Взаимодействие гетерогенных тонких пленок и образование фаз в системе TI—Fe—S

© Э.Б. Аскеров*+¶, А.И. Мададзада*♦, Д.И. Исмаилов♦, Р.Н. Мехтиева+

* Объединенный институт ядерных исследований,

141980 Дубна, Россия

⁺ Институт радиационных проблем Национальной академии наук Азербайджана,

Az-1143 Баку, Азербайджан

• Институт физики Национальной академии наук Азербайджана,

Az-1143 Баку, Азербайджан

(Получена 1 октября 2013 г. Принята к печати 7 ноября 2013 г.)

Методами дифракции электронов высоких энергий с дискретной съемкой дифракционного поля и применительно к электронографу ЭМР-102 кинематической электронографией исследованы процессы фазообразования и фазовых переходов в тонких слоях Tl–Fe–S. Установлено, что соединения систем Tl–S, Fe–S образуются в аморфном и высокодисперсном поликристаллическом состояниях соответственно. Тройное соединение состава TlFeS₂, образующееся в аморфном состоянии, при термообработке кристаллизуется в моноклинной решетке. При рекристаллизации поликристаллических пленок моноклинного TlFeS₂ образуется моноклинная решетка вторичной фазы TlFeS₂.

1. Введение

Теория и экспериментальные методы, используемые при изучении фазообразования в результате взаимодействия гетерогенных пленок, наравне со специфическими особенностями и природой химических элементов исследуемой системы, определяются также и способом их получения. Исследования процессов образования фаз и фазовых превращений в высокодисперсных и тонкопленочных материалах возможны лишь методом дифракции электронов высоких энергий и в особенности методом кинематической электронографии.

В системах Tl-S и Fe-S, являющихся двойными сечениями тройной системы T1-Fe-S, отмечены соединения ряда составов. Существуют Tl₂S с параметрами решетки гексагональной сингонии a = 1.220, c = 1.817 нм, пространственная группа симметрии (ПГС) R_3 [1], Tl₄S₃ c периодами моноклинной решетки a = 0.787, b = 0.776,c = 1.303 нм, ПГС $P2_1/a$ [1]. Фазы составов TIS и TIS₂, согласно [1], кристаллизуются в тетрагональной сингонии с периодами решеток a = 0.779, c = 0.680 нм, ПГС I4/mcm и a = 2.320, c = 5.480 нм, ПГС $P4_2/nmc$ соответственно. Кристаллические характеристики соединения Tl_2S_5 , существующего в красной и черной формах [1] и кристаллизующегося в двух модификациях ромбической структуры соответственно, таковы: *a* = 0.666, b = 0.652, c = 1.675 нм, ПГС $P2_12_12_1$ и a = 2.345, b = 0.888, c = 1.057 нм, ПГС *Pbcn*. В работе [2] была установлена фаза состава Tl₈S₁₇ с периодом кубической решетки a = 1.060 нм, ПГС $Im3m - O_h^9$.

Диаграмма состояния системы Fe–S, приведенная в [3], указывает на существование соединений FeS и FeS₂, кристаллизующихся в ромбической и кубической модификациях соответственно.

2. Методика эксперимента

Для получения сплавов системы T1–Fe–S возгонкой в вакууме лучшим методом является одновременное испарение и конденсация паровых фаз компонентов данной системы. В этом случае создается возможность полного смешивания компонентов нужного состава и обеспечиваются стехиометрические соотношения компонентов, образующих кристаллизуемые вещества. Поскольку Tl, Fe и S по упругости паров резко отличаются друг от друга, то для обеспечения требуемого смешивания предварительно были экспериментально достигнуты соответствующие регулировки температуры печей.

Толщину пленок системы Tl-Fe-S определяли методом, примененным нами в [4] при изучении фазообразования в тройной системе Yb-As-S. Элементы стехиометрии соединений, идентифицируемые электронографически на плоскости конденсации, проявляются в окончательном решении, и априорное знание стехиометрии соединения в этом случае не обязательно.

Испарение пленок системы Tl-Fe-S осуществлялось в вакууме при давлении ~ 10^{-4} Па. Два источника испарения (вольфрамовая коническая корзиночка для таллия, вольфрамовая спираль для железа) находились на расстоянии 150 мм друг от друга и на высоте 50 мм над подложками, в качестве которых использовались свежесколотые монокристаллы каменной соли. Третий источник, вольфрамовая конически навитая спираль, из которой возгонялась сера, находился на высоте 60 мм от плоскости коллектора и точно между источниками Tl и Fe. Подложки предварительно обезгаживались в вакууме при температуре 473-523 К в течение 1.5-2 ч. Такое расположение источников испарения относительно подложек позволяло получить систему сплавов с плавно изменяющимся составом. Она содержала в себе от 0 до 100% Tl, от 100 до 0% Fe, S от 100 в центре до 0% на краях плоскости конденсации, т.е. все

