $a = a(\rho_G, d_g, l_p, \gamma_D)$ в формуле (5) включает все представляющие интерес для настоящей работы структурные факторы. Их влияние на параметры волны плотности дислокаций (2a) определяют формулы (2b)-(2d).

Для дальнейшего анализа представляет интерес зависимость плотности ГН-дислокаций ρ_G не от изменения удельного объема (3), а от давления в ударной волне *P*. Давление *P* в волне и изменение удельного объема V/V_0 связаны соотношением Гюгонио

$$P/P_0 = \frac{1 - V/V_0}{\left[1 - S(1 - V/V_0)\right]^2},\tag{8}$$

где $P_0 = C_0^2/V_0 \approx E$; C_0 и E — соответственно продольная скорость звука и модуль Юнга в отсутствие сжатия кристалла; S = 1.49 (Cu) и 1.33 (Al) — коэффициенты адиабатичности. При $P/P_0 < 0.1$ из (8) следует, что $V/V_0 \approx 1 - P/P_0$. Подставляя это соотношение

в (3), получаем, что при относительно малых давлениях P < 0.1E зависимость плотности ГН дислокаций от давления имеет степенной характер [12]

$$\frac{\rho_G}{\rho_{G0}} \approx \frac{1}{3^3} \left(\frac{P}{P_0}\right)^3. \tag{9a}$$

Измеряемое при выходе ударной волны на тыльную поверхность образца акустическое давление $\sigma = \sigma_z$ связано с давлением в волне соотношением $\sigma_z = \chi P$, где $\chi = 3(1 - \nu)/(1 + \nu)$. При расчетах плотности ГН-дислокаций согласно (3) и (9а) и анализе экспериментальных данных будем учитывать это обстоятельство. В результате для $P < 0.1P_0$ вместо (9а) имеем соотношение

$$\frac{\rho_G}{\rho_{G0}} = \frac{1}{3^3 \chi^3} \left(\frac{\sigma}{E}\right)^3,\tag{9b}$$

где $\chi = 1.5$ при $\nu \approx 0.33 - 0.34$.

3. Поликристаллы

На рис. 1 приведена зависимость напряжения σ_2 за фронтом ударной волны от скорости деформации сжатия $\dot{\epsilon}_G$ в алюминии при варьировании размеров зерен в диапазоне от 10^3 до $1\,\mu$ m [1]. Несмотря на столь широкий диапазон их изменения, напряжения для всех размеров зерен укладываются на одну зависимость (пунктир) согласно соотношению $\sigma_2(\dot{\epsilon}_G)$ для монокристаллов алюминия [4]

$$\sigma_2 = E\left(\frac{\dot{\varepsilon}_G}{\eta K_2}\right)^{2/5}, \quad K_2 = \beta_2\left(\frac{E}{B}\right) \approx 2.5 \cdot 10^{10} \,\mathrm{s}^{-1},$$
(10a)

$$\beta_2 = m^2 \frac{1 - 2\nu}{1 - \nu} \left(\frac{b^2 \rho_{G0}}{3^3 \chi^3} \right)^{1/2} \frac{\delta_f}{k_a} \approx 3 \cdot 10^{-4}, \qquad (10b)$$

где $\eta = (1 + \nu)^{-1}$, E = 72 GPa, $B = 9 \cdot 10^{-4}$ Pa · s — постоянная вязкого торможения дислокаций, $k_a = 4$, ориентационный фактор m = 0.41. Соотношение (10a) является результатом решения уравнения релаксации напряжений за ударным фронтом (упругим предвестником) в движущейся системе координат $Z = U_2 t - z$

$$U_2 \frac{d\sigma}{dZ} = E \left[\dot{\varepsilon}_G - \eta \dot{\varepsilon}_{\text{pl}} \right], \quad \dot{\varepsilon}_{\text{pl}} = mb\rho_w(z, t)u. \quad (11a)$$

Здесь $\dot{\varepsilon}_{\rm pl}$ — скорость пластической деформации, $\rho(z, t)$ — плотность дислокаций (2a),

$$u = \frac{b}{B}\tau, \quad \tau = m\frac{1-2\nu}{1-\nu}\sigma$$
 (11b)

