01

Инерциально-спутниковая нейроморфная система оценки параметров вращения подвижной технологической платформы

© А.С. Девятисильный

Институт автоматики и процессов управления ДВО РАН, 690041 Владивосток, Россия Дальневосточный федеральный университет, 690950 Владивосток, Россия e-mail: devyatis@iacp.dvo.ru

(Поступило в Редакцию 27 декабря 2013 г.)

Обсуждена система, включающая бортовую сеть приемников ГЛОНАСС и гироскопических датчиков угловых скоростей, интегрированных вычислительной нейросетью, реализующей мультимодельный алгоритм динамического псевдообращения калмановского типа. Приведены результаты вычислительного эксперимента.

Введение

В настоящей работе продолжается тема определения параметров вращения технологической платформы (ТП) широкого спектра базирования (космического, воздушного, морского или сухопутного), начатая в [1]. Для определения этих параметров (матрицы ориентации и вектора угловой скорости) предлагается интегрированная система (ИС), включающая блок инерциальных измерителей — трех гироскопических датчиков угловых скоростей со взаимоортогональными осями чувствительности и систему бортового многопозиционного приема (БМП) навигационной спутниковой системы (НСС) типа ГЛОНАСС. От системы, рассмотренной в [1], предлагаемая ИС отличается тем, что функцию определения матрицы ориентации ТП выполняет система БМП, а не астросистема, как в [1]. Вообще говоря, обе ИС могут быть реализованы одновременно на базе единого блока гироскопов в качестве автономного бортового измерителя для двух видов внешней информации астро- и спутниковой — с учетом доступности каждого из них.

В настоящей работе аналитическое комплексирование ИС приводит к постановке обратной задачи вида "состояние-измерение" [2], для решения которой используется мультимодельный алгоритм динамического обращения нейроподобного типа [1,3], ассоциированный с некоторыми положениями нейродинамики и нейроморфизма, характеризующими мышление — это целенаправленность [4,5], т.е. ориентация процессов в центральной нервной системе (ЦНС) на устойчивое решение конкретной задачи, структурная блочность нейросистемы как необходимое условие мышления [6] формирование ЦНС синхронизированных блоков, разыгрывающих разные возможные сценарии отклика на поступающую в ЦНС информацию, привыкание [7] изменяющаяся во времени динамика отклика нейросети на стимуляцию.

Завершая эту часть работы, отметим и то, что наряду с приведенными ассоциациями допустимы и обратные, а именно: в том как происходит процесс устойчивого

усвоения информации конкретной технической системой видится процесс формирования и эволюции популяций "живых" нейронов в неокортекстном модуле мозга [4], продуцирующих образы (в данном случае — математические) реальных объектов, и механизм настройки их — "живых" нейронов — синаптических коэффициентах, обусловливающий функциональность данной популяции в условиях неопределенности информации, поступающей из внешней по отношению к ней среды.

Основные модельные представления

Начнем с геометрических образов, порождаемых формализмом функционирования НСС. Прежде всего введем правые ортогональные системы отсчета $o\xi = o\xi_1\xi_2\xi_3$ с началом *о* в центре масс Земли и осями $o\xi_1$ и $o\xi_3$, направленными соответственно в созвездие Овна и вдоль оси собственного вращения Земли; систему $o\eta = o\eta_1\eta_2\eta_3$ с осью $o\eta_3 \equiv o\xi_3$ и осью $o\eta_1$, лежащей в плоскости гринвичского меридиана; $o_1 y = o_1 y_1 y_2 y_3$ приборную систему отсчета с началом о1, совмещенным с одним из N приемников сигналов (ПС) под номером i = 0, т.е. ΠC_i , i = 0, так что векторы $\mathbf{y}^{(i)}$, $i = \overline{1, N-1}$ с началом в o_1 характеризуют размещение в $o_1 y$ остальных ПС_{*i*}, $i = \overline{1, N-1}$ (далее положим N = 3); $o_1 x = o_1 x_1 x_2 x_3$ — подвижную систему с осью $o_1 x_3$, направленной вдоль радиуса-вектора места ТП и осями o_1x_1 и o_1x_2 , направленными соответственно на географические восток и север.

