09

Влияние температуры на спектры комбинационного рассеяния света в монокристалле FeS₂ со структурой пирита

© А.Н. Утюж

Институт физики высоких давлений им. Л.Ф. Верещагина РАН, Троицк, Москва, Россия E-mail: anatu@hppi.troitsk.ru

(Поступила в Редакцию 9 апреля 2014 г.)

Проведено исследование КРС в природном монокристалле FeS₂ со структурой пирита в интервале температур 80–300 К. При нормальных условиях ($T = 23^{\circ}$ С) наблюдались все пять КРС-активных мод E_g , $T_g(1)$, $T_g(2)$, A_g , $T_g(3)$. Влияние температуры на спектры КРС изучали в конфигурации *HH* (поляризации падающего и рассеянного излучения параллельны), позволяющей регистрировать наиболее сильные линии спектра A_g и E_g . Ширины мод E_g и A_g оказались существенно меньшими приводимых в литературе. Зависимости от температуры частот и ширин (FWHM) мод A_g и E_g хорошо аппроксимируются моделью Клеменса, описывающей трехфононный механизм рассеяния.

Работа выполнена при поддержке РФФИ (грант № 12-02-00376-а).

1. Введение

FeS2 со структурой пирита представляет собой один из наиболее распространенных сульфидных минералов. Интерес геофизиков к свойствам этого минерала связан с возможной ролью системы Fe-S в формировании ядра Земли. Проведенные эксперименты по статическому и ударному сжатию до 50 GPa и до 320 GPa соответственно показали, что пирит не испытывает каких-либо структурных фазовых переходов в указанном диапазоне давлений [1]. Дихалькогениды переходных металлов кристаллизуются в нескольких типах структур: слоистых структурах (CdI₂), структурах пирита, марказита, структурах типа IrSe₂ и PdS₂. Семейство соединений со структурой пирита весьма обширно: MnS₂, FeS₂, CoS₂, NiS₂, CuS₂, ZnS₂, RuS₂, CoSe₂, CuSe₂, RuSe₂ и др. В ряду соединений MS_2 , где M = Mn, Fe, Co, Ni, Cu, Zn, возрастающая концентрация d-электронов приводит к монотонному росту размеров элементарной ячейки и эволюции их электрических и магнитных свойств [2].

Возможность использования FeS₂ как материала солнечных батарей стимулировала многочисленные теоретические и экспериментальные исследования его электронных свойств [3,4]. Как оказалось, FeS₂ в структуре пирита является полупроводником с непрямой щелью около 0.9 eV [5]. Считается, что электронные свойства пирита FeS₂ и, по-видимому, других аналогичных соединений связаны с характером M-S и S-S химических связей [3]. Свойства связей могут быть исследованы методами колебательной спектроскопии и с помощью неупругого рассеяния нейтронов, что собственно и было сделано для случая пирита FeS₂. Все фононные частоты пирита были определены при нормальных условиях методами ИК [6], КРС [2,7,8] и нейтронной [9] спектроскопии.

Эти экспериментальные данные анализировались и моделировались расчетами с использованием межатом-

ных потенциалов [6,9,10]. Расчеты в рамках модели поляризуемых ионов [11] воспроизвели наблюдаемые фононные частоты (т.е. КРС- и ИК-активные моды) с погрешностью менее 3 cm^{-1} . В недавней работе [4] рассчитаны колебательные частоты пирита в зависимости от давления в приближении функционала плотности. Эта работа представляет собой первое детальное исследование фононных частот и их зависимостей от давления в пирите методом, основанным на "первых принципах". Интервал давлений был ограничен предполагаемым переходом FeS₂ в металлическую фазу в окрестности 180 GPa [4].

В большинстве экспериментальных исследований КРС в FeS2 наблюдались только три моды, при заметном нагреве образца из-за поглощения лазерного света [2,12]. Полный спектр КРС FeS2 при нормальных условиях был получен в результате поляризованных измерений в четырех конфигурациях рассеяния [7]. В настоящей работе мы представляем исследование КРС в FeS2 со структурой пирита в интервале температур 80-300 К. Ранее мы исследовали спектры комбинационного рассеяния света half-metal CoS₂ со структурой пирита в интервале температур 10-300 К [13]. Аномалии, обнаруженные на зависимостях частоты и ширины моды Ад CoS₂ от температуры, объясняются в работе [14] электронными межзонными переходами, на которые влияет ферромагнитное упорядочение. Сравнение результатов, полученных для FeS₂ и CoS₂, помогает оценить влияние различных факторов на появление аномалий на зависимостях частот и ширин рамановских (КРС) мод от температуры.