— скорость дислокаций и напряжение сдвига в плоскости скольжения дислокаций соответственно, $U_2 \approx C_0$ скорость волны. Решение (10а) уравнения (11а) получено для максимальной плотности дислокаций в волне ρ_{wm} (2b). Возникает вопрос: почему в поликристаллическом алюминии напряжение за ударным фронтом согласно представленным на рис. 1 данным нечувствительно к величине зерен при варьировании их размера в широком диапазоне? Дело в том, что в ударно-нагружаемом монокристалле единственными препятствиями недеформационного происхождения, на которых реализуется размножение дислокаций за фронтом ударной волны, являются генерируемые на фронте ГН-дислокации с

Рис. 1. Зависимость напряжения σ_2 за фронтом ударной волны (упругим предвестником) от скорости ударной деформации $\dot{\varepsilon}_G$ в поликристаллическом Al при варьировании размеров зерен в диапазоне $1-10^3 \mu m$ [1]. Кривые I-3 — расчет напряжения релаксации σ_2 согласно уравнениям (11а) и (12) при размере зерен 1, 10 и $10^3 \mu m$ соответственно.

Рис. 2. Волны плотности дислокаций в поликристаллическом Al согласно уравнению (2a) при размере зерен $d_g = 10^3$ (1), 1 (2) и 0.5 μ m (3) и скорости деформации 10^6 s⁻¹.

плотностью ρ_G . В поликристаллическом материале к ним, согласно (4) и (5), добавляются границы зерен как препятствия, способствующие аккумуляции дислокаций в зернах. На рис. 2 приведены результаты расчета плотности дислокаций в волне (2a) в поликристаллическом алюминии с учетом этого обстоятельства для трех размеров зерен: 10³, 1 и 0.5 µm. При расчете учтена температурная (при трех скоростях деформации, рис. 3,*a*) и скоростная при 293 К — (рис. 3,*b*) зависимости коэффициента аннигиляции дислокаций в алюминии согласно формуле (7) при A = 0.25 eV [9,11] и $\dot{\varepsilon}_0 = 10^{10} \, \text{s}^{-1}$. Видно, что по сравнению с крупнозернистым алюминием (кривая 1) в микрозернистых образцах (кривые 2 и 3) плотность дислокаций выше. На рис. 4 показана зависимость плотности дислокаций ρ_{wm} (2b) от давления в волне σ при трех размерах зерен. Из результатов расчета следует, что в диапазоне давлений $\sigma < 1$ GPa плотность дислокаций чувствительна к разме-

Рис. 3. Расчет согласно уравнению (7) зависимости коэффициента аннигиляции дислокаций в Al от температуры при трех скоростях деформации (*a*) и зависимость коэффициента аннигиляции от скорости деформации при температуре 293 К в Al (A = 0.25 eV [9,11]) и Cu (A = 1 eV [9,11]) (*b*).

Рис. 4. Зависимость максимальной плотности дислокаций (2b) в волне (2a) от давления в Al при размере зерен $d_g = 10^3$ (1), 10 (2) и 1 μ m (3). Пунктир — плотность дислокаций, генерируемых на ударном фронте согласно соотношению (9b).

ру зерен, а выше этого давления практически перестает от него зависеть, поскольку основными препятствиями, на которых происходит размножение дислокаций в этом диапазоне напряжений, являются ГН-дислокации. Пунктир на рисунке демонстрирует зависимость их плотности от давления $\rho_G \sim \sigma^3$; она подтверждает отмеченное выше. При $\sigma > 10$ GPa плотность дислокаций ρ_{wm} , как и в монокристалле Al, подчиняется соотношению $\rho_{wm} \sim \rho_G^{1/2} \sim \sigma^{3/2}$, несмотря на микрозеренность образцов.