НСС доставляет на борт ТП информацию о месте ПС_i $(i = \overline{0, 2})$ в системе отсчета $o\eta$, так что $\tilde{\eta}^{(i)} = \eta^{(i)} - \tilde{\epsilon}^{(i)}, i = \overline{1, 2}$, где $\eta^{(i)}$ и $\tilde{\eta}^{(i)}$ — это соответственно фактические и измеренные векторы координат ПС_i, а $\tilde{\epsilon}^{(i)}$ — погрешность навигационной привязки. Образуем разности $\delta \tilde{\eta}^{(j)} = \tilde{\eta}^{(j)} - \tilde{\eta}^{(0)} = \delta \tilde{\eta}^{(j)} - \epsilon^{(i)}$, где $\delta \eta^{(j)} = \eta^{(j)} - \eta^{(0)}$, $\epsilon^{(j)} = \tilde{\epsilon}^{(j)} - \tilde{\epsilon}^{(0)}$, $j = \overline{1, 2}$, и, кроме того, исходные представления о системе ПС в *оу* дополним связями $\tilde{y}^{(i)} = y^{(i)} - \tau^{(i)}$, $i = \overline{1, 2}$, интерпретируя $\tilde{y}^{(i)}$ как измеренные значения $y^{(i)}$, а $\tau^{(i)}$ как не зависящую от времени погрешность измерения. Очевидно,

что $\mathbf{y}^{(i)}$ и $\delta \boldsymbol{\eta}^{(i)}$ $(i = \overline{1, 2})$ — представления одних и тех же векторов в разных системах -oy и $o\eta$, связанные ортогональными преобразованиями

$$\mathbf{y}^{(i)} = \mathbf{A}^{(\mathbf{y})} \delta \boldsymbol{\eta}^{(i)}, \quad i = \overline{1, 2}.$$
(1)

Перейдем теперь к "геометрии движения" [8], или кинематике, отождествляя ее с представлениями об эволюции матрицы $\mathbf{A}^{(y)}$ при вращении приборного трехгранника *оу*. Обозначим через $\boldsymbol{\omega}$, **u** и Ω векторы угловых скоростей относительного вращения соответственно координатных трехгранников *оу* и *о* ξ , *о* η и *о* ξ , *оу* и *о* η . Тогда

$$\boldsymbol{\omega} = \mathbf{u} + \boldsymbol{\Omega},\tag{2}$$

где ω измеряется гироскопическими датчиками, **u** — угловая скорость собственного вращения Земли известна в проекциях на оси трехгранника *о* η , а Ω очевидным образом вычислима из (2). Изложенное дает основание воспользоваться для описания эволюции **A** кинематическим уравнением Пуассона [8]

$$\dot{\mathbf{A}} = -\hat{\mathbf{\Omega}}\mathbf{A}, \quad \mathbf{A}(t_0) = \mathbf{A}^{(0)}, \tag{3}$$

где $\hat{\Omega} = (\Omega_{ij})$ — кососимметрическая матрица, заполняемая компонентами вектора $\Omega = (\Omega_k)$ так, что $\Omega_{ij} = e_{ikj}\Omega_k; i, j, k = \overline{1, 3}.$