Структура кристалла и фононный спектр

Симметрия структуры пирита описывается пространственной группой T_h^6 (Pa3). Решетка Браве явля-

ется простой кубической с ребром куба для FeS₂ a = 5.4160(2) Å. Элементарная ячейка содержит четыре формульные единицы, т.е. 12 атомов — четыре атома железа и восемь атомов серы. Атомы железа занимают места гранецентрированной кубической подрешетки, а атомы серы образуют пары-гантели, ориентированные по направлениям (111). Центры пар S₂ расположены на серединах ребер и в центре элементарной ячейки. В этом отношении структуру пирита можно назвать подобной структуре NaCl. Соответственно фононный спектр FeS₂ состоит из 36 ветвей. Распределение фононов по типам симметрии точечной группы $T_h(m3)$ дает в центре зоны Бриллюэна 36 нормальных мод колебаний [10]

$$\Gamma = A_g + E_g(2) + 3T_g(3) + 2A_u + 2E_u(2) + 6T_u(3).$$
(1)

Наличие инверсионной симметрии разделяет все моды в точке Γ на четные и нечетные. Четные моды — полностью симметричная мода A_g , мода E_g и три моды T_g являются КРС-активными в спектре первого порядка. Нечетные моды делятся на $5T_u$ активные в спектре инфракрасного отражения, оптически неактивные (silent) $2A_u + 2E_u(2)$ и акустические T_u . КРС-активные моды связаны с движениями только атомов серы и, следовательно, дают информацию о силах, определяющих колебания растяжения и крутильные движения пар S₂. Типы колебаний, соответствующие пяти КРС — активным фононным модам CoS₂, описаны в работе [10]. Мода A_g соответствует колебаниям растяжения пар атомов серы в фазе, мода E_g — либрационным (крутильным) колебаниям пар S–S.

3. Методика эксперимента

Измерения КРС были выполнены на образцах природных монокристаллов FeS₂. Использовали образцы со свежими сколами, приклеенные к медной подложке для обеспечения теплоотвода.

Микро-рамановские спектры при комнатной температуре были получены в геометрии обратного рассеяния с использованием микроскопа Olympus BX51, оснащенного объективом 50×. Для возбуждения спектров КРС использовался аргоновый лазер Spectra Physics Stabilite 2017 с $\lambda_{\text{exc}} = 488$ nm. Спектры регистрировали тройным спектрометром TriVista 555 Princeton Instruments, оснащенным CCD матрицей, охлаждаемой жидким азотом. Измерения при комнатной температуре были проведены в конфигурациях НН (поляризации падающего и рассеянного излучения параллельны) и HV (эти поляризации перпендикулярны) со спектральной шириной щели, равной 2.8 cm⁻¹. Для оценки возможного влияния нагрева образца лазерным излучением были проведены измерения спектров в диапазоне мощностей на образце от 1 до 15 mW. В дальнейших измерениях использовались мощности излучения, не вызывающие регистрируемого нагрева образцов. Обычно мощность излучения на образце составляла около 4 mW.

Измерения зависимости спектров FeS₂ от температуры были выполнены с использованием криосистемы Linkam THMS600, низкотемпературный столик которой был закреплен в микроскопе Olympus BX51. Микроскоп, оснащенный объективом $50\times$, обеспечивал фокусировку возбуждающего лазерного излучения на образце и сбор излучения комбинационного рассеяния. Измерения проведены в интервале температур 80-300 K в геометрии обратного рассеяния и конфигурации *HH*, при которой наблюдаются только наиболее сильные линии рамановского спектра FeS₂ — A_g и E_g . Измерения выполнены со спектральной шириной щели, равной 2.8 и 0.55 сm⁻¹.

4. Результаты измерений

Результаты измерения спектров КРС монокристаллов FeS₂ приведены на рис. 1, 2 и в табл. 1. На рис. 1 представлены спектры КРС, соответствующие температуре $T = 23^{\circ}$ С. Спектры получены в геометрии обратного рассеяния, конфигурациях *НН* и *HV* при использовании возбуждения излучением аргонового лазера с $\lambda_{\rm exc} = 488$ nm и мощностью на образце 4.5 mW. Для

Рис. 1. Спектры рамановского рассеяния FeS₂ при нормальных условиях (P = 1 atm, $T = 23^{\circ}$ C) в геометрии обратного рассеяния при конфигурациях *НН* и *HV*. Измерения выполнены при возбуждении излучением аргонового лазера с $\lambda_{\text{exc}} = 488$ nm и мощности на образце 4.5 mW. Интенсивность спектра, полученного в конфигурации *HV*, умножена на 6.5 для наглядности.