Из представленных на рис. 2 результатов видно также, что ширина фронта w волны плотности дислокаций уменьшается с уменьшением размера зерен d_g . На рис. 5, a показана зависимость w от размера зерен в широком диапазоне размеров (от 10^{-3} до $10^3 \mu$ m) при трех значениях давления σ . Видно, что ширина фронта начинает существенно зависеть от размера зерен при $d_g < 1 \mu$ m, снижаясь с уменьшением величины зерен по закону $w \sim d_g$. Кроме того, она уменьшается с ростом давления. Рис. 5, b демонстрирует зависимость отношения ширины фронта w к размеру зерен d_g от их величины при трех значениях давления. Согласно расчету, в довольно широком диапазоне давлений и размеров зерен ширина фронта превышает их размер, но не более чем в 2.5 раза.

Таким образом, расчет показывает, что параметры волны плотности дислокаций зависят от размера зерен, но максимальное давление за фронтом σ_2 , согласно данным [1] (рис. 1), от него не зависит. При расчете напряжения σ_2 (10a) предполагалось, что скорости дислокаций находятся в диапазоне вязкого их торможения и определяются соотношениями (11b). Чтобы включить в расчет диапазон термоактивированного движения дислокаций, воспользуемся соотношениями для скорости

Рис. 5. Влияние размера зерен d_g на ширину фронта w волны плотности дислокаций (2a) в A1 (*a*) и зависимость относительной ширины фронта w/d_g от размера зерен (*b*) при $\sigma = 30$ (1), 10 (2) и 1 GPa (3).

пластической деформации и скорости дислокаций, включающими этот диапазон:

$$\dot{\varepsilon}_{\rm pl}(\tau) = mb\rho(\tau)u(\tau), \quad u(\tau) = \frac{u_s}{\exp\left(\frac{H(\tau)}{kT}\right) + \frac{Bu_s}{b\tau}}.$$
 (12)

(12) $H = H_0 - \Omega(\tau - \tau_\mu),$ H_0 , $\Omega = b^2 l_{\rho}$ В И $au_{\mu} = lpha \mu b
ho^{1/2}$ — энергия активации, величина потенциального барьера, активационный объем И деформационное упрочнение кристалла соответственно, *α* = 0.3 — коэффициент взаимодействия дислокаций, $u_s = 3.2 \, \text{km/s}$ — скорость сдвиговых волн в Al, $l_{\rho} = 1/\rho^{1/2}$ — расстояние между дислокациями леса с плотностью $\rho(\tau)$; в нашем случае $\rho(\tau) = \rho_{wm}(\tau)$, где величина напряжения сдвига т определяется формулой (11b). В алюминии для образования ступеньки на движущейся дислокации при пересечении ее с дислокациями леса требуется энергия $H_0 \approx 0.25 \, \mu b^3$ $\approx 1.0 \, eV.$

Подставляя скорость пластической деформации (12) в уравнение релаксации напряжений за ударным фронтом (11а) и решая численно уравнение $\dot{\varepsilon}_G = \dot{\varepsilon}_{\rm pl}(\sigma)$ при различных размерах зерен, получаем зависимость напряжения релаксации σ_2 от скорости деформации сжатия $\dot{\varepsilon}_G$. На рис. 1 кривые 1-3 демонстрируют эти зависимости для трех размеров зерен. Видно, что каждая из кривых содержит участок термоактивированного движения дислокаций $\sigma \sim \ln \dot{\epsilon}_G$, участок вязкого торможения дислокаций $\sigma \sim \dot{\varepsilon}_G$ и участок степенной зависимости $\sigma_2 \sim \dot{\varepsilon}_G^{2/5}$, связанный со степенной зависимостью плотности ГН-дислокаций от давления. Участки степенной зависимости по мере роста размера зерен охватывают все более обширный диапазон скоростей деформации, где выполняется закон $\sigma_2 \sim \dot{arepsilon}_G^{2/5}$. На рис. 1 обозначены интервалы размеров зерен образцов алюминия, которые использовались при получении экспериментальной кривой $\sigma_2(\dot{\varepsilon}_G)$ в широком диапазоне скоростей деформации. В целом эти интервалы соответствуют расчету.