Уравнения (1) и (3) вместе взятые составляют математическую модель обратной (кинематической) задачи "в большом", решая которую в реальных условиях присутствия инструментальных погрешностей измерений и вычислений, оценивается A(t). Суть решения математически поставленной обратной задачи тесно связана с так называемой на практике задачей коррекции [9] и состоит в следующем. В указанных реальных условиях интегрируется уравнение (3), что дает оценку A(t)матрицы $\mathbf{A}(t)$ с некоторой погрешностью $\delta \mathbf{A}(t)$, относительно которой принимаем, что $\delta \mathbf{A} = -\boldsymbol{\beta} \mathbf{A}$. Это означает, что пространственное положение трехгранника оу отличается от того, которое характеризуется матрицей A(t), на вектор малого угла вращения β . Соответственно и преобразование (1) с матрицей А выполняется с погрешностью $\delta \mathbf{y} = \hat{\mathbf{y}}\boldsymbol{\beta}$. Изложенное позволяет, вопервых, определить задачу коррекции как задачу оценки вектора $\boldsymbol{\beta}$ с последующим уточнением матрицы $\tilde{\mathbf{A}}$ в соответствии с формулой $\mathbf{A}^* = (\mathbf{E} + \hat{\boldsymbol{\beta}}^*) \tilde{\mathbf{A}}$, где \mathbf{A}^* новая оценка A, $\boldsymbol{\beta}^*$ — оценка $\boldsymbol{\beta}$, E — единичная матрица; во-вторых, интерпретировать задачу коррекции как обратную задачу с математической моделью следующего вида:

$$\begin{aligned} \dot{\boldsymbol{\beta}} &= -\hat{\boldsymbol{\Omega}}\boldsymbol{\beta} + \mathbf{m} + \boldsymbol{\nu}, \\ \dot{\mathbf{m}} &= \boldsymbol{\mu}(t), \\ \dot{\boldsymbol{\Omega}} &= \boldsymbol{\chi}(t), \\ \tilde{\boldsymbol{\Omega}} &= \boldsymbol{\Omega} + \mathbf{m} + \boldsymbol{\nu}, \\ \delta \tilde{\mathbf{y}}^{(i)} &= \hat{\mathbf{y}}^{(i)}\boldsymbol{\beta} + \boldsymbol{\Delta}^{(i)}, \quad i = \overline{1, 2}, \end{aligned}$$
(4)

где $\hat{\Omega}$ — значение Ω , определяемое согласно (2), а **m** и ν — математическое ожидание и несмещенная шумовая составляющая векторного случайного процесса, отождествляемого с вектором инструментальных погрешностей такого определения Ω , $\delta \tilde{\mathbf{y}}^{(i)}$ — невязка измерений вектора $\mathbf{y}^{(i)}$, а $\Delta^{(i)}$ — соответствующий вектор инструментальных погрешностей этих измерений, $\boldsymbol{\mu}(t)$ и $\boldsymbol{\chi}(t)$ — скорости изменения векторов соответственно **m** и Ω .

Введем обозначения: $\mathbf{x}^{T} = (\boldsymbol{\beta}^{T}, \mathbf{m}^{T}, \boldsymbol{\Omega}^{T})$ — вектор оцениваемых состояний, $\mathbf{z}^{T} = ((\delta \tilde{\mathbf{y}}^{(1)})^{T}, (\delta \tilde{\mathbf{y}}^{(2)})^{T}, \tilde{\boldsymbol{\Omega}}^{T})$ вектор измерений, **С** и **Н** — матрицы коэффициентов при векторе **x** в правых частях соответственно уравнений состояний и измерений, $\mathbf{q}^{T} = (\mathbf{v}^{T}, \boldsymbol{\mu}^{T}, \boldsymbol{\chi}^{T})$ и $\mathbf{r}^{T} = (\mathbf{v}^{T}, (\boldsymbol{\Delta}^{(1)})^{T}, (\boldsymbol{\Delta}^{(2)})^{T})$ — векторы немоделируемых компонент возмущений, T — символ транспонирования векторов и матриц.

Перепишем систему (4) в общем виде

$$\dot{\mathbf{x}} = \mathbf{C}\mathbf{x} + \mathbf{q}, \quad \mathbf{x}(t_0) = \mathbf{x}_0,$$

 $\mathbf{z} = \mathbf{H}\mathbf{x} + \mathbf{r}.$ (5)

Целью решения задачи (5) является оценка в текущем времени вектора **х**. Полученные оценки могут быть использованы в режиме замыкания моделей (3) и (4), когда оценка Ω^* активируется при интегрировании (3), что в конечном итоге влияет и на оценку **A**^{*}.

