07,01

Влияние отжига под действием растягивающей нагрузки на структуру нанокристаллов в файнмете

© Н.В. Ершов¹, Ю.П. Черненков², В.И. Федоров², В.А. Лукшина¹, А.П. Потапов¹

¹ Институт физики металлов УрО РАН,

Екатеринбург, Россия

² Петербургский институт ядерной физики им. Б.П. Константинова, НИЦ "Курчатовский институт",

Гатчина, Россия

E-mail: nershov@imp.uran.ru

(Поступила в Редакцию 27 марта 2014 г. В окончательной редакции 7 апреля 2014 г.)

Исследовано влияние нанокристаллизующего отжига под действием растягивающей нагрузки на структуру нанокристаллов в магнитомягком сплаве Fe–Si–Nb–B–Cu (файнмет). Показано, что ОЦК решетка нанокристаллов α -FeSi растянута вдоль направления приложения нагрузки при отжиге и сжата в поперечном направлении. Нанокристаллы в файнмете обладают более высокой степенью анизотропии механических свойств, чем массивные кристаллы α -FeSi, поэтому соответствие между измеренными и рассчитанными величинами растяжения достигается только при значительном увеличении модулей упругости. Существенное изменение механических свойств кристаллы в при их уменьшении до масштаба нанометров обусловлено влиянием окружающей нанокристаллы аморфной матрицы Fe(Nb)–B, имеющей высокую жесткость.

Работа выполнена при частичной поддержке Президиума РАН (проект № 12-П-23-2005).

1. Введение

Известно, что при отжиге ленты из аморфного сплава Fe-Si-Nb-B-Cu (файнмет), большая часть его объема преобразуется в нанокристаллы Fe-Si с объемноцентрированной кубической (ОЦК) решеткой и со средним размером 10-12 nm. Если отжиг проводится под действием растягивающей нагрузки, то решетка нанокристаллов после термообработки остается деформированной [1-5], что оказывает существенное влияние на магнитные свойства нанокристаллического магнитомягкого сплава [5–10]. Сохранение деформаций решетки нанокристаллов, по-видимому, обеспечивается жесткостью окружающей их аморфной матрицы. Остаточные деформации характеризуются следующими особенностями. Межплоскостные расстояния решетки увеличены вдоль направления приложения нагрузки при отжиге и сжаты (уменьшены) в поперечном направлении, а величина остаточных деформаций пропорциональна величине приложенного усилия. При этом деформация анизотропна: максимальные растяжения и сжатия наблюдаются вдоль оси (100), минимальные — вдоль оси (111). Величина деформаций растет с увеличением угла между вектором [*hkl*] и ближайшей осью (111). Вдоль оси (100) относительное увеличение межплоскостных расстояний может достигать 1%.

Ранее структурное и магнитное состояния ленточных образцов магнитомягкого сплава Fe-Si-Nb-B-Cu с 6 at.% кремния исследовались после нанокристаллизации при температуре 550°C в постоянном магнитном поле — термомагнитная обработка (TMO) (MFA — magnetic field annealing), в поле механических растягивающих напряжений — термомеханическая обработка

(TMexO) (TSA — tensile stress annealing), а также без внешних воздействий [10]. Было показано, что такие термообработки приводят к возникновению в образцах продольной магнитной анизотропии. При этом петля магнитного гистерезиса становится близкой к прямоугольной, а величина остаточной индукции возрастает практически до индукции насыщения. Для завершения процессов нанокристаллизации достаточно 20 min. В процессе ТМехО магнитная анизотропия наводится за те же 20 min, а при ТМО для существенного снижения коэрцитивной силы требуется более продолжительная выдержка (до 60 min). После ТМО деформация решетки α -FeSi нанокристаллов не обнаружена, что может быть связано либо с ее отсутствием, либо с малостью ее величины. В образцах, подвергнутых отжигу под действием растягивающей нагрузки, выявлены анизотропные деформации решетки нанокристаллов, величина которых увеличивается пропорционально величине напряжения.

Цель исследования, результаты которого приводятся и обсуждаются в настоящей работе — детальное изучение механических свойств нанокристаллов на основании данных о деформации решетки нанокристаллов при TMexO, полученных с помощью рентгеновской дифракции, и выяснение особенностей, отличающих нанокристаллы Fe–Si от массивных кристаллов сплавов железо-кремний.

2. Образцы и методика эксперимента

Формирование нанокристаллического состояния при отжиге закаленной из расплава ленты можно описать

следующей формулой [7]:

$$\begin{aligned} \mathrm{Fe-Si-Nb-B-Cu} &\to \delta^{\mathrm{Fe-Si}}\mathrm{Fe}_{1-x}\mathrm{Si}_{x} \\ &+ \left(1-C_{\mathrm{Cu}}-\delta^{\mathrm{Fe-Si}}\right)(\mathrm{Fe}_{1-y}\mathrm{Nb}_{y})_{n}\mathrm{B}+C_{\mathrm{Cu}}\mathrm{Cu}, \end{aligned}$$

где $\delta^{\mathrm{Fe-Si}}$ — доля нанокристаллов фазы Fe–Si, x концентрация кремния в нанокристаллах, $C_{\rm Cu}$ — концентрация меди в сплаве, у — концентрация ниобия, коэффициент n близок к стехиометрии (FeNb)₂B (например, $n \approx 2.2$). Во время нанокристаллизующего отжига [7] из аморфной фазы сначала образуются кластеры меди размером около 5 nm. В области между ними появляются центры кристаллизации ОЦК-Fe. В процессе отжига происходит зарождение и рост чрезвычайно мелких ОЦК-кристаллитов Fe-Si. В то время как формируется ОЦК-фаза Fe-Si, Nb и B исключаются из кристаллитов из-за их низкой растворимости в сплаве Fe-Si и обогащают остающуюся аморфной матрицу. Практически все атомы кремния вовлекаются в ОЦК-фазу Fe-Si. Обогащение В и, в частности, Nb все более стабилизирует аморфную матрицу и, следовательно, препятствует укрупнению ОЦК-зерен. Присутствие в ней ниобия препятствует образованию боридов железа. Изменения в структуре сплава прекращаются при достижении состояния с метастабильной двухфазной микроструктурой, состоящей из ОЦК-нанокристаллов Fe-Si, внедренных в аморфную матрицу $(Fe_{1-v}Nb_v)_n B$, содержащую также кластеры меди. Поскольку атомы железа распределяются между нанокристаллами и аморфной матрицей, концентрация кремния в нанокристаллах превышает его среднюю концентрацию Х в сплаве. Например, в случае сплава $Fe_{81}Si_6Nb_3B_9Cu_1$, т.е. при X = 6, химический состав нанокристаллов можно оценить как Fe_{0.915}Si_{0.085}.