Как видно из представленных на рис. 1 результатов расчета, размер зерен влияет на напряжение течения в диапазоне термоактивированного движения дислокаций. Напряжение течения в этом диапазоне тем больше, чем меньше размер зерен в соответствии с соотношением Холла–Петча: $\sigma \sim d_g^{-1/2}$. Размер зерен влияет также на скорость деформации $\dot{\epsilon}_G$ начала вязкого торможения дислокаций сдвигается в сторону более высоких скоростей деформации. Наконец, при самых высоких скоростях деформации и напряжениях $\sigma > 10$ GPa геометрически необходимые дислокации от скорости деформации сжатия.

В заключение раздела сделаем одно замечание. Оно касается влияния толщины образцов на определяемые в эксперименте параметры ударных волн. Обычно это влияние связывают с затуханием упругих волн в процессе их движения от поверхности удара к тыльной поверхности, на которой давление измеряется. Согласно данным [13] и результатам их обработки [5], затухание давления в монокристаллах Си подчиняется экспоненциальному закону

$$\sigma = \frac{2\sigma_0}{1 + \exp(z/\Delta z)},\tag{13a}$$

где z — координата в направлении распространения ударной волны, σ_0 — давление в волне при z = 0, $\Delta z \approx 0.6-0.8$ mm — характерная длина экспоненциального затухания волны, слабо зависящая от начального давления в волне 20–60 GPa. При z = D уравнение (13а) описывает зависимость измеряемого на тыльной поверхности образца давления от толщины кристалла D

$$\sigma(D) = \frac{2\sigma_0}{1 + \exp(D/\Delta z)}.$$
 (13b)

Очевидно, что такое слабое экспоненциальное затухание не может объяснить наблюдаемые экспериментально степенные (дробные) зависимости давления от толщины образцов в широком диапазоне ее изменения от 1 до $10^4 \,\mu$ m. В [1,14] найдено, что в алюминии напряжение в волне за упругим предвестником зависит от толщины образца как $\sigma_2 \sim D^{-0.57}$. В магниевом сплаве напряжение на ударном фронте волны σ_1 (на пределе упругости Гюгонио *о*_{Hell} согласно традиционной терминологии) изменяется с толщиной образца в соответствии с законом $\sigma_1 \sim D^{-0.315}$ [15]. В [4] при анализе D-размерного эффекта в ударных волнах показано, что степенные зависимости являются результатом условия устойчивого образования упругого предвестника с шириной фронта $w_1 \leq D$ и пластической волны с шириной фронта $w_2 \leq D$ за ним. Эти условия определяют близкие к эксперименту зависимости давлений от толщины образцов: $\sigma_1 \sim D^{-1/3}$ и $\sigma_2 \sim D^{-2/3}$.

4. Сплавы

На рис. 6 показаны результаты [1] исследования влияния скорости ударной деформации на напряжение σ_2 за ударным фронтом в сплаве Al-Mg-Si (темные квадраты), содержащем преципитаты Mg₂Si размером 10-40 nm с объемной плотностью $10^3 - 10^4 \,\mu m^{-3}$ [2] и зерна размером 120 µm. Светлые квадраты демонстрируют ту же зависимость напряжения σ_2 от скорости деформации в поликристаллическом алюминии, что и на рис. 1. Обращает на себя внимание то, что до скорости деформации $10^6 - 10^7 \, {
m s}^{-1} \, \sigma_2$ в сплаве практически не зависит от скорости деформации, а выше этой скорости совпадает со скоростной зависимостью чистого алюминия. Независимость напряжения σ_2 в сплаве от скорости деформации $\dot{\varepsilon}_G < 10^6 \, {
m s}^{-1}$ указывает на атермический характер взаимодействия дислокаций с преципитатами. Это взаимодействие имеет два аспекта: взаимодействие с преципитатами 1) как с жесткими неперерезаемыми препятствиями; 2) как с препятствиями, на которых происходит размножение дислокаций.

