05

ЭПР Eu^{151,153} в SrMoO₄ и определение знаков параметров спинового гамильтониана при разных температурах

© А.Д. Горлов

Научно-исследовательский институт физики и прикладной математики Уральского федерального университета, Екатеринбург, Россия

E-mail: Anatoliy.Gorlov@usu.ru

(Поступила в Редакцию 27 марта 2014 г.

В окончательной редакции 18 апреля 2014 г.)

Исследованы спектры ЭПР-примесных центров Eu²⁺ в кристаллах SrMoO₄ в температурном диапазоне 1.8, 100–300 К. Симулирована сверхтонкая структура для Eu^{151,153} разных ЭПР переходов, наблюдаемых на эксперименте при различных температурах и ориентациях внешнего магнитного поля. Определен единственный набор всех параметров спинового гамильтониана при известном знаке параметров A_i сверхтонкого взаимодействия. Обнаружено, что диагональные параметры спинового гамильтониана $|b_n^0|$ уменьшаются с ростом температуры, однако параметр b_4^4 растет. Результаты исследований показали, что $|b_2^0(T)/P_2^0(T) \sim \text{const для Eu}^{151,153}$ в данном монокристалле.

Работа выполнена в рамках госзадания Минобрнауки РФ (код проекта 2457) на оборудовании Центра коллективного пользования "Современные нанотехнологии" УрФУ.

1. Введение

Интерес к исследованиям оптических и ЭПР-спектров в кристаллах со структурой шеелита (MeWO₄, MeMoO₄) с примесью редкоземельных металлов (P3M) не ослабевает до сих пор, поскольку связан с разработкой новых эффективных материалов для лазерной физики, акустооптики [1]. Молибдаты с примесью европия являются перспективными материалами для использования в светоизлучающих диодах, термографии [2–5].

Известно [1], что замедление процессов релаксации при увеличении ионного радиуса в ряду Ca^{2+} , Sr^{2+} , Ba^{2+} и параметров кристаллической решетки, связанное с возрастанием частоты полносимметричных колебаний группы [WO₄, MoO₄], приводит к сужению линий комбинационного рассеяния. Эти эффекты непосредственно связаны со стационарными вкладами в расщепление основного состояния РЗМ и динамическими процессами вблизи примесных центров.

Константы спинового гамильтониана (СГ), описывающие спектр ЭПР примесных центров, связаны как с координатами, так и с частотами колебаний узлов кристаллической решетки, амплитуда которых зависит от ее температуры [6–8]. Следовательно, экспериментальные зависимости $b_n^m(T)$ параметров начального расщепления основного состояния примеси и констант, описывающих сверхтонкую структуру (СТС) сигналов ЭПР, дают информацию о такой связи и могут служить опорными данными при тестировании теоретических моделей о динамических и статических взаимодействиях вблизи РЗМ. Такого рода исследования были целью данной работы.

Выбор примесных центров Eu^{2+} в монокристаллах SrMoO₄ (с природным содержанием нечетных изотопов $Eu^{151,153}$) связан с тем, что ЭПР-спектр этого иона в *S*-состоянии наблюдается в широком температурном

диапазоне, а наличие заметных квадрупольных моментов изотопов позволяет получить дополнительно зависимость $P_2^0(T)$ (параметр квадрупольного взаимодействия, обусловленный градиентом кристаллического поля на примеси). Аналогичные исследования для других ионов в S-состоянии (Mn²⁺ и Gd³⁺) в шеелитовых структурах хорошо представлены в литературе, однако имеется всего одна работа [6], где изучена зависимость от темепературы параметров $b_n^m(T)$ для нечетных изотопов Eu²⁺ в CaWO₄. Результаты [6] указали на существенное изменение $b_2^0(T)$, вплоть до смены знака, что, несомненно, связано с температурной зависимостью параметров решетки и фононного спектра. Пока нет никаких удовлетворительных оценок зависимости параметров СГ от T для Eu^{2+} в CaWO₄. Новые экспериментальные данные для Eu²⁺ в изоструктурных кристаллах, на наш взгляд, необходимы для более полного понимания механизмов, приводящих к температурным изменениям энергетической структуры примеси.

В методическом плане получение достоверных данных о параметрах b_n^m из ЭПР-спектров Eu^{151,153} в кристаллах, где РЗМ находится в узлах с локальной симметрией ниже кубической, достаточно сложно. Суперпозиция резонансных сигналов одновременно от двух изотопов Eu^{2+} (электронный спин S = 7/2, ядерный — I = 5/2) с разными параметрами сверхтонкого (СТВ) А_i и квадрупольного взаимодействий усложняет СТС. Неверная идентификация наблюдаемых компонент структуры приводит к ошибкам в определении параметров СТВ A_i (пример — работа [9], где завышено значение А_⊥ для Eu^{151,153} в PbWO₄). Исходя из этого, мы приводим вид СТС некоторых ЭПР-переходов Eu^{151,153} в SrMoO₄ в разных ориентациях внешнего магнитного поля Н. Ранее в работах [7,8] были даны выражения для величин магнитного поля *H*_{res} для CTC-компонент,

	250 500
g_{\parallel} 1.991(1) 1.9913(5) 1.9915(7) 1.9914(5)	1.9914(5) 1.9912(5)
g_{\perp} 1.990(1) 1.9907(5) 1.9906(6) 1.9905(5)	1.9905(6) 1.9904(8)
b_2^0 814(2) 813.8(5) 813.1(4) 810.2(5)	807.0(5) 804.2(4)
$b_4^{\bar{0}}$ -23.5(8) -23.0(2) -22.6(3) -21.8(3)	-21.2(2) $-20.8(4)$
b_6^0 0.65(35) 0.6(1) 0.6(2) 0.6(3)	0.6(2) 0.6(2)
b_4^4 64(8) 67.5(8) 70.0(7) 72.5(8)	74.3(8) 77.1(7)
Eu^{151}	·
A_{\parallel} -102.3(9) -102.2(4) -102.0(4) -101.7(4)	-101.6(5) -101.6(5)
$A_{\perp}^{"}$ -102.2(9) -101.5(4) -100.9(4) -101.0(4)	-100.9(5) $-100.9(5)$
P_2^0 -10.9(6) -10.7(4) -10.7(4) -10.7(4)	-10.7(5) $-10.7(5)$
$ b_2^0/P_2 $ 75(5) 76.2(30) 76.4(27) 75.8(29)	75.6(36) 75.3(34)
Eu ¹⁵³	
A_{\parallel} -45(2) -45.4(4) -45.2(4) -45.1(4)	45.0(4) -45.0(4)
$A_{\perp}^{"}$ -45.0(4) -44.9(4) -45.0(4)	-45.0(4) $-44.9(4)$
P_2^0 -27.8(9) -27.8(4) -27.7(4)	-27.7(5) $-27.6(5)$
$ b_2^0/P_2 $ 29.3(10) 29.3(4) 29.2(5) 29.2(4)	29.1(5) 29.1(5)

Параметры спинового гамильтониана для SrMoO₄: Eu²⁺ (в MHz)

Примечание. $b_6^4, b_6^6 \sim 0(2)$ при всех температурах, g_n — табличные.

определяемых с помощью теории возмущений до добавок второго порядка для S = 1/2, которые позволяют определить также относительные знаки параметров спинового гамильтониана. Однако, как уже указывалось в [6], описание как спектров ЭПР Eu^{2+} в CaWO₄, так и СТС-сигналов с помощью теории возмущений (до второго порядка) слишком неточно (для нашего кристалла отклонения $\Delta H \sim 3 - 15 \,\mathrm{G}$ в величинах H_{res}). Симуляция экспериментального вида СТС для ЭПР-переходов в разных ориентациях Н, описанная нами в [10], опирается на численную диагонализацию энергетической матрицы (48 порядка для Eu^{151,153}). Это позволяет достаточно просто определять величины и относительные знаки всех параметров, необходимых для описания экспериментального спектра ЭПР для спинов S > 1/2 и I > 1/2 при любой температуре. Этот способ хорошо применим для примесных центров, находящихся в узлах с локальной симметрией ниже кубической, где величина P₂⁰, определяемая градиентом кристаллического поля, заметно влияет на вид СТС-сигналов ЭПР.

Параметры b_n^m при T = 300 K этого кристалла приведены в [11], и они совпадают с данными таблицы. Частично результаты этой работы изложены в [12].

2. Экспериментальные результаты и их обсуждение

Температурные исследования спектров ЭПР в разных ориентациях **H** проведены на спектрометре Bruker EMX plus в 3 ст-диапазоне. Записывались первые производные сигналов ЭПР, которые затем численно дифференцировались. Полученные таким способом вторые производные сигналов Y''(H) приведены на всех рисунках работы. Изученные кристаллы выращены методом Чохральского с примесью 0.1 wt.% EuO в шихте.

Экспериментальные ЭПР-спектры Eu²⁺ в SrMoO₄ в разных ориентациях Н демонстрируют тетрагональную локальную симметрию примесного центра, что указывает на локализацию его в узле Sr²⁺ в кристалле. Хотя локальная симметрия положения $\mathrm{Sr}^{2+}-S_4$, спектры ЭПР хорошо описываются спиновым гамильтонианом для более высокой симметрии D_{2d} , что ранее отмечено в [6,10,11]. Использована система координат с $\mathbf{Z} \parallel \mathbf{S}_4$ главной оси симметрии кристалла, а направления Х и У в перпендикулярной плоскости задавались экстремумами угловой зависимости ЭПР-переходов (минимум высокополевого сигнала в плоскости ху соответствует оси Х). Тензор СТВ можно представить как диагональный с параметрами $A_z = A_{\parallel}$ и $A_x = A_y = A_{\perp}$, а квадрупольное взаимодействие задается одним параметром P_{2}^{0} [7,8]

$$H = \frac{1}{3} b_2^0 O_2^0 + \frac{1}{60} (b_4^0 O_4^0 + b_4^4 O_4^4) + \frac{1}{1260} (b_6^0 O_6^0 + b_6^4 O_6^4 + b_6^6 O_6^6) + g\beta(\mathbf{HS}) + \mathbf{SAI} + \frac{1}{3} P_2^0 O_2^0(I) - g_n \beta_n(\mathbf{HI}).$$
(1)

Все обозначения в (1) стандартные [7,8]. Параметры b_n^m , описывающие спектры ЭПР нечетных изотопов Eu²⁺ при любой температуре, определялись путем численной минимизации среднеквадратичного отклонения экспериментальных и расчетных положений "центра тяжести" СТС-сигналов. Направления **H** задавались углами Θ и φ (**H** || **Z** соответствует $\Theta = 0$, $\varphi = 0$, **H** \perp **Z** $-\Theta = 90^\circ$, $\varphi = 0, 45^\circ$).

Рис. 1. Экспериментальная СТС (1) - T = 300 K, (2) - T = 100 K перехода $|1/2, m_1\rangle \leftrightarrow |-1/2, m_2\rangle$ (Y''(H) при $\Theta = 0, \varphi = 0$). Сплошные (для Eu¹⁵¹) и штриховые (для Eu¹⁵³) стрелки снизу указывают на запрещенные переходы с $|\Delta m| = 1$, возникающие из-за малого разброса направлений оси S_4 в кристалле. 3 — симулированная структура (T = 100 K) при A < 0, P < 0 и $\Theta = 0.8^\circ, \varphi = 0$.

Константы A_{\parallel} , $A_x = A_y = A_{\perp}$ и P_2^0 (далее $P_2^0 = P$, а $A = A_{\parallel} \approx A_{\perp}$) нечетных изотопов определялись также, как и в [10]. Разность между экспериментальными и рассчитанными положениями компонент CTC ≤ 1.5 G, для относительных — на порядок выше.

В спектрах ЭПР Eu²⁺ в SrMoO₄ в разных ориентациях Н наблюдаются как интенсивные разрешенные переходы $|M_1m_1
angle \leftrightarrow |M_2m_2
angle$ с $\Delta M = M_1 - M_2 pprox -1$, $\Delta m = m_1 - m_2 \approx 0$, так и слабые запрещенные с $|\Delta M| \ge 1, |\Delta m| \approx 1.2$ (см. рис. 1–4). Здесь M_i — проекции электронного спина, а m_i — проекции ядерного спина, характеризующие уровни энергии $E(M_i m_i)$, причем $E(M_1m_1) < E(M_2m_2)$. Наиболее интенсивные запрещенные переходы наблюдаются в области низких магнитных полей при любых направлениях Н из-за эффективного смешивания электронно-ядерных состояний, зависящего от недиагональных членов спинового гамильтониана. Квадрупольное взаимодействие практически не влияет на вероятность при Н || Z, поскольку входит в диагональные члены энергетической матрицы. В других ориентациях оно существенно включается в смешивание ядерных состояний [7,8] и работает внутри мультиплета M, где $\Delta E = E(Mm_1) - E(Mm_2) \sim A$ (при A > P). Все это приводит к значительному увеличению вероятности переходов с $|\Delta m| \approx 1, 2$, причем их положения становятся несимметричными относительно центра СТС и зависят от знака P.

2.1. Н || Z. В данной ориентации наблюдается наиболее разрешенная СТС (компоненты с полушириной от 2.3–10 G (T = 100 K) и 4–12 G (T = 300 K) на разных переходах. Температурные изменения в спектрах ЭПР

Еu^{151,153} при понижении температуры заключались в изменении положений центров CTC-сигналов, в малом уменьшении полуширины CTC-компонент и увеличении $\Delta H_{\rm max}$ (~1G) величины расщепления между крайними компонентами CTC одного перехода для всех разрешенных переходов (см. рис. 1). Для разных запрещенных переходов с $|\Delta M| > 1$, $|\Delta m| \approx 1, 2 \Delta H_{\rm max}(T)$ для Eu¹⁵¹ как увеличивалось, так и уменьшалось. Такое различие в поведении $\Delta H_{\rm max}$ для этих переходов связано с тем, что положения CTC-компонент определяются как диагональными, так и недиагональными членами СГ, а конкуренция между температурными изменениями этих вкладов может приводить к разной зависимости $\Delta H_{\rm max}(T)$, особенно в области, где уровни энергии близки или "пересекаются".

Определить величину и знак P (знак A известен) при наблюдении любого перехода с $|\Delta m| > 0$ просто, поскольку имеется прямой вклад этого параметра как в ΔH_{max} , так и в ΔH соседних компонент СТС. Взяв только диагональные члены матрицы энергии, полученной из (1), мы имеем для $|M_1m_1\rangle \leftrightarrow |M_2m_2\rangle$ и $|\Delta m| > 0$

$$\Delta H_{\rm max} = |A + 2P\Delta m/\Delta M| \cdot (2I - |\Delta m|)/g\beta, \qquad (2)$$

где $2I - |\Delta m|$ — число промежутков между компонентами (здесь $|\Delta m|$ целое число).

Тогда, если $\Delta H_{\text{max}} > |A| \cdot (2I - |\Delta m|)/g\beta$ (для $\Delta M < 0$, $\Delta m > 0$ и |A| > |P|), то A и P разного знака и наоборот. Этот критерий хорошо выполняется для Eu^{153} ($P \approx 0.5 \text{ A}$), но плохо для Eu^{151} из-за значительного вклада в H_{res} недиагональных членов спинового гамильтониана по сравнению с вкладом от $P \approx 0.1 \text{ A}$. Для случая |P| > |A|, когда ΔH определяется величиной P, при A и P разного знака выполняется условие $\Delta H_{\text{max}} > 2P\Delta m(2I - |\Delta m|)/\Delta Mg\beta$ (для $\Delta M < 0$,

Рис. 2. СТС запрещенного перехода $|-0.63, m_1\rangle \leftrightarrow |1.49, m_2\rangle$ (Y''(H) при $\Theta = 0, \varphi = 0$). 1 — эксперимент, 2 — симулированная структура при A < 0, P < 0, 3 — при A < 0, P > 0(T = 100 K).

 $\Delta m > 0$). Это, например, справедливо для Gd¹⁵⁷ в PbMoO₄, где также наблюдаются запрещенные переходы при **H** || **Z** (см. рис. 3 в [10]).

На рис. 2 показаны экспериментальная запись запрещенного перехода ($\Delta M \approx -2$, $\Delta m \approx 1$), где неплохо разрешены компоненты СТС для двух изотопов Eu²⁺ и смоделированные структуры. Как видно, наилучшее совпадение при $P_2^0 < 0$, если $A_{\parallel} < 0$, что подтверждается симуляцией СТС для других запрещенных переходов (см. рис. 1 в [12]).

Если обратиться к экспериментально наблюдаемой СТС-перехода $1/2 \leftrightarrow -1/2$ при $T = 100 \, {\rm K}$ (рис. 1), то можно заметить, что вблизи интенсивных компонент наблюдаются слабые сигналы. Это также запрещенные переходы с $\Delta M \approx -1$ и $|\Delta m| \approx 1$, показанные на рис. 1 стрелками снизу. По расчетам в ориентации $\Theta = 0$, $\varphi = 0$ они имеют нулевую вероятность. В экспериментах не удается добиться их исчезновения, поэтому мы предположили, что их появление связано с несовершенством кристалла, т.е. с разбросом направлений осей S₄ в объеме кристалла. Моделирование СТС при $\Theta > 0, \ \varphi = 0$ и P < 0 (здесь ΔM одинаково для разрешенных и запрещенных переходов) этого сигнала показало, что возможная величина разброса $\Delta \Theta \ge 0.8^\circ$, а изменения $\Delta \phi \approx 2^{\circ}$ мало влияют на структуру. Симуляция структуры при P > 0 показала, что наиболее сильный запрещенный переход должен совпасть с первой по полю интенсивной компонентой, что противоречит экспериментальному виду СТС. Таким образом, исследования вида СТС в ориентации Н || Z показали, что P < 0.

2.2. **H** \perp **Z** ($\Theta = 90$, $\phi = 0$). В этой ориентации полуширина СТС-компонент для двух изотопов Eu²⁺ $3.5-19\,\mathrm{G}~(T=100\,\mathrm{K})$ и $5-20\,\mathrm{G}~(T=300\,\mathrm{K})$ на разных ЭПР-переходах и практически на всех переходах наблюдается их наложение. Анализ наблюдаемых интенсивных переходов показывает, что СТС является суперпозицией как разрешенных ($\Delta M \approx -1$, $\Delta m \approx 0$), так и запрещенных переходов ($\Delta M \approx -1$, $|\Delta m| \approx 1, 2$) с близкими интенсивностями. На рис. 3. показан ЭПРпереход типа $1/2 \leftrightarrow -1/2$ с наилучшим разрешением СТС-компонент. Сплошными стрелками сверху показаны крайние по полю интенсивные переходы (Eu¹⁵¹) с $\Delta m \approx 0$, снизу — запрещенные переходы с $|\Delta m| \approx 2$. которые лишь в 3 раза меньше по амплитуде разрешенных. Если для Eu¹⁵¹ все интенсивные компоненты являются переходами с $\Delta M \approx -1$, $\Delta m \approx 0$, то для Eu¹⁵³ интенсивные сигналы являются переходами с $\Delta M \approx -1$, $|\Delta m| \approx 0, 1, 2, 3$ (штриховые стрелки). Наиболее сильный сигнал в центре СТС дают три слившихся перехода с $\Delta m \approx -1$, менее интенсивные это переходы с $|\Delta m| \approx 2$. Для примера, на рис. 4, *a* приведена экспериментальная СТС (1) перехода типа $-3/2 \leftrightarrow -1/2$ и смоделированы раздельно сверхтонкие структуры (2, 3) для двух изотопов Eu²⁺. СТС Eu¹⁵¹ это шесть интенсивных переходов ($\Delta m \approx 0$) и два наблюдаемых запрещенных перехода $|\Delta m| \approx 2$ (стрелки сверху

Рис. 3. Наблюдаемая (1) при T = 100 К СТС-перехода $|1/2, m_1\rangle \leftrightarrow |-1/2, m_2\rangle$ ($\Theta = 90, \varphi = 0$). Сплошные стрелки сверху указывают на переходы для Eu¹⁵¹ с $\Delta m \approx 0$, снизу — $|\Delta m| = 2$. Штриховые стрелки сверху указывают на переходы для Eu¹⁵³ с $|\Delta m| \approx 0, 1, 2, 3.$ (2) — вид симулированной СТС при $A < 0, P < 0, b_2^0 > 0, (3)$ — при $A < 0, P > 0, b_2^0 > 0$.

на рис. 4, a(2)). Штриховые стрелки на рис. 4, a(3)указывают на разрешенные переходы для Eu¹⁵³. Расчеты показывают, что интенсивная низкополевая компонента на рис. 4, a (3) есть суперпозиция переходов $\Delta M \approx -1$, $\Delta m \approx 0$ и $\Delta M \approx -1$, $\Delta m \approx -1$, а верхнеполевая — это одиночный переход с $\Delta M \approx -1$, $\Delta m \approx 0$. Лишь для переходов типа $|5/2| \leftrightarrow |7/2|$ все интенсивные СТСкомпоненты можно отнести к разрешенным переходам, поскольку степень смешивания ядерных состояний за счет квадрупольного взаимодействия здесь меньше изза большого расщепления ядерных подуровней ($\sim M_i A$, где $M_i = 5/2, 7/2$). Однако экспериментальная ширина этих сигналов такова, что наблюдаются раздельно только крайние СТС-компоненты, принадлежащие Eu¹⁵¹. Поэтому, на наш взгляд, оценки А_⊥ из экспериментальных наблюдаемых структур проще сделать путем их моделирования, как показано на рис. 3, 4.

На рис. 4, *b* приведены экспериментальная и симулированные СТС-перехода типа $|-1, 24, m_1\rangle \leftrightarrow |1.93, m_2\rangle$. Сплошные стрелки снизу — это переходы с $\Delta m \approx 0$ (Eu^{151}), штриховые с $|\Delta m| \approx 0, 1, 2$ (Eu^{153}). Моделированные СТС на рис. 3, 4 указывают на зависимость их вида от взаимных знаков b_n^m и *P*, причем наиболее критично меняется СТС для Eu^{153} . Зависимость вида СТС от взаимных знаков b_2^0 и *P* описана в [10], но для случая, когда $P > A_i$.

Следовательно, мы можем утверждать, что в таблице приведен единственный набор величин (в пределах ошибок эксперимента) параметров спинового гамильтониана, при котором экспериментальные и симулированные структуры совпадают для всех исследованных ориентаций магнитного поля.

Рис. 4. *a*) Наблюдаемая (1) и симулированные (2-4) СТСперехода $|-3/2, m_1\rangle \leftrightarrow |-1/2, m_2\rangle$ (Y''(H) при $\Theta = 90^\circ$, $\varphi = 0, T = 300$ K). Сплошные стрелки сверху на (2) для Eu¹⁵¹ указывают на запрещенные переходы ($|\Delta m| \approx 2$), штриховые стрелки на (3) — это разрешенные переходы ($\Delta m \approx 0$) для Eu¹⁵³, 4 — суммарная структура при $A < 0, P < 0, b_2^0 > 0. b$) Экспериментальная (1) СТС-перехода $|-1.23, m_1\rangle \leftrightarrow |1.92, m_2\rangle$ с $|\Delta m| \sim 0, 1,2$ ($\Theta = 90^\circ$, $\varphi = 0,$ T = 100 K) и симулированные структуры при следующих условиях: (2) — $A < 0, P < 0, b_2^0 > 0.$ (3) — $A < 0, P > 0, b_2^0 > 0,$ (4) — $A < 0, P < 0, b_2^0 < 0.$ Сплошные стрелки снизу указывают на переходы для Eu¹⁵¹, штриховые снизу — для Eu¹⁵³ ($\Delta m \sim 0$). Штриховые стрелки сверху указывают на наиболее интенсивные запрещенные переходы для Eu¹⁵³ ($|\Delta m| \approx 1, 2$).

Анализ данных таблицы показывает, что максимальное температурное изменение $\Delta b_2^0 = [b_2^0(1.8 \text{ K}) - b_2^0(300 \text{ K})^*100/b_2^0(100 \text{ K}) \sim 1.2\%$, а $|b_2^0/P_2^0| \approx \text{const в}$ пределах ошибок эксперимента для этого кристалла. Подобное соотношение выполняется для Gd³⁺ в PbMoO₄, YVO₄ [10], SrMoO₄ (предварительные результаты) и CaWO₄ [13], однако, судя по результатам [6], нарушено для Eu²⁺ в CaWO₄. Для сравнения, величины Δb_2^0 для Gd³⁺ в CaWO₄ ~ 2%, в CaMoO₄ ~ 2.6%, в SrMoO₄ ~ 2.7%, в PbMoO₄ ~ 3.5% при изменении температуры от 100 до 300 К.

Зависимость $b_2^0(T)$ в нашем кристалле похожа на аналогичные для Gd³⁺ в разных кристаллах [10,13,14], но отличается от подобной для Eu²⁺ в CaWO₄ [6]. В [13] на основе суперпозиционной модели Ньюмена [15] с "intrinsic" параметрами [16] приведен расчет вкладов $\Delta b_2^0(\text{lat})$ для Gd³⁺ в CaWO₄, зависящий от температурных изменений постоянных решетки [17]. Оказалось, что повышение температуры приводит к $\Delta b_2^0(\text{lat}) < 0$, следовательно фононный вклад $\Delta b_2^0(\text{phon}) > 0$. Мы провели аналогичный расчет для Eu²⁺ в CaWO₄ с данными [6,17] и получили аналогичный результат. При этом модельный параметр $b_{2p}(R_0)$ был взят из [11] и использован для определения $b_{2s}(R_0)$ при T = 5 К. Мы считаем, что эту величину следует определять только при низких температурах, где параметр Δb_2^0 (phon) мал, поскольку определяется "нулевыми колебаниями" решетки [6-8,14], тогда $b_2^0(\exp)$ определяется практически параметрами решетки. По аналогии можно предположить, что малые температурные изменения $b_2^0(T)$ Eu²⁺ в SrMoO₄ связаны с сильной компенсацией изменений в b_2^0 как за счет колебаний решетки, так и ее расширения.

Мы не проводили анализа температурных изменений параметра $b_4^m(T)$, поскольку нет удовлетворительной модели расчета. Из данных таблицы следует, что ход $|b_4^0(T)|$ уменьшается, что наблюдалось ранее [6,10,12,14] как для Eu²⁺, так и для Gd³⁺ в изоструктурных кристаллах.

В заключение следует сказать, что симуляция вида СТС позволяет понять, какие переходы ее формируют, и таким образом избежать ошибок как в определении величин параметров СТВ, так и знаков. Слабая температурная зависимость b_2^0 для исследованного кристалла вероятнее всего обусловлена компенсацией вкладов: статического (увеличения параметров решетки с ростом температуры) и динамического (за счет изменения амплитуды и частоты колебаний узлов решетки).

Список литературы

- В. Осико, И. Щербаков. Фотоника **39**, *3*, 14 (2013);
 Т.Т. Basiev, E.V. Zharikov, V.V. Osiko. Crystallogr. Rep. **47**, *1*, 515 (2002).
- [2] Jie Liu, Hongzhou Lian, Chunshan Shi. Opt. Mater. 29, 1591 (2007).
- [3] J. Brubach, T. Kissel, M. Frotscher, M. Euler, B. Albert, A. Dreizler. J. Lumin. 131, 559 (2011).
- [4] Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo. Bull. Chem. Soc. Jpn. 80, 885 (2007).
- [5] A.A. Kaminskii, S.N. Bagaev, K. Ueda, K. Takaichi, H.J. Eichler. Crystallogr. Rep. 47, 653 (2002).
- [6] J.S.M. Harvey, H. Kiefte. Can. J. Phys. 47, 1505 (1969).
- [7] В. Лоу. Парамагнитный резонанс в твердых телах. ИНЛ, М. (1962). 242 с.
- [8] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Т. 1. Мир, М. (1972). 651 с.

- [9] T.H. Yeom, I.G. Kim, S.H. Lee, S.H. Choh, T.H. Kim, J.H. Ro. J. Appl. Phys. 87, 1424 (2000).
- [10] А.Д. Горлов. ФТТ 55, 883 (2013).
- [11] В.А. Важенин, А..Д. Горлов, Л.И. Левин, К.М. Стариченко, С.А. Чикин, К.М. Эриксонас. ФТТ 29, 3035 (1987).
- [12] A.D. Gorlov. Book of Abstracts Int. Conf. "Modern Development of Magnetic Resonance". Kazan, Russia (2013). P. 70.
- [13] A.D. Gorlov, I.N. Kurkin. Book of Abstracts XVth Int. Feofilov Symposium on Spectroscopy of Crystals Doped with Rare Earth and Transition Metal Ions. Kazan, Russia (2013). P. 172.
- [14] J.S.M. Harvey, H. Kiefte. Can. J. Phys. 49, 995 (1971).
- [15] D.J. Newman, W. Urban. Adv. Phys. 24, 793 (1975).
- [16] L.I. Levin, A.D. Gorlov. J. Phys.: Cond. Matter. 4, 1981 (1992).
- [17] A. Senyshyn, M. Hoelzel, T. Hansen, L. Vasylechko, V. Mikhailik, H. Krausf, H. Ehrenberg. J. Appl. Cryst. 44, 319 (2011).