Образцы сплава $Fe_{81}Si_6Nb_3B_9Cu_1$ в исходном состоянии были получены в виде лент методом быстрой закалки из расплава на вращающийся медный барабан. Затем образцы подвергались TMexO, которая состояла в отжиге (20 min при 550°C) и охлаждении лент до комнатной температуры под действием растягивающей нагрузки. Процесс TMexO описан в [5,10]. Один образец был отожжен при температуре 550°C без внешних воздействий. Все термообработки проводились на воздухе.

Для рентгенодифракционных исследований были приготовлены образцы из фрагментов лент длиной до 8-9 mm, которые наклеивались на оправки, имеющие форму тонких (0.3 mm) и узких (шириной 1 mm и диаметром 9 mm) колец, параллельно друг другу в несколько перекрывающихся слоев толщиной ~ $40-50\,\mu$ m. Дифрактограммы измерялись на четырехкружном рентгеновском дифрактометре (ФГБУ ПИЯФ) в геометрии на просвет с использованием монохроматизированного рентгеновского излучения (Мо K_{α} , $\lambda = 0.71$ Å) [5]. При сканировании вектор рассеяния все время оставался в плоскости образца и мог быть ориентирован вдоль или поперек оси лент вращением образца на угол 90°. Для каждого образца $\theta-2\theta$ -сканированием были получены две дифрактограммы, измеренные вдоль и поперек

ленты, т.е. параллельно и перпендикулярно направлению приложения растягивающей нагрузки при TMexO. На дифрактограммах в интервале углов 2θ от 15 до 60° наблюдаются пики с миллеровскими индексами (110), (200), (211), (220), (310), (222) и (321), разрешенные для ОЦК-решетки α -Fe(Si).

Деформацию нанокристаллов можно охарактеризовать величиной изменения межплоскостных расстояний в ОЦК-решетке: $\Delta d_{hkl} = d^a_{hkl} - d^i_{hkl}$, где d^i_{hkl} и d^a_{hkl} расстояния между плоскостями (hkl) после нанокристаллизации без внешних воздействий (i) и после нанокристаллизации под нагрузкой (а) соответственно. Значения d^i_{hkl} и d^a_{hkl} вычисляются из уточненных положений дифракционных пиков (hkl). Относительные деформации решетки можно описать параметрами *ε_{hkl}*, определенными по формуле $\varepsilon_{hkl} = \Delta d_{hkl}/d_{hkl}^i$, принятыми в теории упругости. Позиции пиков (hkl) в дифракционной картине определяются методом наименьших квадратов, а их профиль описывается функцией псевдо-Войта, которая представляет собой линейную комбинацию функций Лоренца и Гаусса с одинаковой шириной на половине высоты. Каждый пик содержит вклады двух линий $K_{\alpha 1}$ и $K_{\alpha 2}$ в спектре Мо K_{α} -излучения, т.е. представляет собой сумму двух функций псевдо-Войта.

Параметр решетки и межплоскостные расстояния d_{hkl}^i для недеформированных нанокристаллов определялись с помощью дифрактограмм образца сплава Fe₈₁Si₆Nb₃B₉Cu₁, прошедшего нанокристаллизацию без внешних воздействий. В образцах, подвергнутых TMe-хO, растяжения и сжатия ОЦК-решетки нанокристаллов вычислялись из уточненных положений пиков в продольном и поперечном сканах соответственно [9]. Относительное значение остаточной деформации нанокристаллов (ε_{hkl}) было получено таким образом для разных векторов [hkl] решетки, направленных вдоль и поперек ленты, т.е. для остаточных растяжений и сжатий решетки соответственно.

Поскольку деформации решетки нанокристаллов формируются во время отжига под действием приложенной к ленте растягивающей нагрузки, для выяснения особенностей механических свойств нанокристаллов нужно проанализировать и учесть детали процесса TMexO. Ленточные образцы подвешиваются внутри цилиндрической печи. Процесс термомеханической обработки состоит в нагревании, отжиге и охлаждении образца, к которому в течение всего процесса приложено механическое напряжение, которое создается подвешенным на ленте грузом. Вес груза рассчитывается по следующей формуле: $P = \sigma S$, где σ — заранее заданная величина напряжения, *S* — сечение образца, рассчитанное из ширины и толщины, которые измерены до термообработки. При нагревании температура образца повышается от комнатной до заданной (например, до 550°C) за 5-7 min. При этой температуре образец выдерживается 20 min. Затем электропитание печки выключается, и образец охлаждается до комнатной температуры. Нагрузка снимается после охлаждения.

Во время отжига под нагрузкой в области нагрева происходит удлинение образцов в результате пластической деформации лент. На рис. 1 представлены процессы нагрева T(t) и удлинения образцов $\Delta l(t)$ для растягивающих нагрузок, создающих расчетное механическое напряжение $\sigma = 100$, 200, 400 и 500 MPa. При напряжении 400 МРа подготовлены два образца, при 500 MPa — шесть образцов. Разные удлинения при одних и тех же значениях расчетного напряжения, повидимому, являются следствием неточностей определения начального поперечного сечения, т.е. толщины и ширины ленты образца, или их же естественной неоднородности и соответствующего неточного вычисления массы растягивающего ленту при ТМехО груза Р. В любом случае распределение удлинений позволяет оценить относительную погрешность определения как сечения, так и расчетного напряжения (около 10%).

Удлинение образца тем больше, чем больше напряжение. По мере удлинения уменьшается поперечное

Рис. 1. Процессы нагрева T(t) и удлинения $\Delta l(t)$ образцов при ТМехО. *а* для $\sigma = 100$, 200 и 400 MPa, *b* для $\sigma = 500$ MPa. Нагрев представлен точками, которые обозначены разными символами и соответствуют различным образцам. Точки соединены сплошной линией. Удлинение представлено точками, соединенными ломаными линиями (при 400 MPa приведены данные для двух образцов, при 500 MPa — для шести образцов).