Оба аспекта учитывает формула для напряжения течения $\sigma_2' = \sigma_0' + m_T \alpha \mu b \rho_2^{1/2}$, где ρ_2 — плотность дислокаций с учетом вклада в нее от размножения дислокаций на преципитатах согласно соотношениям (4) и (5), *m_T* = 3.05 — фактор Тейлора. Величина длины свободного пробега дислокаций между актами их размножения на преципитатах l_p может быть оценена из геометрического соотношения $l_p w_p = l^2$, где $l = n^{-1/3}$ — среднее расстояние между преципитатами, w_p — их поперечный размер, *n* — их объемная плотность. Приведенное соотношение означает, что при сечении взаимодействия $w_p \ll l$ винтовая дислокация должна пробежать расстояние l_p , чтобы на плоскости скольжения со средним расстоянием между преципитатами l испытать одно взаимодействие с ними. В соответствии с этой оценкой получаем, что расстояние l_p зависит от плотности преци-

Рис. 6. Зависимость напряжения за ударным фронтом σ_2 от скорости деформации $\dot{\epsilon}_G$ в чистом Al и сплаве Al-Mg-Si с объемной плотностью преципитатов $10^3 - 10^4 \,\mu\text{m}^{-3}$ [1]. Кривые l и 2 — расчет зависимости напряжения σ_2 от $\dot{\epsilon}_G$ согласно соотношениям (4), (5), (11) и (12) при эффективном расстоянии l_p между преципитатами 10 и 1 μ m соответственно.

питатов и их размера согласно формуле $l_p = 1/n^{2/3} w_p$. При указанных выше значениях плотности и размерах преципитатов получаем оценку $l_p \approx 1-10\,\mu$ m.

На рис. 6 кривые 1 и 2 демонстрируют результаты расчета напряжения σ_2 согласно соотношениям (4), (5), (11) и (12) для значений длин l_p пробега винтовых дислокаций между актами их размножения на преципитатах 10 и 1 μ m соответственно при величине коэффициента аннигиляции дислокаций $k_a = 4$, остальные параметры те же, что и при расчете кривых 1-3 на рис. 1. Поскольку расчет напряжения σ_2 производился для плотности дислокаций ρ_{wm} , предполагалось, что вклад деформационного упрочнения $m_T \alpha \mu b \rho_{wm}^{1/2}$ в это напряжение существенно выше напряжения σ_0 из-за взаимодействия дислокаций с преципитатами как с жесткими неперерезаемыми препятствиями.

Размножение дислокаций на жестких частицах влияет также на характер формирующейся за ударным фронтом дислокационной структуры. Это обстоятельство исследовалось в [2] в подвергнутом ударному сжатию со скоростью $\dot{\epsilon}_G = 10^6 \text{ s}^{-1}$ (давление $\sigma \approx 3-4 \text{ GPa}$) сплаве Al-Mg-Si с помощью трансмиссионного электронного микроскопа. Сплав содержал преципитаты силицида магния диаметром 10–20 nm с объемной плотностью $10^3 - 10^4 \mu \text{m}^{-3}$. Эволюция дислокационной структуры в сплаве с преципитатами в условиях ударного нагружения моделировалась также методом ДДД. Результаты [2] показывают, что 1) с ростом объемной плотности преципитатов плотность дислокаций в сплаве существенно возрастает; 2) существует критическая величина плот-

ности преципитатов, выше которой неоднородная (ячеистая) дислокационная структура в сплаве не образуется, вместо нее формируется пространственно однородная дислокационная структура.

Механизм формирования ячеистой дислокационной структуры за фронтом ударной волны на базе уравнения (1) обсуждался в [5]. При $\xi > 1$, $\beta_{im} > 1$ и $\partial \rho / \partial t = 0$ решение уравнения (1) имеет вид [5]

$$\rho_c(x) = \frac{\rho_{\max}^{(c)}}{\left[1 + (f_c - 1)\sin^2(\pi x/\Lambda_c)\right]^2},$$
 (14a)

$$\Lambda_c = 4\pi \left(\frac{\xi - 1}{\beta_{\rm im} - 1}\right)^{1/2} \left(\lambda_D \lambda_m\right)^{1/2}, \qquad (14b)$$

$$f_c = \left(\frac{\rho_{\text{max}}^{(c)}}{\rho_{\text{min}}^{(c)}}\right)^{1/2} = \frac{1 + (1 - \eta_c)^{1/2}}{1 - (1 - \eta_c)^{1/2}},$$
$$\eta_c = \frac{25}{6} \left(\beta_{\text{im}} - 1\right)a, \tag{14c}$$

где Λ_c — размер ячеек в ячеистой дислокационной структуре, а $\rho_{\max}^{(c)}$ и $\rho_{\min}^{(c)} \ll \rho_{\max}^{(c)}$ — максимальная (в стенках ячеек) и минимальная (в центре ячеек) плотности дислокаций соответственно.