346

 A_g mode

385

384

Рис. 2. Зависимости от температуры частот, ширин (FWHM) и интенсивностей рамановских мод A_g и E_g пирита FeS₂ в конфигурации НН. Линиями представлена аппроксимация экспериментальных данных уравнениями (2) и (3) по Клеменсу.

я работа	[7]		[8]		
FWHM, cm ⁻¹	$\omega_i, \mathrm{cm}^{-1}$	Симметрия	Тип колебаний пары S—S	$\omega_i, \mathrm{cm}^{-1}$	FWHM, cm ⁻¹
1.2	343	E_{g}	Либрации	344	3.2
< 2.8	350	$T_g(1)$	Либрации	350	2.7
4.4	377	$T_g(2)$	и растяжения Растяжения не в фазе		
1.4	379	A_g	Растяжения	379	4.5
4.5	430	$T_g(3)$	в фазе Либрации и растяжения	430	4.8
	я работа FWHM, cm ⁻¹ 1.2 < 2.8 4.4 1.4 4.5	я работа	я работа [7] FWHM, cm ⁻¹ ω_i , cm ⁻¹ Симметрия 1.2 343 E_g < 2.8	я работа [7] FWHM, cm ⁻¹ ω_i , cm ⁻¹ Симметрия Тип колебаний пары S–S 1.2 343 E_g Либрации < 2.8	я работа $[7]$ [8] FWHM, cm ⁻¹ ω_i , cm ⁻¹ Симметрия Тип колебаний пары S–S ω_i , cm ⁻¹ 1.2 343 E_g Либрации 344 < 2.8

Таблица 1. Частоты ω_i и ширины (*FWHM*) рамановских линий FeS₂ при нормальных условиях (P = 1 atm, $T = 23^{\circ}$ C)

идентификации рамановских мод FeS₂ использовались результаты поляризованных измерений Фогта и др. [7]. Поскольку в конфигурации *HH* должны наблюдаться только линии A_g и E_g , а в конфигурации *HV* линии E_g и $3T_g$, это позволило идентифицировать все пять линий KPC, активных в образцах FeS₂ (см. табл. 1).

Влияние температуры на спектры комбинационного рассеяния изучали в конфигурации НН, которая позволяла наблюдать наиболее сильные линии спектра Ag и Eg, соответствующие разным типам колебаний пар атомов S-S. Первый цикл измерений рамановских спектров FeS₂ в диапазоне температур 80-300 К дал значения частот мод A_g и E_g в исследованном диапазоне температур, и при этом значения ширин (FWHM) линий Ag и Eg для всех температур были практически постоянными около 2.8 cm⁻¹, что равнялось спектральной ширине щели. Окончательные измерения были проведены в конфигурации сложения дисперсии всех трех ступеней спектрометра TriVista, что позволило достигнуть значения спектральной ширины щели 0.55 cm⁻¹ и получить достоверные данные для частот и FWHM наиболее интенсивных фононных линий Ag и Eg. Полученные спектры были аппроксимированы набором лоренцианов. Результаты полученные в этом цикле измерений для зависимостей от температуры частот, ширин и интенсивностей рамановских мод A_g и E_g представлены на рис. 2.

5. Обсуждение результатов

В табл. 1 приведены частоты и ширины (FWHM) всех пяти рамановских линий FeS₂, измеренные при нормальных условиях (P = 1 atm, $T = 23^{\circ}$ C). Значения частот рамановских мод хорошо согласуются со значениями, полученными ранее [7,8]. Значения ширин линий $T_g(1)$ и $T_g(3)$ хорошо согласуются с данными [8]. Ширины линий A_g и E_g при использовании максимального разрешения спектрометра оказались значительно меньше, чем в предшествующих работах.

На рис. 2 приведены экспериментальные значения частот, ширин и интенсивностей фононных линий мод A_g

и E_g , полученные в интервале температур 80–300 К. Набор рамановских линий FeS₂ в диапазоне температур 80–300 К не меняется, следовательно, не наблюдается признаков структурных фазовых переходов. При понижении температуры от 300 до 80 К энергия моды A_g возрастает на 1.2%, а моды E_g — на 0.9%. Ширины фононных линий A_g и E_g при понижении температуры плавно уменьшаются без каких-либо особенностей. Интенсивности наблюдаемых мод A_g и E_g , представленные на рис. 2, в исследованном интервале температур 80–300 К и при $\lambda_{\rm exc} = 488$ nm ощутимо не изменяются.

На этом же рисунке линиями представлены аппроксимации экспериментальных частот и ширин выражениями, соответствующими ангармоническому распаду оптических фононов для нормальных кристаллов без фазовых переходов. Мы использовали зависимости $\omega(T)$ и FWHM(T), определяемые вкладом в фонон-фононное рассеяние, описываемым как распад оптического фонона соответствующего Г точке зоны Бриллюэна на два акустических фонона с противоположными импульсами и принадлежащими одной и той же ветви (модель Клеменса) [15]. Зависимость сдвига рамановской частоты от температуры описывается выражением

$$\omega(T) = \omega_0 - A \left[2/\left(\exp(\hbar\omega_0/2k_{\rm B}T) - 1 \right) \right], \qquad (2)$$

где параметры соответствуют: ω_0 — энергии фонона в точке Г зоны Бриллюэна при T = 0; A — ангармоническому коэффициенту третьего порядка. Функция $\omega(T)$, представленная сплошной линией на рис. 2, удовлетворительно аппроксимирует экспериментальные точки мод A_g и E_g в диапазоне 80–300 К. Значения параметров аппроксимации приведены в табл. 2. Зависимость ширины рамановской линии от температуры описывается выражением

$$\Gamma(T) = \Gamma_0 + B \left[2/\left(\exp(\hbar\omega_0/2k_B T) - 1 \right) \right], \qquad (3)$$

где параметры соответствуют: Γ_0 — ширине линии при T = 0; B — ангармоническому коэффициенту, а ω_0 — приведенной в табл. 2 энергии фонона в точке Γ зоны

Таблица 2. Параметры уравнений (2) и (3), аппроксимирующих экспериментальные данные для частот ω и ширин (*FWHM*) рамановских мод A_g и E_g образцов пирита FeS₂ в интервале температур 80–300 К

A	g	E_g		
$\omega(T)$	$\Gamma(T)$	$\omega(T)$	$\Gamma(T)$	
$\omega_0 = 384.66$ A = 3.42	$\Gamma_0 = 0.924$ D = 0.286 $\omega_0 = 384.66$	$\omega_0 = 346.11$ A = 1.91	$\Gamma_0 = 0.959$ D = 0.123 $\omega_0 = 346.11$	

Бриллюэна при T = 0, полученной при аппроксимации экспериментальных данных выражением (2). Функция $\Gamma(T)$, представленная сплошной линией на рис. 2, удовлетворительно аппроксимирует экспериментальные точки мод A_g и E_g в диапазоне 80–300 К. Значения параметров этой аппроксимации также приведены в табл. 2. Малые ширины линий A_g и E_g свидетельствуют о слабом уширении, связанном с дефектами, т.е. о хорошем качестве нашего образца FeS₂.

Рис. 3. Сравнение зависимостей от температуры частоты моды A_g для соединений CoS₂ и FeS₂ со структурой пирита, полученных в наших измерениях в интервале 80-300 K, в конфигурации *HH*. Линиями представлены аппроксимации экспериментальных данных по Клеменсу.

Относительные интенсивности мод в спектре FeS₂ могут изменяться в зависимости от геометрии рассеяния, использования различных λ_{exc} лазера и изменения зонной щели FeS₂ при изменении давления. Интенсивность моды A_g растет на порядок при перестройке возбуждающего КРС аргонового лазера с 514.5 nm на 454.6 nm [16]. Увеличение гидростатического давления до 51 GPa при использовании $\lambda_{exc} = 514.5 \, nm$ приводит к повышению на порядок отношения интенсивностей мод A_g/E_g в спектре FeS₂ [9]. Наши данные для интенсивностей наблюдаемых мод A_g и E_g , представленные на рис. 2, позволяют сделать вывод, что в пределах погрешности определения интенсивностей отношение $I(A_g/E_g)$ в исследованном интервале температур 80-300 К и при $\lambda_{\text{exc}} = 488 \,\text{nm}$ ощутимо не изменяется. Последнее означает, что в наших условиях не реализуется межзонное резонансное рассеяние, наблюдаемое в работах [8,16].