[¶] E-mail: elmar@jinr.ru

FeS				FeS ₂				TIFeS ₂			
ромоический, F222,				кубический, <i>Ра-3</i> ,				моноклинный, С2/ <i>m</i> ,			
$a = 0.5882 \mathrm{HM}, b = 0.5707 \mathrm{HM},$				a = 0.5378 нм				$a = 1.1755 \mathrm{Hm}, b = 0.5340 \mathrm{Hm},$			
с = 0.5205 нм								$c = 0.6960$ нм, $\beta = 116.91^{\circ}$			
$2r_{hkl}$	$d_{ m exp}$	$d_{ m calc}$	hkl	$2r_{hkl}$	d_{\exp}	$d_{ m calc}$	hkl	$2r_{hkl}$	d_{\exp}	$d_{ m calc}$	hkl
17.0	4.088	4.086	110	22.4	3.103	3.105	111	11.2	6.205	3.207	001
17.9	3.882	3.889	101	29.1	2.388	2.405	102	18.8	3.697	3.699	210
21.6	3.217	3.214	111	31.7	2.192	2.195	112	22.0	3.159	3.151	011
27.8	2.500	2.502	021	38.9	1.787	1.792	122	26.0	2.643	2.656	003
29.5	2.356	2.377	102	43.0	1.616	1.625	113	32.3	2.152	2.150	112
32.4	2.145	2.195	112	49.0	1.418	1.421	123	37.6	1.848	1.849	420
33.4	2.081	2.043	220	54.7	1.270	1.268	114	51.1	1.360	1.360	713
37.8	1.839	1.841	212	56.1	1.238	1.234	133	52.9	1.314	1.313	331
40.6	1.712	1.709	131	59.4	1.170	1.173	214	63.4	1.096	1.096	$\bar{6}\bar{4}3$
42.8	1.624	1.607	222								
44.4	1.565	1.561	302								
46.0	1.510	1.506	312								
47.9	1.451	1.463	400								
49.9	1.393	1.386	140								
51.0	1.363	1.369	322								
51.5	1.350	1.361	330								
53.0	1.311	1.317	331								
58.2	1.194	1.189	204								
59.0	1.177	1.184	024								
61.0	1.139	1.142	501								
62.2	1.117	1.119	511								

Экспериментальные и вычисленные значения межплоскостных расстояний для соединений составов FeS, FeS2, TIFeS2

Примечание. Постоянная электронографа $2L\lambda = 69.5 \text{ мм} \cdot \text{Å}$. $2r_{hkl}$ — расстояние от центра дифракционного поля до соответствующего рефлекса с индексом Миллера *hkl*.

соединения системы Tl—Fe—S. При получении пленок данной системы, содержащей легкоокисляемые (Tl, Fe) и легколетучие (S) компоненты, пленки помещали в углеродные капсулы по методу, впервые предложенному в [5]. Капсулирование исследуемых пленок предотвращало окисление таллия и железа при контакте пленок с воздухом и реиспарение серы в процессе последующей термообработки полученных образцов.

3. Экспериментальные результаты

Электронограммы, полученные от объектов, изготовленных вышеописанным способом, показали, что области подложек, где по расчетам концентраций компонентов системы Tl–Fe–S должны были формироваться соединения систем Tl–S и Fe–S, содержат четыре аморфные и две кристаллические фазы соответственно. Значения интенсивности рассеяния электронов $S = 4\pi \sin \theta/\lambda$ (θ — угол рассеяния, λ — длина волны электронов), соответствующие диффузным ореолам, наблюдаемым на электронограммах, согласуются со значениями, приведенными в [1]. Термическая обработка пленок в интервале температур 473–523 К вызывает кристаллизацию пленок. При кристаллизации аморфных слоев соединения составов Tl₂S, TlS и Tl₂S₅ образуются в поликристаллическом состоянии. Фаза состава

Tl₄S₃ проявляет текстурированность, с осью текстуры (ось с), перпендикулярной поверхности монокристалла NaCl. Электронограммы, полученные от пленок, формирующихся на подложках, расположенных на расстоянии 25-50 мм от центра испарителя Fe в сторону источника серы, показали их поликристалличность. При этом дифракционные линии были достаточно уширенными, свидетельствуя о высокой дисперсности пленок. После 10-минутной термообработки при 393 К получены электронограммы с резкими линиями, что указывает на прошедшую рекристаллизацию пленок. Расчет и анализ электронограмм от поликристаллических пленок показали существование как однофазных, так и двухфазных областей: FeS, FeS + FeS2, FeS2. Электронограммы от поликристаллических FeS и FeS2, приведенные на рис. 1, идентифицируются как относящиеся к ромбической решетке с параметрами a = 0.5882, b = 0.5707,c = 0.5205 нм, ПГС F222 [6] и кубической с параметром a = 0.5378 нм, ПГС *Pa*-3 [7] соответственно.