Из соотношений (14с) следует, что ячеистая структура формируется в кристалле при условиях $f_c > 1$, $0 < \eta_c < 1$ (условиях самоорганизации дислокаций и потери плотностью дислокаций пространственной устойчивости), т.е. при условии

$$a = \frac{bk_a}{\lambda_m \delta_f^2} < \frac{6}{25(\beta_{\rm im} - 1)}.$$
 (15a)

При наличии в поликристаллическом сплаве преципитатов это условие принимает вид

$$a = \frac{bk_a}{\delta_f^2} \left(\delta_f \rho_G^{1/2} + \frac{1}{d_g} + \frac{1}{l_p} \right)_a < \frac{6}{25(\beta_{\rm im} - 1)}.$$
 (15b)

Из неравенства (15b) видно, что имеются критическая плотность ГН-дислокаций и, следовательно, критическая величина давления σ , выше которых ячеистая структура в кристалле не должна возникать. Этот случай обсуждался в [5] применительно к монокристаллам Си и Ni. В поликристаллическом материале, согласно (15b), существует критический размер зерен: при меньшем размере зерна ячеистая структура в поликристалле не образуется. Действительно, из условия (15b) при $l_p \gg d_g$ следует, что при величине зерен, меньшей критического значения d_{gs} , где

$$d_{gc} = \frac{\delta_f^{-1}b}{6\delta_f/25(\beta_{\rm im} - 1)k_a - b\rho_G^{1/2}},$$
 (16)

ячеистая структура в поликристалле не возникает. В квазистатических условиях деформации, когда в формуле (16) $\rho_G = 0$, при $\beta_{\rm im} = 1.024$ и $k_a = 4$ получаем

Рис. 7. Влияние давления на критическую длину пробега дислокаций l_{pc} между актами их размножения на преципитатах (*a*) и на объемную плотность преципитатов n_c (*b*), выше которой ячеистая дислокационная структура в сплаве Al-Mg-Si не формируется (см. текст). Пунктир — $\sigma_c = 4.8$ GPa.

оценку $d_{gc} \approx 1 \,\mu$ m. Эта оценка согласуется с приведенными в [16] результатами обработки данных [17] для поликристаллического алюминия. В ударной волне критический размер, согласно (16), зависит от давления, поскольку $\rho_G \sim \sigma^3$, и увеличивается с его ростом.

Что касается сплава Al-Mg-Si, содержащего нанопреципитаты, то, согласно (15b), при размере зерен $d_g \gg l_p$ длина пробега дислокаций между актами их размножения на преципитатах, при которой в сплаве образуется ячеистая дислокационная структура, определяется условием $l_p > l_{pc}$, где

$$l_{pc} = \frac{\delta_f^{-1}b}{6\delta_f/25(\beta_{\rm im} - 1)k_a - b\rho_G^{1/2}}.$$
 (17a)

При $l < l_{pc}$ ячеистая структура не возникает. С учетом соотношения $l_p = 1/n^{2/3}w_p$ объемная плотность преципитатов *n*, выше которой ячеистая структура в сплаве не формируется, определяется условием $n > n_c$, где

$$n_c = \left(\frac{1}{l_{pc}w_p}\right)^{3/2}.$$
 (17b)

На рис. 7, а и b показаны зависимости критических длин пробега lpc и объемных плотностей преципитатов nc от давления с учетом зависимости плотности ho_G от него (9b) при $\beta_{\rm im} = 1.024, k_a = 4, w_p = 10$ nm. Согласно расчету, при $\sigma < 3 \, \mathrm{GPa}$ ячеистая дислокационная структура в сплаве образуется при длине пробега дислокаций больше 1-2 µm и объемной плотности дислокаций меньше $\sim 10^3 \,\mu {
m m}^{-3}$. В исследованном в [2] интервале давлений 3-4 GPa эти критические значения соответственно равны $2-4\,\mu m$ и $(0.1-0.3) \cdot 10^3\,\mu m^{-3}$. При давлениях больше 4.8 GPa ячеистая структура в сплаве не формируется. Критические значения плотности нанопреципитатов и ГН-дислокаций означают, что при более высоких плотностях препятствий нарушаются условия самоорганизации дислокаций в виде ячеистой структуры.