На рис. З представлено сравнение зависимостей от температуры частот моды A_g для соединений CoS₂ и FeS₂ со структурами пирита, полученных в наших измерениях [13] в интервале 80–300 К. Для FeS₂ зависимость частоты A_g хорошо описывается выражением Клеменса для фонон-фононного распада третьего порядка. Для CoS₂ аппроксимация по Клеменсу хорошо описывает экспериментальные точки в интервале от 300 К до температуры перехода в ферромагнитное состояние — 122 К, при более низких температурах на зависимости $\omega(T)$ наблюдается аномалия, которая может быть объяснена электрон-фононным взаимодействием [14].

6. Заключение

На образцах природного монокристалла FeS₂ при нормальном давлении и $T = 23^{\circ}$ С наблюдались все пять КРС-активных мод E_g , $T_g(1)$, $T_g(2)$, A_g , $T_g(3)$, соответствующих структуре пирита. Значения частот рамановских мод хорошо согласуются с литературными данными. Ширины линий A_g и E_g при использовании максимального разрешения спектрометра (спектральная ширина щели равнялась 0.55 сm⁻¹) оказались значительно меньше, чем в предшествующих работах. Малые ширины мод E_g и A_g указывают также на высокое качество исследованных монокристаллов.

Проведено КРС-исследование FeS₂ со структурой пирита в интервале температур 80-300 К. Зависимости от температуры частот и ширин (*FWHM*) мод A_g и E_g для FeS₂ хорошо аппроксимируются зависимостями Клеменса, описывающими трехфононный механизм фононфононного рассеяния.

Результаты, полученные для полупроводникового пирита FeS₂, с фонон-фононным механизмом рассеяния использованы как базовые при сопоставлении с более сложным half-metal пиритом CoS₂, который при 122 K испытывает фазовый переход в ферромагнитное состояние. В этом случае мы наблюдаем при T < 122 K аномальную зависимость рамановской частоты A_g от температуры, которую можно объяснить электрон-фононным

взаимодействием. В случае FeS_2 мы не наблюдаем никаких аномалий на зависимости рамановской частоты A_g от температуры.

Автор благодарит С.Г. Ляпина за помощь в проведении измерений и С.М. Стишова за предоставленный образец FeS₂, постоянный интерес к работе и полезные предложения.

Список литературы

- [1] T.J. Ahrens, R. Jeanloz. J. Geophys. Res. 92, 10363 (1987).
- [2] E. Anastassakis, C.H. Perry. J. Chem. Phys. 64, 3604 (1976).
- [3] P. Cervantes, Z. Slanic, F. Bridges, E. Knittle, Q. Williams. J. Phys. Chem. Solids 63, 1927 (2002).
- [4] M. Blanchard, M. Alfredsson, J. Brodholt, G.D. Price, K. Wright, C.R.A. Catlow. J. Phys. Chem. B 109, 22067 (2005).
- [5] I.J. Ferrer, D.M. Nevskaia, C. de las Heras, C. Sanchez. Solid State Commun. 74, 913 (1990).
- [6] J.L. Verble, R.F. Wallis. Phys. Rev. 182, 783 (1969).
- [7] H. Vogt, T. Chattopadhyay, H.J. Stolz. J. Phys. Chem. Solids 44, 869 (1983).
- [8] A.K. Kleppe, A.P. Jephcoat. Mineral. Mag. 68, 433 (2004).
- [9] W. Buhrer, E. Lafougere, H. Lutz. J. Phys. Chem. Solids 54, 1557 (1993).
- [10] C. Sourisseau, R. Cavagnat, M. Fouassier. J. Phys. Chem. Solids 52, 537 (1991).
- [11] H.D. Lutz, J. Zminscher. J. Phys. Chem. Miner. 23, 497 (1996).
- [12] T.P. Mernagh, A.G. Trudu. Chem. Geol. 103, 113 (1993).
- [13] S.G. Lyapin, A.N. Utyuzh, A.E. Petrova, A.P. Novikov, T.A. Lograsso, S.M. Stishov. arXiv cond-mat.1402.5785v1 (2014).
- [14] L.A. Falkovsky. Phys. Rev. B 88, 155135 (2013).
- [15] M.S. Liu, L.A. Bursill, S. Prawer, R. Beserman. Phys. Rev. B 61, 3391 (2000).
- [16] R.M. Macfarlane, S. Ushioda, K.W. Blazey. Solid State Commun. 14, 851 (1974).