сечение образца в зоне нагрева. Вес подвешенного груза не меняется, поэтому при уменьшении сечения образца растет напряжение, действию которого подвергается образец. Кривые на рис. 1 показывают, что основное удлинение приходится на период нагрева и несколько первых минут отжига при 550°С, т.е. удлинение происходит в пределах первых десяти минут процесса TMexO. После этого длина образца меняется мало (не более 1 mm при $\sigma = 500$ MPa или менее чем на 5%). Поскольку основное удлинение и утонение образцов происходит за несколько первых минут после достижения температуры 550°С, бо́льшую часть времени отжига под нагрузкой в образце действует эффективное напряжение $\sigma_{\rm eff}$.

Первоначально для контроля величины напряжения в образце ширины и толщины лент измерялись до и после отжига под нагрузкой [10]. Но оказалось, что метод измерения поперечных размеров лент не достаточно точный, поскольку ленты не являются идеально прямоугольными в сечении. При этом микрометр измеряет не средние, а внешние, т.е. наибольшие поперечные размеры ленты. Кроме того, микрометрический метод измерения не отличается высокой точностью измерений: при измерении толщины ошибка составляет около 0.5 µm (относительная погрешность около 3%), при измерении ширины — 0.01 mm (относительная погрешность ~ 1%). Поэтому сечение ленты, определенное как произведение ширины на толщину, скорее всего, имеет завышенную величину по сравнению с реальным средним сечением. Тем не менее было показано, что при ТМехО образцы утоняются. Их поперечное сечение уменьшается примерно одинаково по ширине и толщине ленты. Обнаружена линейная зависимость удлинения и величины эффективного напряжения $\sigma_{\rm eff}$ от расчетного напряжения σ .

Для того чтобы наиболее точно определить значение действующего в образце во время TMexO растягивающего напряжения была выполнена калибровка конечного сечения образца по результатам его взвешивания. Масса и плотность мерного отрезка ленты, прошедшего TMexO, позволяют определить объем, а затем и среднее сечение ленты.

Сплав Fe_{73.5}Si_{13.5}Nb₃B₉Cu₁ по данным владельца торговой марки (Hitachi Metals, Ltd.) после нанокристаллизующего отжига имеет плотность 7.3 g/cm³. При переходе от сплава файнмет традиционного состава к сплаву с пониженным содержанием кремния Fe₈₁Si₆Nb₃B₉Cu₁ его плотность изменяется. При этом действуют два разнонаправленных фактора. С одной стороны, замена атомов кремния более тяжелыми атомами железа увеличивает плотность материала. С другой стороны, параметр ОЦК-решетки нанокристаллов Fe–Si увеличивается. [5]. За счет этого плотность нанокристаллов уменьшается.

Плотность кристаллов Fe–Si в сплаве Fe_{73.5}Si_{13.5}Nb₃B₉Cu₁ при соответствующей концентрации кремния в них (около 19.2%) $\rho_{\rm cr} = 7.32 \, {\rm g/cm}^3$ [11]. Это дает возможность рассчитать соотношение объемов

Таблица 1. Образцы и параметры их термообработок: расчетное σ и эффективное $\sigma_{\rm eff}$ механические растягивающие напряжения, удлинение $\Delta l(\infty)$ после TMexO (калибровка сечения, эффективного напряжения и удлинения производилась на образце № 4)

Номер	Параметры ТМехО					
образца	σ , MPa	$\Delta l(\infty)$, mm	$\sigma_{ m eff}, { m MPa}$			
1	100	4.0	93(6)			
2	200	8.0	186(6)			
3	400	18.5	430(6)			
4	400	20.5	477(6)			
5	500	24.0	558(6)			

аморфной и кристаллической фаз $v_{\rm am}$ и $v_{\rm cr}$ по формуле

$$\frac{v_{\rm am}}{v_{\rm cr}} = \frac{\rho_{\rm cr}}{\rho_{\rm fm}} \left(1 + \frac{m_{\rm am}}{m_{\rm cr}}\right) - 1 = 0.3923,$$

где $\rho_{\rm cr}$ и $\rho_{\rm fm}$ — плотность кристаллической фазы и всего материала соответственно, $m_{\rm am}$ и $m_{\rm cr}$ — атомные массы аморфной, включая кластеры меди, и кристаллической фаз соответственно. Это означает, что аморфная фаза занимает около 28.2% от всего объема материала. Остальной объем (71.8%) занимают нанокристаллы.

При увеличении концентрации железа в материале за счет кремния, т.е. при переходе к составу Fe₈₁Si₆Nb₃B₉Cu₁, объемная доля аморфной фазы (с кластерами меди) не изменится, а объем кристаллической фазы возрастет за счет увеличения параметра кристаллической решетки. При X = 13.5 ($C_{Si} = 0.192$) параметр ОЦК-ячейки $a_1 = 0.28417$ nm, при X = 6 ($C_{Si} = 0.085$) параметр ОЦК-ячейки $a_2 = 0.28630 \text{ nm}$ [5]. Происходит относительное увеличение объема в 1.023 раза. При этом плотность кристаллической фазы возрастает до $\rho_{\rm cr} = 7.58 \,{\rm g/cm^3}$ [11]. Учет расширения решетки нанокристаллов дает для соотношения объемов $v_{\rm am}/v_{\rm cr} = 0.384$, поскольку имеется расширение решетки $v'_{cr} = v_{cr} \cdot 1.023$. Теперь плотность материала может быть рассчитана по формуле

$$\rho_{\rm fm} = \rho_{\rm cr} \frac{1 + (m_{\rm am}/m_{\rm cr})}{1 + (v_{\rm am}/v_{\rm cr})}.$$

Получается $\rho_{\rm fm} = 7.50 \, {\rm g/cm^3}$.

После ТМехО масса образца длиной 100 mm составляла 0.0111 g. Зная плотность и объем ~ 0.00148 cm³, можно рассчитать сечение 0.0148 cm². Вес подвешенного груза 0.721 kg. Если расчетное напряжение σ , вычисленное по результатам измерений ширины и толщины образца до обработки, составляло примерно 390 MPa, то после ТМехО сечение уменышилось (составило 0.0148 cm² или около 80% от исходного сечения, определенного с помощью измерений ширины и толщины ленты). Следовательно, эффективное напряжение достигло $\sigma_{\rm eff} = 477$ MPa. Удлинение этого образца составило 20.5 mm.

Все образцы проходили термообработку в одинаковых условиях: 1) одинаковые температуры и продолжительность их воздействия; 2) одинаковые по протяженности и распределению повышенных температур области нагрева; 3) одинаковые условия (внешняя температура и продолжительность) охлаждения до комнатной температуры. Различались только приложенные нагрузки и удлинения лент. Удлинение ленты пропорционально приложенному растягивающему напряжению, поэтому для каждого образца эффективное значение напряжения рассчитано по данным для калибровочного образца (табл. 1).

3. Результаты и обсуждение

Относительные деформации межплоскостных расстояний, ε_{hkl} , рассчитанные из рентгеновских дифрактограмм по методике, описанной выше, возникшие в решетке нанокристаллов в результате отжига и охлаждения ленточного образца под действием растягивающего напряжения $\sigma_{\rm eff} = 558$ MPa, показаны на рис. 2. Положительные значения деформаций, соответствующие продольным растяжениям, и отрицательные, соответствующие поперечным сжатиям, приведены в зависимости от угла Φ между направлением [*hkl*] и ближайшей осью (111).

Ранее было отмечено [3], что чем больше угол Φ , тем больше деформируются межплоскостные расстояния в результате TMexO. В направлении (111), когда угол $\Phi = 0^{\circ}$, в пределах точности эксперимента наблюда-

Рис. 2. Деформации $\varepsilon_{hkl}(\Phi)$ в направлениях [*hkl*], определенные по положениям пиков в рентгеновской дифрактограмме образца, подвергнутого TMexO под действием растягивающего напряжения 558 MPa, и рассчитанные для напряжения $\sigma_{\text{eff}} = 558$ MPa. Расчет выполнен для продольных растяжений при температурах T = 20 и 550°C с кристаллическими модулями упругости и их уточненными значениями (табл. 2).

Таблица 2. Компоненты тензора упругости c_{11} , c_{12} и c_{44} (GPa) и соответствующие коэффициенты податливости s_{11} , s_{12} и s_{44} (GPa⁻¹) массивных кристаллов сплава Fe_{0.915}Si_{0.085} при комнатной температуре (20°C) и температуре отжига при термомеханической обработке (550°C) [13] и нанокристаллов (NC) в сплаве Fe₈₁Si₆Nb₃B₉Cu₁ (K_{an} — константа анизотропии упругих свойств)

Объект		Τ,	Тензор упругости		Тензор податливости			Kan	
		°C	<i>c</i> ₁₁	C ₁₂	C ₁₃	s ₁₁	s ₁₂	S 44	an
Кристалл		20 550	218 183	138 136	125 112	0.00903 0.01490	$-0.00350 \\ -0.00634$	0.00800 0.00889	1.6 2.4
NC	a b	550 550	183 502	136 457	1230 434	0.01490 0.01490	$-0.00634 \\ -0.00710$	0.00082 0.00231	26.1 9.5

ются нулевые растяжения или сжатия. И наоборот, вдоль оси (100), когда $\Phi = 54.7^{\circ}$, получены наибольшие относительные деформации, которые пропорциональны приложенному в процессе ТМехО напряжению и могут достигать 1% при наибольших растягивающих напряжениях. Промежуточные и близкие значения деформаций ε_{hkl} наблюдаются вдоль направлений [211], [321] и [220] при углах Ф, равных 19.5, 22.2 и 35.3° соответственно. Большую, но не превосходящую ε_{200} величину, имеет растяжение в направлении [310], когда угол $\Phi = 43.1^{\circ}$. Следует отметить, что для зависимости поперечных деформаций сжатия решетки от угла Φ наблюдается аналогичная закономерность (рис. 2).

Полученные данные о сильной зависимости деформаций ε_{hkl} от угла Φ , т.е. от направления векторов [hkl], показывают, что деформация исследуемых нанокристаллов анизотропна. Если рассматривать деформацию ε_{hkl} , как упругий отклик на приложенное растягивающее напряжение, то градиентом в этой зависимости является упругий модуль E_{hkl} в направлении [hkl]. В нанокристаллах наблюдается сильная анизотропия упругих свойств, когда модуль E_{111} в направлении (111) значительно больше, чем в других направлениях. Наименьшее значение имеет модуль Е100. Аналогичные результаты были получены для нанокристаллических сплавов других составов, также подвергнутых ТМехО. Для сплавов $Fe_{87-X}Si_XB_9Nb_3Cu_1$ (X = 0-13.5) они приведены в [5], а для сплавов $Fe_{73.5}Si_XB_{22.5-X}Nb_3Cu_1$ (X = 9, 15.5) и Fe_{77.5}B_{15.5}Nb₃Cu₁ − в [4].

Упругие свойства нанокристаллов следует сопоставить с аналогичными свойствами кубических кристаллов α -Fe(Si). Рассмотрим ОЦК-кристаллы в сплошной среде под действием растягивающих напряжений. Предположим, что деформации носят упругий характер, тогда для их описания применим закон Гука: деформация пропорциональна приложенному напряжению. В простейшем представлении для напряжения σ , действующего на изотропный твердый стержень, деформация $\varepsilon = \Delta l/l$, где Δl — приращение длины l. Согласно закону Гука,

$$\varepsilon = s\sigma$$
,

где *s* — константа упругой податливости или податливость для данной конкретной системы напряжений и

данного направления деформации. Вместе с тем можно записать

$$\sigma = c\varepsilon$$
 и $c = \frac{1}{s}$,

где *с* — константа упругой жесткости или просто жесткость (модуль Юнга).

Продольное напряжение в кристаллах σ_{along} , приложенное вдоль оси [hkl], создает деформацию σ_{hkl} , равную

$$\varepsilon_{hkl} = S_{hkl} \sigma_{\text{along}}.$$
 (1)

Здесь S_{hkl} — податливость в направлении [hkl], которая для кубической решетки описывается выражением [12]

$$S_{hkl} = 1/E_{hkl} = s_{11} - 2\left(s_{11} - s_{12} - \frac{1}{2}s_{44}\right)A_{hkl}, \quad (2)$$

где E_{hkl} — модуль упругости (Юнга), s_{11} , s_{12} и s_{44} — ненулевые компоненты тензора податливости. Множитель A_{hkl} зависит только от миллеровских индексов и определяется выражением

$$A_{hkl} = \left(h^2 k^2 + h^2 l^2 + k^2 l^2
ight) / \left(h^2 + k^2 + l^2
ight)^2.$$

Таким образом, податливость в кубической решетке зависит от направления через множитель A_{hkl} . Его значение равно нулю для осей (100) и имеет максимальное значение, равное 1/3, в направлениях (111). Кроме того, имеются направления (110), (211), (321), для которых этот множитель равен 1/4, и направление (310), для которого $A_{310} = 0.09$.

Анизотропия податливости в кубических кристаллах в зависимости от направления проявляется следующим образом: величина $B = (s_{11} - s_{12} - \frac{1}{2}s_{44})$ положительная (как, например, в случае α -FeSi), тогда податливость к приложенному напряжению, т.е. способность к изменению межплоскостных расстояний, будет максимальной вдоль $\langle 100 \rangle$, немного меньше вдоль $\langle 310 \rangle$ и минимальной вдоль $\langle 100 \rangle$, немного меньше вдоль $\langle 310 \rangle$ и минимальной вдоль $\langle 111 \rangle$. Значения, промежуточные между S_{310} и S_{111} имеют податливости S_{110} , S_{211} и S_{321} . Равенство B = 0 является условием упругой изотропии. Если B < 0, то модуль Юнга имеет наименьшее значение в направлениях $\langle 100 \rangle$.

В кубической системе для всех классов компоненты тензора податливости могут быть выражены через компоненты тензора упругости [12]

$$s_{11} = \frac{c_{11} + c_{12}}{(c_{11} - c_{12})(c_{11} + 2c_{12})},$$

$$s_{12} = \frac{-c_{12}}{(c_{11} - c_{12})(c_{11} + 2c_{12})},$$

$$s_{44} = \frac{1}{c_{44}}.$$

Значения коэффициентов c_{11} , c_{12} и c_{44} для кристаллов сплавов железо-кремний, например, могут быть взяты из базы данных [13], где приведены как их концентрационные, так и температурные зависимости. Поскольку при средней концентрации кремния в сплаве X = 6 его концентрация в нанокристаллах увеличивается до 8.5 at.%, в табл. 2 приведены компоненты тензора упругости для сплава Fe_{0.915}Si_{0.085}. Для расчетов использованы их значения при комнатной температуре и при 550°С, т.е. при температуре отжига при термомеханической обработке. Результаты расчетов относительных деформаций ε_{hkl} в кристаллах, которые могут получиться под действием растягивающего напряжения в 558 МРа, также приведены на рис. 2. В кристаллах с ростом температуры увеличивается податливость вдоль осей, наиболее удаленных от (111), что соответствует увеличению анизотропии упругих свойств решетки сплава Fe-Si.

Сравнение растяжений решетки в кристаллах и нанокристаллах показывает, что для направления [200] результаты расчетов с высокой точностью совпадают с экспериментальными данными. Совпадение ε_{310} является достаточно хорошим, если учесть экспериментальную погрешность $\pm 0.5 \cdot 10^{-3}$. Расчетные значения ε_{211} , ε_{321} и ε_{220} для кристаллов при 550°С больше, чем в эксперименте примерно в 1.5 раза. Наибольшее различие расчетных и экспериментальных растяжений решетки наблюдается для направлений (111). В пределах точности измерений положения пика (222) в продольной и поперечной дифрактограммах совпадают и не изменяются для сплавов, прошедших TMexO [3,9,10], вне зависимости от содержания кремния: Fe_{87-X}Si_XNb₃B₉Cu₁ (X = 0-13.5) [5], Fe_{73.5}Si_XB_{22.5-X}Nb₃Cu₁ (X = 9 и 15.5) и Fe_{77.5}B_{15.5}Nb₃Cu₁ [4]. Оказалось, что жесткость нанокристаллов в направлении (111) значительно больше, чем получается в расчетах, где используются модули упругости, измеренные на массивных кристаллах. Расчеты с компонентами тензора упругости с11, с12 и с44 для температуры 20°С дают значительно меньшую величину растяжения вдоль направлений (100) и (310) и в полтора раза меньшую анизотропию упругости, чем при 550°С.

Таким образом, нанокристаллы α -FeSi и массивные кристаллы того же состава обладают разными упругими свойствами, причем основное различие состоит в разной степени анизотропии механических свойств по направлениям в ОЦК-решетке. В соответствии с выражением (2) для того, чтобы уменьшить податливость S_{hkl} вдоль (111), следует увеличить величину разности коэффициентов $(s_{11} - s_{12} - \frac{1}{2}s_{44})$. При этом коэффициент s11, который определяет величину растяжения в направлении (100), изменяться не должен. Для направлений типа (111) множитель А₁₁₁ имеет максимальное значение, равное 1/3. Упругие константы для массивных кристаллов (табл. 2), использованные в расчетах по формулам (1) и (2), для направления $\langle 111 \rangle$ при напряжении $\sim 560 \,\mathrm{MPa}$ дают относительное растяжение $\varepsilon_{111} \sim 2 \cdot 10^{-3}$, что соответствует модулю Юнга $E_{111} \approx 280 \, \mathrm{GPa}$ и податливости $S_{111} \approx 0.36 \cdot 10^{-2} \, \text{GPa}^{-1}$. В нанокристаллах при $\sigma_{\rm eff} = 558 \, {\rm MPa}$ относительное растяжение вдоль $\langle 111 \rangle$ не превосходит $\Delta \varepsilon_{hkl} = 0.5 \cdot 10^{-3}$, т.е. в 4 раза меньше, чем ε₁₁₁. Следовательно, соответствующий модуль упругости $E_{111} \approx 1100 \, \text{GPa}$, а модуль податливости уменьшается в 4 раза, т.е. $S_{111} \approx 0.09 \cdot 10^{-2} \,\text{GPa}^{-1}$. Решение обратной задачи по определению с помощью выражения (2) коэффициентов s_{12} и s_{44} при известных S_{111} , A_{111} и s_{11} позволяет вычислить только сумму $2s_{12} + s_{44} = -0.0119$, которая для кристалла железо-кремний была равна -0.0381.