Кристаллографическая постоянная кубического FeS₂ с уменьшением концентрации серы меняется от значения a = 0.5378 нм, приведенного в [7], до a = 0.5307 нм. FeS₂ в двухфазной области, где одновременно существует FeS, имеет такой же период, как и крайний со стороны испарителя серы FeS₂. Следовательно, эти значения параметров являются предельными.

Рис. 1. Электронограмма от поликристаллических FeS (a) и FeS₂ (b).

Рис. 2. Кинематическая электронограмма, показывающая кристаллизацию аморфного TIFeS₂.

Электронограммы от аморфных пленок, полученных на подложках, находящихся непосредственно под испарителем серы, содержат диффузные линии с значениями $S = 4\pi \sin \theta/\lambda = 17.41$, 38.32, 45.50 нм⁻¹. Термообработка указанных пленок при температуре 443–453 К приводила к образованию поликристаллического вещества (рис. 2) с параметрами моноклинной решетки a = 1.1755, b = 0.5340, c = 0.6960 нм, $\beta = 116.91^{\circ}$, ПГС C12/m1, что согласуется с данными, приведенными в работе [8].

Кристаллизация аморфных пленок $TlFeS_2$ проводилась при указанных выше температурах в течение 8-10 мин. Резкое увеличение температуры, сопровождающееся резким повышением давлений паров серы в углеродных капсулах, приводило к механическому разрушению образцов.

Сопоставление экспериментально полученных межплоскостных рассеяний (d_{exp}) со значениями (d_{calc}) , вычисленными на основе вышеприведенных параметров решеток, подтверждает существование указанных фаз (см. таблицу).

При рекристаллизации поликристаллических пленок моноклинного TlFeS₂ в интервале температур 473–483 К в результате деформирования первичной фазы образуется моноклинная решетка вторичной фазы TlFeS₂ с периодами a = 1.168, b = 0.532, c = 1.053 нм, угол $\beta = 144.60^{\circ}$. Закон погасания дифракционных рефлексов показывает, что вторично образующаяся фаза, как и первичная, соответствует ПГС C12/m1.

Выяснение механизма кинетики фазовых превращений — кинетики кристаллизации аморфных пленок и перехода из одной кристаллической модификации в другую — является темой других исследований.

4. Заключение

В результате взаимодействия гетерогенных конденсатов, полученных одновременным испарением компонентов системы Tl-Fe-S, фазообразование происходит формированием как аморфных, так и кристаллических фаз. Аморфные фазы образуются в широком интервале составов, расширение идет в сторону соединений, богатых таллием. В аморфном состоянии формируется также двойной сульфид тройного соединения TlFeS₂. Кристаллографические постоянные кубического FeS2 с уменьшением концентрации серы уменьшаются в пределах 0.07 нм. При рекристаллизации первично образующейся фазы моноклинного TlFeS₂ с периодами a = 1.1755, b = 0.5340, c = 0.6960 нм, $\beta = 116.91^{\circ}$, ПГС С12/m1 при температуре 483 К происходит фазовое превращение с образованием термодинамически более устойчивой вторичной фазы TlFeS₂ с периодами моноклинной решетки a = 1.168, b = 0.532, c = 1,053 нм, $\beta = 144.60^{\circ}, \Pi\Gamma C \ C 12/m1.$

Работа выполнена в Институте физики им. Г.М. Абдуллаева Национальной академии наук Азербайджана.

Список литературы

- Д.И. Исмаилов, Э.Ш. Алекперов, М.Ф. Алиева. Тез. докл. Нац. конф. по применению рентгеновского, синхротронного излучений, нейтронов и электронов для исследования материалов РСНЭ-2003 (М., 2003) с. 214.
- [2] Д.И. Исмаилов. Автореф. докт. дис. (Баку, Ин-т физики НАН Азербайджана, 2007).
- [3] A. Fernandez Guillermed, M. Hillert, B. Jansson, B. Sundman. Metall. Trans. B, 12, 745 (1981).
- [4] Э.Ш. Гаджиев, А.И. Мададзада, Д.И. Исмаилов. ФТП, 43 (11), 1534 (2009).
- [5] Д.И. Исмаилов, Р.М. Султанов., Г.С. Мехтиев, Ф.И. Алиев, Р.Б. Шафизаде. А.с. СССР № 1549135, заявка № 442 311 (1989).
- [6] M. Winterberger, J. Buevoz. Sol. St. Commun., B27, 511 (1978).
- [7] J. Cai, I. Goliney, M.R. Philpott. J. Phys.: Condens. Matter, 18, 9151 (2006).
- [8] D. Weiz, P. Deppe, W. Schaefer et al. J. