Предельно короткий электромагнитный импульс в сверхрешетке с учетом неднородности поля вдоль ее оси

© Э.Г. Федоров*, Н.Н. Конобеева+, М.Б. Белоненко•¶

* Волгоградский государственный архитектурно-строительный университет, 400074 Волгоград, Россия
* Волгоградский государственный университет, 400062 Волгоград, Россия
• Волгоградский институт бизнеса, 400048 Волгоград, Россия

(Получена 13 февраля 2014 г. Принята к печати 18 марта 2014 г.)

Исследовано распространение двумерного электромагнитного импульса в полупроводниковой сверхрешетке. Впервые учтена неоднородность поля импульса вдоль оси сверхрешетки. Эволюция электромагнитного поля и плотности заряда в образце описана с помощью системы уравнений Максвелла и уравнения непрерывности. В результате численного моделирования показана возможность распространения двумерного электромагнитного импульса в сверхрешетке. Установлено, что распространение электромагнитного импульса приводит к перераспределению концентрации электронов в образце.

1. Введение

Современная микроэлектроника в последнее время развивается в направлении использования искусственно синтезированных сред, физические характеристики которых позволяют создавать на одной матрице элементы, интегрируемые с оптическими схемами (см., например, [1]). Интеграция с оптическими элементами представляется одним из основных путей достижения максимального быстродействия систем обработки информации нового поколения.

Среди наиболее перспективных материалов для использования в ходе решения задач построения быстродействующих систем оптической обработки информации являются полупроводниковые сверхрешетки (СР) гетероструктуры с заданным зонным спектром носителей заряда. В СР помимо потенциала кристаллической решетки на электроны действует дополнительный, искусственно созданный потенциал с периодом, значительно превышающим период кристаллической решетки. Нелинейность закона дисперсии электронов СР позволяет наблюдать уже в полях умеренных напряженностей ($\sim 10^3$ B/см) ряд физических эффектов, которые в обычных полупроводниках еще не проявляются в аналогичных условиях эксперимента (см., например, работы [2,3] и ссылки в них). Данное обстоятельство, а также успехи лазерной физики в области формирования мощного лазерного излучения с заданными параметрами (см., например, [4]) стимулируют остающийся на высоком уровне интерес к всесторонним теоретическим и экспериментальным исследованиям электронных и оптических свойств СР. В период с 70-х годов 20 века, когда впервые была показана возможность распространения в полупроводниковых СР уединенных электромагнитных волн [5,6], вышло большое количество работ, посвященных изучению различных аспектов распространения

электромагнитных волн в неоднородных и слоистых средах. На сегодняшний день исследовано большое количество эффектов, связанных с распространением электромагнитного излучения в средах с непараболическим законом дисперсии электронов и, в частности, в полупроводниковых СР (см., например, работы [7–15]). При этом остается ряд вопросов, касающихся распространения волн в СР, которые могут представлять интерес с прикладной точки зрения. В частности, это вопросы, связанные с выходом за рамки одномерной модели, с учетом поперечной дисперсии при изучении динамики электромагнитных волн и т. д.

Необходимо отметить, что в упомянутых выше работах рассматривалось распространение электромагнитных волн в предположении об однородности поля вдоль оси СР. Однако неоднородность поля вдоль оси СР может привести к возникновению новых физических эффектов, имеющих прикладное значение. В частности, неоднородность поля может привести к накоплению электрического заряда и соответственно к необходимости учета поля этого заряда, что представляет собой отдельную задачу. Решение задачи подобного рода есть также первый шаг к учету поля "подложки", т.е. поля, создаваемого матрицей, на которой выращивалась СР. Отметим, что задача о распространении предельно короткого электромагнитного импульса с учетом неоднородности его поля в направлении, перпендикулярном волновому вектору, была решена нами в недавней работе [16] применительно к другой нелинейной системе с непараболическим электронным энергетическим спектром — массиву полупроводниковых углеродных нанотрубок. В упомянутой работе было показано, что распространение электромагнитного импульса индуцирует перераспределение концентрации электронов в образце, а учет неоднородности поля импульса не влияет на устойчивость его распространения, приводя к некоторому изменению его формы. В результате мы предполо-

[¶] E-mail: mbelonenko@yandex.ru

жили возможность проявления подобных эффектов и в полупроводниковых СР.

Таким образом, исследование особенностей распространения электромагнитного импульса в СР с учетом неоднородности поля вдоль ее оси, проведенное в настоящей работе, представляется актуальным в свете решения ряда перспективных задач современной оптоэлектроники.

2. Основные соотношения и волновое уравнение

Рассмотрим распространение электромагнитных волн (импульсов лазерного излучения) в полупроводниковой СР. Будем считать, что ось СР параллельна координатной оси Ox. Закон дисперсии электронов проводимости СР в выбранной нами геометрии имеет вид [2]

$$\Delta(\mathbf{p}) = \Delta_0 \left[1 - \cos\left(p_x \frac{d_x}{\hbar}\right) \right] + \frac{p_y^2 + p_z^2}{2m}, \qquad (1)$$

где Δ_0 — полуширина нижней мини-зоны проводимости, $\mathbf{p} = \{p_x, p_y, p_z\}$ — квазиимпульс электрона в мини-зоне проводимости, d_x — период СР, m — эффективная масса электрона, соответствующая движению в плоскости yOz.

Положим, что лазерный импульс распространяется в направлении, перпендикулярном оси СР (в выбранной геометрии — вдоль оси Oz), а электрическое поле импульса направлено вдоль оси СР. Будем учитывать, что электрическое поле импульса имеет вид $\mathbf{E} = \{E(x, z, t), 0, 0\}$ и неоднородно вдоль оси Ox.

Электромагнитное поле в СР будем описывать посредством уравнений Максвелла [17], из которых следует уравнение

$$\frac{\varepsilon}{c^2}\frac{\partial^2 A}{\partial t^2} - \frac{\partial^2 A}{\partial x^2} - \frac{\partial^2 A}{\partial z^2} - \frac{\partial^2 A}{\partial z^2} - \frac{4\pi}{c} j = 0,$$
(2)

где A(x, z, t) и j(x, z, t) — соответственно проекции векторного потенциала $\mathbf{A} = \{A, 0, 0\}$ поля лазерного импульса и плотности тока проводимости $\mathbf{j} = \{j, 0, 0\}$ на ось Ox, ε — диэлектрическая проницаемость среды, c — скорость света в вакууме, векторный потенциал и электрическое поле импульса связаны соотношением $\mathbf{A} = -c \int_{-\infty}^{t} \mathbf{E} dt$ [18].

Определим плотность тока проводимости, следуя подходу, развитому в работах [6,7]. Будем учитывать, что неоднородность поля импульса вдоль оси СР может привести к перераспределению концентрации электронов проводимости и возникновению в образце совокупности областей с повышенной и пониженной плотностью заряда. Формирующаяся таким образом конфигурация распределения плотности заряда индуцирует электрическое поле со скалярным потенциалом ϕ , изменяющееся в образце с течением времени. Таким образом, согласно принципу суперпозиции, на электроны в образце действует как электромагнитное поле лазерного импульса, так и электрическое поле, индуцированное перераспределением концентрации электронов.

Положим, что характерная длительность лазерного импульса T_S удовлетворяет условию $T_S \ll t_{rel}$ (t_{rel} — время релаксации), что позволяет использовать бесстолкновительное приближение при описании эволюции поля в системе [2]. Считая столкновения электронов с нерегулярностями кристаллической решетки пренебрежимо редкими, запишем выражение для проекции плотности тока на ось Ox:

$$j = -en\frac{d_x}{\hbar}\Delta_0 G(\theta) \sin\left[\frac{d_x}{\hbar}\left(A\frac{e}{c} + e\int_0^t \frac{\partial\varphi}{\partial x}dt\right)\right], \quad (3)$$

где e — заряд электрона, n — концентрация электронов в мини-зоне проводимости, φ — скалярный потенциал электрического поля, обусловленного перераспределением плотности заряда в образце, $\theta = \Delta_0 (k_B T)^{-1}$, k_B — постоянная Больцмана, T — температура,

$$G(\theta) = \left[\int_{-\pi}^{\pi} \exp[\theta\cos(\xi)]d\xi\right]^{-1} \int_{-\pi}^{\pi} \cos(\xi) \exp[\theta\cos(\xi)]d\xi.$$

Заметим, что в формуле (3) плотность тока зависит от векторного потенциала **A** электромагнитного импульса и скалярного потенциала φ электрического поля, индуцированного перераспределением плотности заряда в образце. Следовательно, могло бы возникнуть предположение о том, что изменение потенциалов **A** и (или) φ на постоянную величину (что не должно приводить ни к каким физическим следствиям) обусловливает изменение плотности тока, однако это исключено благодаря однозначному определению величин **A** и φ . При выводе формулы (3) считалось, что при нулевом токе в отсутствие электромагнитного импульса имеют нулевое значение и потенциалы **A** и φ , что однозначно фиксирует их выбор.

Подставив выражение для тока проводимости (3) в уравнение (2), получаем волновое уравнение, описывающее эволюцию поля в СР:

$$\frac{\partial^2 \Phi}{\partial \tau^2} - \left(\frac{\partial^2 \Phi}{\partial \xi^2} + \frac{\partial^2 \Phi}{\partial \xi^2}\right) + \eta G(\theta) \sin\left(\Phi + \int_0^\tau \frac{\partial \Psi}{d\xi} d\tau\right) = 0,$$
(4)

где $\Phi = A \frac{ed_x}{c\hbar}$ — безразмерная проекция векторного потенциала на ось Ox, $\Psi = \varphi \frac{ed_x}{c\hbar}$, $\tau = \omega_0 t / \sqrt{\varepsilon}$ — безразмерное время, $\xi = x\omega_0/c$ и $\xi = z\omega_0/c$ — безразмерные координаты вдоль осей $O\xi$ и $O\xi$, $\eta = n/n_0$, n_0 равновесная концентрация электронов в образце, ω_0 величина с размерностью частоты,

$$\omega_0 = 2 \frac{|e|d_x}{\hbar} \sqrt{\pi n_0 \Delta_0}.$$
 (5)

Как было отмечено выше, неоднородность поля вдоль оси СР может привести к перераспределению плотности электрического заряда. Поскольку полный заряд в объеме образца сохраняется, изменение плотности заряда определяется уравнением непрерывности [18]:

$$\frac{\partial j}{\partial x} + \frac{\partial \rho}{\partial t} = 0, \tag{6}$$

где $\rho = e n_0 \eta$ — объемная плотность заряда.

Подставив плотность тока (3) в уравнение (6), получим уравнение, определяющее изменение концентрации электронов под действием электромагнитного поля в СР:

$$\frac{\partial \eta}{\partial \tau} = \alpha G(\theta) \frac{\partial}{\partial \xi} \left[\eta \sin\left(\Phi + \int_{0}^{t} \frac{\partial \Psi}{\partial \xi} d\tau\right) \right] = 0, \quad (7)$$

где $\alpha = \frac{\Delta_0 d}{\hbar c} \sqrt{\epsilon}$. Перераспределение концентрации электронов сопровождается изменением распределения скалярного потенциала поля в системе. Из уравнений Максвелла [17,18] следует уравнение, определяющее эволюцию скалярного потенциала:

$$\frac{\partial^2 \Psi}{\partial \tau^2} - \left(\frac{\partial^2 \Psi}{\partial \xi^2} + \frac{\partial^2 \Psi}{\partial \xi^2}\right) = \beta(\eta - 1), \tag{8}$$

где $\beta = \frac{\hbar c}{\epsilon d_x \Delta_0}$. Таким образом, эволюция поля в системе с учетом перераспределения плотности заряда определяется системой уравнений (4), (7), (8).

Электрическое поле в CP имеет вид $\mathbf{E} = \{E, 0, 0\},\$

$$E = -\frac{1}{c} \frac{\partial A}{\partial t} = E_0 \frac{\partial \Phi}{\partial \tau}, \qquad (9)$$

где величина E_0 определяется по формуле

$$E_0 = -\frac{\hbar\omega}{ed_x\sqrt{\varepsilon}}.$$
 (10)

Известно, что измеряемой приборами физической величиной является интенсивность электромагнитного поля, которая пропорциональна квадрату модуля вектора электрического поля (см., например, [19]). Величина, пропорциональная интенсивности поля, $I = |\mathbf{E}|^2$, с учетом формулы (9) определяется как

$$I = I_0 \left(\frac{\partial \Phi}{\partial \tau}\right)^2,\tag{11}$$

где $I_0 = E_0^2$ (см. формулу (10)).

Отметим, что непараболичность электронного энергетического спектра СР играет в нашем рассмотрении решающую роль. Так, для случая параболического спектра sin(x) в формулах (3), (4), (7) необходимо заменить на x, и задача становится линейной. В этом случае происходит только дифракционное расплывание электромагнитного импульса — ширина импульса возрастает, а его амплитуда при этом убывает.

3. Численное моделирование и обсуждение результатов

Система уравнений (4), (7), (8) не имеет точного аналитического решения в общем случае, поэтому мы провели численное моделирование процесса распространения лазерного импульса в СР. Выбор начальных условий для расчета эволюции поля обусловлен следующими соображениями. Уравнение (4) можно рассматривать как неодномерное обобщение уравнения sine-Gordon. Известно, что уравнение sine-Gordon имеет точное решение в виде бризера [20]. Отметим, что возможность распространения электромагнитных бризеров в СР в одномерной модели была впервые теоретически установлена в работе [8]. Исходя из этого мы предположили, что и в рассматриваемой нами системе возможно распространение электромагнитных волн, по форме близких к бризерам уравнения sine-Gordon.

Будем полагать, что в СР распространяется предельно короткий электромагнитный импульс, безразмерная проекция векторного потенциала поля которого в момент $\tau = 0$ имеет вид

$$\Phi(\xi, \xi, \tau) = 4 \operatorname{arctg}\left[\frac{\sin(\chi)}{\cosh(\mu)}\sqrt{\frac{1}{\Omega^2 - 1}}\right]$$

$$\times \exp\left[-\left(\frac{\xi - \xi_0}{\lambda}\right)^2\right], \quad (12)$$

$$\operatorname{rge} \chi = \Omega\left[\tau - (\xi - \xi_0)u/v\sqrt{\sqrt{1 - (u/v)^2}}\right],$$

$$\mu = \left[\tau u/v - (\xi - \xi_0)\right]\sqrt{1 - \Omega^2}/\sqrt{1 - (u/v)^2},$$

 $\Omega = \omega_B / \omega_0$ — параметр, определяемый собственной частотой колебаний бризера ω_B ($\Omega < 1$), u/v — отношение скорости предельно короткого импульса и к скорости света в среде $v = c/\sqrt{\varepsilon}$, ξ_0 и ξ_0 — безразмерные координаты "центра масс" импульса вдоль осей Οξ и $O\xi$ в момент $\tau = 0, \lambda$ — безразмерная полуширина импульса вдоль оси $O\xi$.

Электрическое поле в СР определяется по формуле (9).

В начальном условии (12) первым сомножителем является бризер, имеющий скорость и. Второй сомножитель в виде гауссианы в выражении (12) задает неоднородность поля импульса вдоль оси СР. Выбор гауссового распределения интенсивности поля связан с тем, что оно представляет значительный интерес с прикладной точки зрения в различных областях физики и техники. Это объясняется минимальной дифракционной расходимостью гауссовых пучков, которые являются приближением, просто и полно описывающим свойства лазерного излучения [19,21].

Будем для определенности полагать, что в начальный момент $\tau = 0$ в СР концентрация электронов *n* в минизоне проводимости равна n₀, а скалярный потенциал φ

Рис. 1. Распределение интенсивности поля в СР в различные моменты безразмерного времени τ при распространении лазерного импульса. $a - \tau = 0.5$, $I_{\text{max}}/I_0 \approx 68.599$; $b - \tau = 3.5$, $I_{\text{max}}/I_0 \approx 14.145$; $c - \tau = 6.5$, $I_{\text{max}}/I_0 \approx 11.851$.

Рис. 2. Распределение концентрации электронов в СР в различные моменты безразмерного времени τ при распространении лазерного импульса. $a - \tau = 0.5$, $\eta_{\text{max}} \approx 1.007$, $\eta_{\text{min}} \approx 0.993$; $b - \tau = 3.5$, $\eta_{\text{max}} \approx 1.009$, $\eta_{\text{min}} \approx 0.991$; $c - \tau = 6.5$, $\eta_{\text{max}} \approx 1.008$, $\eta_{\text{min}} \approx 0.992$.

равен нулю, т.е. имеют место начальные условия

$$\eta(\xi, \xi, \tau) = 1, \tag{13}$$

$$\psi(\xi,\xi,\tau) = 0. \tag{14}$$

Численное решение системы уравнений (4), (7), (8) с начальными условиями (12)–(14) реализовано с помощью разностных схем, описанных в [22,23]. Таким образом, вычислены значения величины $\Phi = \Phi(\xi, \xi, \tau)$, в результате чего рассчитана эволюция напряженности и интенсивности поля по формулам (9), (11). Также найдено распределение величины $\eta = \eta(\xi, \xi, \tau)$, определяющей концентрацию электронов проводимости $n = n_0 \eta$ в СР.

Исследование распространения предельно короткого электромагнитного импульса проведено нами при следующих значениях параметров системы: $\Delta_0 = 0.1$ эВ, $d_x = 10^{-6}$ см, $n_0 = 10^{14}$ см⁻³, T = 77 К, $\varepsilon = 10$, $\omega_0 \approx 6.45 \cdot 10^{12}$ с⁻¹ (см. формулу (5)) [2]. Параметры α и β в уравнениях (7), (8) имеют значения $\alpha \approx 1.60 \cdot 10^{-2}$, $\beta \approx 19.78$.

На рис. 1,2 представлены типичные результаты моделирования распространения лазерного импульса

в СР. Для определенности взяты следующие начальные параметры импульса: u/v = 0.9 (соответствует скорости $u \approx 8.54 \cdot 10^9$ см/с), $\Omega = 0.5$ (соответствует частоте собственных колебаний бризера $\omega_B = \Omega \omega_0$ $\approx 3.23 \cdot 10^{12} \text{ c}^{-1}$), $\lambda = 1$ (соответствует полуширине импульса вдоль оси СР $L_x = \lambda c / \omega_0 \approx 4.65 \cdot 10^{-3}$ см).

На рис. 1 показано распределение интенсивности поля $I(\xi, \xi, \tau)$ в СР при распространении электромагнитного импульса. Интенсивность поля представлена отношением I/I_{max} , различным значениям которого сопоставлены в линейной зависимости оттенки шкалы серого (I_{max} — максимальное значение интенсивности в конкретный момент безразмерного времени $\tau = \omega_0 t/\sqrt{\varepsilon}$). Наиболее светлые участки соответствуют максимальной интенсивности, а наиболее темные — минимальной. По горизонтали и по вертикали на рис. 1 отложены безразмерные координаты $\xi = x\omega_0/c$ и $\xi = z\omega_0/c$. При выбранных выше значениях параметров системы единица по осям $O\xi$ и $O\xi$ соответствует расстоянию $\delta x = \delta z \approx 4.65 \cdot 10^{-3}$ см.

Из рис. 1 видно, что электромагнитный импульс по мере распространения подвергается расплыванию в направлении оси СР, его фронт деформируется.

1387

В результате распространения электромагнитного импульса происходит перераспределение плотности заряда в образце. На рис. 2 представлено распределение концентрации электронов проводимости $n = n_0 \eta$, которое представляет собой совокупность областей повышенной и пониженной концентрации. Значениям отношения $(\eta - \eta_{\min})/(\eta_{\max} - \eta_{\min})$ сопоставлены в линейной зависимости оттенки шкалы серого, η_{max} , η_{min} – максимальное и минимальное значения η в момент безразмерного времени τ . Максимальным значениям η соответствуют наиболее светлые участки (области с повышенной концентрацией электронов), минимальным наиболее темные (области с пониженной концентрацией электронов). Относительное изменение концентрации электронов в образце, соответствующее рис. 2, т.е. величина $(n_{\max} - n_{\min})/n_0$, имеет значение порядка единиц процентов.

Таким образом, численные расчеты показали, что перераспределение концентрации электронов проводимости вследствие неоднородности поля вдоль оси СР приводит к существенному изменению формы электромагнитного импульса и дестабилизирует его динамику в данной нелинейной среде. Особенности распространения электромагнитных импульсов, описанные выше, могут быть учтены при создании элементной базы оптоэлектроники, при разработке устройств управления полем лазерного излучения, систем оптической обработки информации.

4. Заключение

В заключение сформулируем основные результаты данной работы.

1. Впервые получена система уравнений, описывающая эволюцию электромагнитного поля и плотности заряда в СР при учете неоднородности поля вдоль ее оси (см. уравнения (4), (7), (8)).

2. В результате численного моделирования установлено, что в СР возможно распространение предельно короткого биполярного электромагнитного импульса, пространственно ограниченного вдоль оси СР.

3. Распространение электромагнитного импульса в СР приводит к перераспределению концентрации электронов проводимости, что в свою очередь является фактором, дестабилизирующим динамику импульса.

Работа поддержана РФФИ (грант № 11-02-97054).

Список литературы

- [1] Ж.И. Алфёров. УФН, 172 (9), 1068 (2002).
- [2] Ф.Г. Басс, А.А. Булгаков, А.П. Тетервов. Высокочастотные свойства полупроводников со сверхрешетками (М., Наука, 1989).
- [3] М. Херман. Полупроводниковые сверхрешетки (М., Мир, 1989).

- [4] С.А. Ахманов, В.А. Выслоух, А.С. Чиркин. Оптика фемтосекундных лазерных импульсов (М., Наука, 1988).
- [5] А.А. Игнатов, Ю.А. Романов. ФТТ, 7 (11), 3388 (1975).
- [6] Э.М. Эпштейн. ФТТ, 19 (11), 3456 (1977).
- [7] Э.М. Эпштейн. ФТП, 14 (12), 2422 (1980).
- [8] С.В. Крючков, Г.А. Сыродоев. ФТП, 24 (5), 913 (1990).
- [9] С.В. Крючков, Г.А. Сыродоев. ФТП, 24 (6), 1120 (1990).
- [10] D.V. Zavjalov, S.V. Kruchkov. Laser Phys., 13 (10), 1256 (2003).
- [11] М.Б. Белоненко. ПЖТФ, **35** (16), 40 (2009).
- [12] Г.М. Шмелев, М.Б. Белоненко. ПЖТФ, 36 (8), 88 (2010).
- [13] М.Б. Белоненко, Э.Г. Федоров. Опт. и спектр., 110 (1), 111 (2011).
- [14] М.Б. Белоненко, Э.Г. Федоров. Опт. и спектр., 112 (2), 274 (2012).
- [15] А.В. Пак, М.Б. Белоненко. ФТТ, 55 (6), 1157 (2013).
- [16] М.Б. Белоненко, Э.Г. Федоров. ФТТ, 55 (6), 1238 (2013).
- [17] Л.Д. Ландау, Е.М. Лифшиц. Электродинамика сплошных сред (М., Наука, 1982).
- [18] Л.Д. Ландау, Е.М. Лифшиц. *Теория поля* (М., Наука, 1973).
- [19] А.Н. Пихтин. Оптическая и квантовая электроника (М., Высшая школа, 2001).
- [20] Yu.S. Kivshar, B.A. Malomed. Rev. Mod. Phys., 61 (4), 763 (1989).
- [21] А.М. Гончаренко. *Гауссовы пучки света* (М., URSS: КомКнига, 2005).
- [22] Н.Н. Калиткин. Численные методы (М., Наука, 1978).
- [23] С. Кунин. Вычислительная физика (М., Мир, 1992).

Редактор Т.А. Полянская