Очевидно, что увеличение $2s_{12} + s_{44}$ может быть связано с увеличением как s_{12} , так и s_{44} . Для неизменной величины суммы $2s_{12} + s_{44}$ получим набор комбинаций компонент тензора упругости c_{11} , c_{12} и c_{44} : а) если полагать, что компоненты c_{11} и c_{12} не изменяются при переходе кристалл—нанокристалл, то c_{44} по данным для нанокристаллов получается равным 1230 GPa, т.е. почти в 11 раз больше, чем в кристаллах; b) если предположить, что должны сохраняться пропорции между компонентами, то получаются новые значения $c_{11} = 502$ GPa, $c_{12} = 457$ GPa и $c_{44} = 434$ GPa. В этом случае компоненты c_{11} , c_{12} и c_{44} увеличились в 2.7, 3.4 и 3.9 раза соответственно.

Для комбинаций этих двух компонент тензора упругости могут быть определены константы анизотропии по формуле [12]

$$K_{\rm an} = c_{44}/(c_{11} - c_{12}).$$

Отсюда следует, что в кристалле при комнатной температуре $K_{an} = 1.6$, при $T = 550^{\circ}$ С $K_{an} = 2.4$, а в нанокристаллах для варианта $a K_{an} = 26.1$, для варианта $b K_{an} = 9.5$. Компоненты тензоров упругости и податливости и константы упругой анизотропии для кристаллов и нанокристаллов приведены в табл. 2. Из двух представленных вариантов наиболее предпочтительным кажется вариант b, поскольку ему соответствует более низкий коэффициент анизотропии упругих свойств, имеющий, по-видимому, более реальное значение. Рассчитанные по новым значениям компонент упругости деформации растяжения вдоль направления приложения нагрузки в зависимости от угла Φ также приведены на рис. 2 и показывают прекрасное совпадение с данными эксперимента.

Относительные деформации ε_{hkl} в зависимости от угла Φ между направлением [hkl] и ближайшей осью

Рис. 3. Деформации $\varepsilon_{hkl}(\Phi)$ в направлениях [hkl], определенные по положениям пиков в рентгеновских дифрактограммах и рассчитанные для разных напряжений $\sigma_{\text{eff.}}$. Экспериментальные результаты представлены кружками (темные — растяжение, светлые — сжатие) и объединены аппроксимирующими кривыми второго порядка. Результаты расчета с использованием подобранных модулей упругости для температуры показаны крестиками и соединены прямыми линиями.

 $\langle 111 \rangle$ для разных нагрузок, приложенных к ленточному образцу при TMexO, показаны на рис. 3. Эффективные растягивающие напряжения, действующие в образце при отжиге, варьируются от 93 до 558 MPa. Для всех напряжений наблюдаются те же закономерности, что и обсуждавшиеся выше для $\sigma_{\rm eff} = 558$ MPa. Вычисленная с использованием уточненных значений компонент тензора упругости (табл. 2) относительная деформация решетки в направлении [*hkl*] очень хорошо совпадает по величине с полученной из эксперимента. Такое совпадение означает, что деформация пропорциональна величине приложенного напряжения, т.е. выполняется закон Гука.

При TMexO ленты нагружаются продольно, поэтому механические напряжения, созданные в материале, имеют осевую анизотропию с осью, ориентированной вдоль ленты. В процессе отжига аморфная матрица деформируется пластически (ленты удлиняются пропорционально величине нагрузки), а кристаллическая решетка нанокристаллов растягивается вдоль направления приложения нагрузки. Поскольку нанокристаллов множество и их ориентация равновероятная (изотропная), у разных кристаллов различные кристаллографические направления ориентированы вдоль оси растяжения. После отжига лента охлаждается до нормальной температуры под действием нагрузки. Затем нагрузка снимается, а лента остается в напряженном состоянии. При этом анизотропия деформации нанокристаллов сохраняется из-за жесткости сжимающей их аморфной матрицы. Матрица передает механическое напряжение сжатия нанокристаллам в поперечном направлении, тем самым поддерживая осевую анизотропию механических напряжений, т.е. она сжимает кристаллы, препятствуя релаксации деформаций в них. Пока нет доказательств полной релаксации деформаций нанокристаллов после снятия нагрузки.

На рис. 4 приведены значения податливости S_{hkl} для различных направлений в ОЦК-решетке монокристаллов Fe-8.5at.% Si при температурах 20 и 550°C и для нанокристаллов. Последние получены после усреднения результатов эксперимента, а также рассчитаны при определении коэффициентов c_{11} , c_{12} и c_{44} , удовлетворяющих этим экспериментальным данным (табл. 2). Из рисунка видно, что с ростом температуры увеличивается податливость вдоль осей, по углу Ф наиболее удаленных от оси $\langle 111 \rangle$. Тем самым в значительной степени усиливается анизотропия упругих свойств сплава железо-кремний с ОЦК-решеткой.

Рис. 4. Коэффициенты податливости монокристаллов сплава железо-кремний (Fe_{0.915}Si_{0.085}) при комнатной температуре (20° C) и при температуре отжига в процессе TMexO (550° C), а также нанокристаллов в сплаве Fe₈₁Si₆Nb₃B₉Cu₁, полученные в результате обработки данных рентгеновской дифракции и подогнанные к ним с учетом симметрии кубической решетки для получения согласия с этими данными.

Из сравнения значений податливости для монокристаллов и нанокристаллов следует, что в последних степень анизотропии упругих свойств значительно выше. В основном это обусловлено увеличением жесткости вдоль оси $\langle 111 \rangle$, а также вдоль промежуточных, но близких по углу к $\langle 111 \rangle$ направлений [211], [321] и [110]. В то же время величины податливости вдоль направлений [310] и [200] в кристаллах и нанокристаллах практически не различаются. Коэффициент анизотропии упругости в нанокристаллах $K_{an} = 9.5$ (вариант в для компонент тензора упругости в табл. 2). Подобрать компоненты тензора упругости, которые дают значения коэффициентов податливости для всех направлений в ОЦК-решетке, соответствующие экспериментальным данным в пределах погрешности их определения (рис. 4), несложно.