Алгоритм нейросетевого динамического псевдообращения

При решении задачи (5) следуем той же концепции нейроморфизма, что и в [1], и в качестве исходного рассматриваем алгоритм калмановского типа [2], встроенный в решение экстремальной задачи и обусловливающий механизм настройки синаптических коэффициентов, гарантирующих асимптотическую устойчивость решения. Тогда экстремальная задача в полном виде представляется следующим образом:

$$F = 0.5 ||\mathbf{z} - \mathbf{H}\mathbf{x}||^{2},$$

$$\dot{\mathbf{x}}^{*} = \mathbf{C}\mathbf{x}^{*} + \mathbf{K}(\mathbf{z} - \mathbf{H}\mathbf{x}^{*}), \quad \mathbf{x}^{*}(0) = 0,$$

$$\mathbf{K} = \mathbf{D}\mathbf{H}^{T}(\mathbf{R}^{*})^{-1},$$

$$\dot{\mathbf{D}} = \mathbf{C}\mathbf{D} + \mathbf{D}\mathbf{C}^{T} - \mathbf{D}\mathbf{H}^{T}(\mathbf{R}^{*})^{-1}\mathbf{H}\mathbf{C} + \mathbf{Q}^{*}, \ \mathbf{D}(0) = \mathbf{D}_{0},$$

$$(\mathbf{Q}^{*}, \mathbf{R}^{*}) = \operatorname*{arg\,min}_{\mathbf{Q},\mathbf{R}} F,$$

$$\mathbf{Q} = \operatorname{diag}(\sigma_{\nu}^{2}, \sigma_{\nu}^{2}, \sigma_{\nu}^{2}, \sigma_{\mu}^{2}, \sigma_{\mu}^{2}, \sigma_{\chi}^{2}, \sigma_{\chi}^{2}, \sigma_{\chi}^{2}, \sigma_{\chi}^{2}),$$

$$\mathbf{R} = \operatorname{diag}(\sigma_{\Delta}^2, \sigma_{\Delta}^2, \sigma_{\Delta}^2, \sigma_{\Delta}^2, \sigma_{\Delta}^2, \sigma_{\Delta}^2), \qquad (6)$$

где **х**^{*} — текущая оценка **х**.

Как видно из (6), задача решается в пространстве четырех параметров — σ_{ν} , σ_{μ} , σ_{χ} , σ_{Δ} . Заметим, что в

случае ее решения путем перебора значений элементов матрицы **K** пришлось бы иметь дело с числом параметров $9 \times 9 = 81$ и дополнительно с проблемой выхода значений **K** в область, обеспечивающую сходимость решения.

При численном решении задачи предлагается реализация мультисистемы из $3^4 = 81$ параллельных систем — алгоритмов калмановского типа. Работа каждого из них выполняется при одинаковых для всех стартовых на шаге решения условиях, но при разных значениях параметров **Q** и **R**.

Победившей в таком соревновательном на шаге процессе признается система с наименьшим значением F, а значения ее переменных \mathbf{x}^* и **D** принимаются в качестве стартовых на следующем шаге решения для всех систем мультисистемы; новый же набор параметров **Q** и **R** формируется около (как центра) значений параметров **Q** и **R** победившей системы. Например, если $\tilde{\sigma}_{\Delta}$ — значение параметра σ_{Δ} системы–победителя, то новый набор значений этого параметра есть { $\tilde{\sigma}_{\Delta}(1-\alpha), \tilde{\sigma}_{\Delta}, \tilde{\sigma}_{\Delta}(1+\alpha)$ }; $0 < \alpha < 1$. Аналогичным образом назначаются новые значения параметров $\sigma_{\nu}, \sigma_{\mu}$, и σ_{χ} .

Вычислительный эксперимент

Как и в [1], здесь приводятся результаты численного исследования для случая движения объекта в восточном направлении по географической параллели на широте $\varphi = 45^{\circ}$ с относительной (к Земле) скоростью V = 100 m/s, когда приборный трехгранник *оу* моделирует идеальный трехгранник *ох*.

При имитационном моделировании предполагалось, что приемники НСС размещены на объекте так, что $\mathbf{y}^{(1)} = (3 \text{ m}, 0, 0)^T$, $\mathbf{y}^2 = (0, 3 \text{ m}, 0)^T$, а погрешности относительных измерений — случайные процессы с равномерным распределением на интервале $[-\sqrt{3} \cdot 10^{-2} \text{ m}, \sqrt{3} \cdot 10^{-2} \text{ m}]$; инструментальные погрешности гироскопических измерителей — случайные процессы с равномерным распределением на интервале $[m_i(t) - 8.5 \cdot 10^{-6} \text{ s}^{-1}, m_i(t) + 8.5 \cdot 10^{-6} \text{ s}^{-1}]$, $i = \overline{1}, \overline{3}$,

где функции $m_i(t)$ — синусоиды с разными значениями амплитуд, периодов и фаз. Таким образом, для обоих типов измерений (спутниковых и инерциальных) среднеквадратические отклонения (СКО) от средних соответственно равны 0.01 m и 1.0 deg/hour.

При решении задачи с помощью предложенной нейроморфной сети начальные значения параметров настройки $\sigma_{\nu}, \sigma_{\mu}, \sigma_{\chi}, \sigma_{\Delta}$ равны соответственно 10^{-5} s⁻¹, 10^{-5} s⁻², 10^{-7} s⁻², 10^{-6} m.

Некоторые результаты, характеризующие высокую степень эффективности решения задачи, представлены на рис. 1, 2, где $\Delta\beta_1 = \beta_1 - \beta_1^*$, $\Delta\Omega_2 = \Omega_2 - \Omega_2^*$ — по-грешности оценок соответствующих величин. В экспериментах отмечалось весьма большое значение показателя $\tau = T_R/T_M$, а именно $\tau > 12$, где T_M — время моделирования реального процесса длительностью T_R , что свидетельствует о высоких реализационных возможностях предложенного решения в режиме реального времени на современных вычислительных средствах.

Заключение

Отметим следующее. Рассмотренная ИС в силу глобальной доступности позиционной информации от НСС весьма перспективна для широкого применения на маневренных ТП для физических экспериментов. Предложенная нейросетевая организация этой ИС способна обеспечить высокую эффективность ее функционирования, а предложенный механизм работы нейросети, основанный на концепции оптимальности калмановского типа, может быть интерпретирован в качестве возможной математической модели целенаправленной самоорганизации живых нейронов.

Исследование выполнено при частичной поддержке РФФИ (грант № 11-01-98501-р_восток_а) и ДВО РАН (грант № 12-1-0-03-005).

Список литературы

- [1] Девятисильный А.С. // ЖТФ. 2013. Т. 83. Вып. 7. С. 16–19.
- [2] Kalman R.E., Falb P.L., Arbib M.A. Topics in mathematical system theory. (N.Y.: McGraw-Hill, 1969).
- [3] Девятисильный А.С. // ЖТФ. 2013. Т. 83. Вып. 12. С. 42-45.
- [4] Олескин А.В. // Вестник РАН. 2009. Т. 79. Вып. 5. С. 431– 438.
- [5] Аршавский Ю.И. // Вестник РАН. 2010. Т. 80. Вып. 10. С. 937–940.
- [6] Иваницкий Г.Р., Медвинский А.Б., Цыганов М.А. // УФН. 1994. Т. 164. Вып. 10. С. 1041–1072.
- [7] Павлов А.Н., Храмов А.Е., Короновский А.А., Ситникова Е.Ю., Макаров В.А., Овчинников А.А. // УФН. 2012. Т. 182. № 9. С. 905–938.
- [8] Ишлинский А.Ю. Классическая механика и силы инерции. М.: Наука, 1987. 320 с.
- [9] Андреев В.Д. Теория инерциальной навигации. Корректируемые системы. М.: Наука, 1967. 648 с.