5. Заключение

Выполненный в работе на основе дислокационнокинетических соотношений и уравнения для плотности дислокаций анализ влияния структурных факторов на характер и параметры дислокационной структуры, формирующейся за фронтом ударной волны (упругим предвестником), показывает, что дислокационнокинетический подход позволяет выявить особенности их формирования в динамических условиях нагружения. Эти особенности связаны с двумя обстоятельствами: 1) с генерацией на ударном фронте геометрически необходимых дислокаций из-за несовместности упругих деформаций сжатой и не испытавшей еще сжатия частей кристалла; 2) с размножением дислокаций за ударным фронтом на ГН-дислокациях как на дислокациях леса.

Структурные факторы (размер зерен, преципитаты) оказывают влияние на процесс размножения дислокаций за ударным фронтом до давлений 10 GPa (скоростей деформации меньше $10^6 - 10^7 \, \mathrm{s}^{-1}$). При более высоких давлениях доминирующим фактором становится размножение дислокаций на ГН-дислокациях, в результате чего дислокационная структура приобретает однородный характер и оказывается нечувствительной к структурным факторам.

Список литературы

- R.F. Smith, J.H. Eggert, R.E. Rudd, D.C. Swift, C.A. Bolme, G.W. Collins. J. Appl. Phys. 110, 123 515 (2011).
- [2] Y. Liao, Ch. Ye, H. Gao, B-J. Kim, S. Suslov, E.A. Stach, G.J. Cheng, J. Appl. Phys. 110, 023 518 (2011).
- [3] M.A. Meyers, M.S. Schneider, H. Jarmakani, B.K. Kad, B.A. Remington, D.H. Kalantar, J. McNaney, B. Cao, J. Wark. Met. Mater. Trans. A 39, 304 (2008).

- [4] Г.А. Малыгин, С.Л. Огарков, А.В. Андрияш. ФТТ 55, 2168 (2013).
- [5] Г.А. Малыгин, С.Л. Огарков, А.В. Андрияш. ФТТ 56, 1123 (2014).
- [6] M.A. Meyers, H. Jarmakani, E.M. Bringa, B.A. Remington. Dislocation in solids. V. 15 / Eds J.P. Hirth, L. Kubin. Elsevier B.V. (2009). Ch. 89. P. 96–197.
- [7] C.H. Lu, B.A. Remington, B.R. Maddox, B. Kad, H.S. Park, S.T. Prisbery, M.A. Meyers. Acta Mater. 60, 6601 (2012).
- [8] M.F. Ashby. Phil. Mag. A 21, 863 (1977).
- [9] Г.А. Малыгин. ФТТ **37**, 3 (1995).
- [10] A. Seeger, R. Berner, H. Wolf. Z. Phys. 155, 247 (1959).
- [11] Г.А. Малыгин. ФТТ 34, 3200 (1992).
- [12] Г.А. Малыгин, С.Л. Огарков, А.В. Андрияш. ФТТ 55, 715 (2013).
- [13] M.S. Schneider, B.K. Kad, F. Gregory, D.H. Kalantar, B.A. Remington, M.A. Meyers. Met. Mater. Trans. A 35, 2633 (2004).
- [14] С.И. Ашитков, М.Б. Агранат, Г.И. Канель, П.С. Комаров, В.Е. Фортов. Письма в ЖЭТФ 92, 568 (2010).
- [15] Г.В. Гаркушин, Г.И. Канель, С.В. Разоренов. ФТТ 54, 1012 (2012).
- [16] Г.А. Малыгин. УФН 169, 979 (1999).
- [17] H. Fujita, T. Tabata. Acta Met. 21, 355 (1973).