Итак, наблюдаются расхождения между расчетными деформациями (растяжениями), соответствующими массивным кристаллам железо-кремний с 8.5 ат.% Si, и экспериментальными значениями ε_{hkl} , измеренными для нанокристаллов α -FeSi в сплаве Fe₈₁Si₆Nb₃B₉Cu₁ (концентрация кремния в нанокристаллах ~ 0.085). Предположим, что их можно относить за счет размерного эффекта, подобного соотношению Холла-Петча для зависимости прочности материала от размера зерна [14,15]. Если в чистом железе предел текучести не превосходит 100 МРа, то легирование кремнием существенно увеличивает предел упругости и предел текучести. Так, при 8.5 ат.% Si предел текучести изменяется между 400 и 500 MPa, причем эти изменения пропорциональны $D^{-1/2}$, где D — средний размер зерна [13]. Повышение температуры до 550°С понижает предел текучести, например для нетекстурированного поликристаллического сплава Fe-Si с 3 wt.% (5.8 at.%) Si от 370 МРа при комнатной температуре (20°C) до 220 МРа при 550°C, т.е. примерно на 150 МРа [13]. Наблюдаемые нами растяжения решетки нанокристаллов пропорциональны величине приложенного напряжения до напряжения ~ 600 МРа, причем относительное растяжение для направлений типа (100) достигает почти 1% ($\varepsilon_{200} = 0.0084$). Следовательно, предел текучести нанокристаллов (средний размер 10–12 nm) еще не достигнут.

Нанокристаллические металлы обладают высокими прочностью и твердостью. Например, нанокристаллическая медь $(D \sim 25 \text{ nm})$ имеет предел текучести около 800 МРа и предел прочности на растяжение более 1100 МРа [16], в то время как для отожженного крупнозернистого образца Си высокой чистоты эти величины будут порядка 100 MPa. Нанокристаллический Ni со средним размером зерна 26 nm достигает при растяжении прочности более 2.2 GPa [17]. Отклонение от правила Холла-Петча (предел текучести $\sigma_v = \sigma_0 + k/\sqrt{D}$, где σ_0 — предел текучести массивного кристалла, k коэффициент пропорциональности) для кристаллов никеля происходит при $D < 50 \,\mathrm{nm}$ [18]. Если пытаться спрогнозировать по аналогии с никелем возможную величину предела текучести для нанокристаллов α-FeSi на основе имеющихся данных о его зависимости от концентрации кремния и среднего размера зерна [13], то получается значение порядка 1.5 GPa.

Экспериментально обнаружена более высокая степень анизотропии механических свойств кристаллов *α*-FeSi в файнмете, чем предсказывается теорией упругой деформации. В то время как вдоль направлений (100) и близких к ним — (310) — соответствующие растяжения рассчитываются с высокой точностью, для других направлений результаты расчета существенно превышают экспериментальные растяжения. Наибольшее расхождение наблюдается для направления (111): в эксперименте $\varepsilon_{222} \le 5 \cdot 10^{-4}$, а расчет дает $\varepsilon_{222} = 2 \cdot 10^{-3}$. Это означает, что в нанокристаллах жесткость решетки вдоль пространственных диагоналей куба значительно больше, а податливость меньше, чем в массивных кристаллах. Однако жесткость и податливость вдоль ребер куба (направлений (100)) в кристаллах и нанокристаллах примерно одинаковы. Здесь следует напомнить, что в ОЦК решетке атомы вдоль направлений (111) упакованы наиболее плотно и, наоборот, расстояния между соседними атомами вдоль осей легкого намагничивания (100) являются наибольшими. Упругие свойства (упругость и податливость) вдоль других направлений в ОЦК-решетке изменяются монотонно в зависимости от угла Ф. Для устранения несоответствия степени анизотропии механических свойств между кристаллами и нанокристаллами необходимо увеличить коэффициенты *c*₁₁, *c*₁₂ и *c*₄₄ в 2.7, 3.4 и 3.9 раза соответственно. В результате достигается очень хорошее описание деформаций растяжения вдоль тех кристаллографических направлений и для таких напряжений (рис. 3), которые рассмотрены в настоящей работе.

Упругое поведение нанокристаллических металлов изучено в гораздо меньшей степени, чем их пластические свойства. Например, известно [19], что величина модулей упругости нанокристаллических металлов составляет лишь часть от значений для крупного зерна. Однако это связывают с пористостью образцов и растущими в порах трещинами. Наиболее надежные измерения модуля упругости были выполнены для серии высокоплотных нанокристаллических образцов меди и палладия при небольших степенях пористости [20]. Результаты измерений и их экстраполяция к нулевой пористости привели к значениям модуля, хорошо согласующимся с обычными значениями. Также значения модуля Юнга, типичные для массивных образцов, были получены для нанокристаллов железа (17 nm) и титана (41 nm) методом высокочастотной акустической микроскопии [21]. Следовательно, размерный эффект не может быть причиной многократного увеличения упругих модулей в нанокристаллах *α*-FeSi по сравнению с упругими модулями массивных кристаллов. По-видимому, существенное изменение механических свойств сплава при переходе от кристалла к нанокристаллам в сплаве файнмет обусловлено влиянием окружающей нанокристаллы аморфной матрицы, имеющей высокую жесткость. Нанокристаллы плотно зажаты в жесткой аморфной матрице Fe(Nb)-В. Аналогом могут служить резиновые шарики в затвердевшем бетоне. Если в свободном состоянии они являются упругими объектами, допускающими большие деформации, то внутри сдавливающего их бетона механические свойства каждого из них уже зависят от податливости бетона. Что касается сплава Fe-Si-Nb-B-Cu, то модуль упругости борида ниобия, например, в 3 раза больше, чем для сплава α -FeSi [22].

4. Заключение

Упругие свойства нанокристаллов в магнитомягком сплаве Fe₈₁Si₆Nb₃B₉Cu₁ исследовались методом рентгеновской дифракции. Анализировались остаточные деформации ОЦК-решетки, приобретенные в процессе отжига и охлаждения ленточных образцов под действием подвешенного на них груза. При расчете эффективных растягивающих напряжений, действующих в образцах во время термообработки, было учтено уменьшение поперечного сечения. Показано, что при отжиге под нагрузкой образцы значительно удлиняются в течение первых нескольких минут, затем удлинение замедляется, а относительная величина удлинения образца пропорциональна действующей нагрузке. После ТМехО та часть образца, на которой в дальнейшем проводились исследования, взвешивалась, и среднее ее сечение определялось делением массы на плотность и длину. Поскольку удлинения пропорциональны приложенному напряжению, значения эффективного напряжения в лентах образцов для диапазона от 93 до 558 МРа вычислялись по результатам калибровочного взвешивания одного образца. Деформации (продольные растяжения и поперечные сжатия) были определены по смещениям пиков на дифрактограммах, измеренных при продольном и поперечном сканировании.

Установлено, что величина деформаций пропорциональна эффективному напряжению, действующему при ТМехО. Продольное растяжение решетки нанокристаллов является анизотропным, т.е. зависит от того, какая кристаллографическая ось ОЦК-решетки нанокристалла совпадает с направлением приложенной во время ТМехО нагрузки. Полученный результат полностью соответствует представлениям теории упругости для кристаллов сплава железо-кремний с учетом элементов кубической симметрии [12]. Наиболее жестким является направление типа (111), наиболее податливым — (100), а модули упругости для других исследованных направлений имеют промежуточные значения. Показано, что упругая податливость S_{hkl} монотонно зависит от угла между направлением [hkl] и ближайшей осью (111). Аналогичную зависимость от угла Ф имеют упругие модули для поперечного сжатия решетки. Однако в нанокристаллах степень анизотропии упругих свойств гораздо выше, чем в массивных кристаллах того же состава. Если вдоль направлений (100) и (310) упругие модули в кристаллах и нанокристаллах близки по величине, то вдоль направления (111) модуль Юнга в нанокристаллах достигает 1100 МРа, что примерно в 4 раза больше, чем в кристаллах Fe-Si.

Имеющиеся данные не позволяют однозначно определить три компоненты тензора упругости с11, с12 и с44, но получена их количественная оценка: $c_{11} = 502 \,\text{GPa}$, $c_{12} = 457 \,\text{GPa}$ и $c_{44} = 434 \,\text{GPa}$, которая превосходит компоненты с11, с12 и с44 массивных кристаллов железо-кремний в 2.7, 3.4 и 3.9 раза соответственно. Коэффициент упругой анизотропии увеличился с 2.4 до 9.5. Если увеличение предела текучести в нанокристаллах по сравнению с характерным для кристаллов вполне можно объяснить размерным эффектом [19], то изменение компонент тензора упругости и резкое увеличение анизотропии упругости являются неожиданными. Однако если принять во внимание то обстоятельство, что нанокристаллы плотно окружены аморфной матрицей Fe(Nb)-B, которая имеет высокую жесткость и удерживает нанокристаллы в сильно деформированном состоянии, то, вероятно, именно ее влиянием можно объяснить эти изменения механических свойств кристаллов Fe-Si при уменьшении их до нанокристаллов в сплаве файнмет.

Список литературы

- M. Ohnuma, K. Hono, T. Yanai, H. Fukunaga, Y. Yoshizawa. Appl. Phys. Lett. 83, 2859 (2003).
- [2] M. Ohnuma, K. Hono, T. Yanai, M. Nakano, H. Fukunaga, Y. Yoshizawa. Appl. Phys. Lett. 86, 152 513 (2005).
- [3] Ю.П. Черненков, Н.В. Ершов, В.И. Федоров, В.А. Лукшина, А.П. Потапов. ФТТ 52, 3, 514 (2010).

- [4] M. Ohnuma, T. Yanai, K. Hono, M. Nakano, H. Fukunaga, Y. Yoshizawa, G. Herzer. J. Appl. Phys. 108, 093 927 (2010).
- [5] N.V. Ershov, Yu.P. Chernenkov, V.I. Fedorov, V.A. Lukshina, N.M. Kleinerman, V.V. Serikov, A.P. Potapov, N.K. Yurchenko. In: Nanocrystal. InTech, Rijeka (2011). P. 415–436.
- [6] А.А. Глазер, Н.М. Клейнерман, В.А. Лукшина, А.П. Потапов, В.В. Сериков. ФММ 72, 12 56 (1991).
- [7] G. Herzer. Handbook of magnetic materials / Ed. K.H.J. Buschow. Elsevier Science, N.Y. (1997). V. 10. Ch. 3. P. 415.
- [8] Y. Yoshizawa. In: Handbook of advanced magnetic materials.
 V. 4. Properties and applications / Eds Yi Liu, D.J. Sellmyer,
 D. Shindopp. Shpringer, N.Y. (2006). P. 124.
- [9] Н.В. Ершов, Н.В. Дмитриева, Ю.П. Черненков, В.А. Лукшина, В.И. Федоров, А.П. Потапов. ФТТ 54, 9, 1705 (2012).
- [10] Н.В. Ершов, В.А. Лукшина, В.И. Федоров, Н.В. Дмитриева, Ю.П. Черненков, А.П. Потапов. ФТТ 55, 3, 460 (2013).
- [11] G. Bertotti, F. Fiorillo. In: Landolt-Bornstein. Numerical data and functional relationships in science and technology. New series. Group III / Ed. by H.P.J. Wijn Springer, Berlin (1994). Vol. 19. P. 41; http://www.springermaterials.com
- [12] J.F. Nye. Physical properties of crystals. Their representation by tensors and matrices. Oxford University Press, Oxford (1957). [Дж. Най. Физические свойства кристаллов и их описание при помощи тензоров и матриц. Мир, М. (1967). 386 с.].
- [13] G. Bertotti, F. Fiorillo. In: Landolt–Bornstein. Numerical data and functional relationships in science and technology. New series. Group III / Ed. by H.P.J. Wijn. Springer, Berlin (1994). Vol. 19. P. 45; http://www.springermaterials.com
- [14] E.O. Hall. Proc. Phys. Soc. Lond. B 64, 747 (1951).
- [15] N.J. Petch. J. Iron Steel Inst. 174, 25 (1953).
- [16] K.M. Youssef, R.O. Scattergood, K.L. Murty, J.A. Horton, C.C. Koch. Appl. Phys. Lett. 87, 091 904 (2005).
- [17] A. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, B. Schmitt. Science **304**, 273 (2004).
- [18] U. Erb. Nanostruct. Mater. 6, 533 (1995).
- [19] J.R. Weertman. In: Nanostructured materials / Ed. C.C. Koch. William Andrew Publ., N.Y. (2007). P. 537–564.
- [20] P.G. Sanders, J.A. Eastman, J.R. Weertman. Acta Mater. 45, 4019 (1997).
- [21] J.S. Cao, J.J. Hunsinger, O. Elkedim. Scripta Mater. 46, 55 (2002).
- [22] Тугоплавкие материалы в машиностроении. Справочник / Под ред. А.Т. Туманова, К.И. Портного. Машиностроение, М. (1967). 382 с.; Г.В. Самсонов. Тугоплавкие соединения. Справочник по свойствам и применению. Металлургиздат, М. (1963). 397 с.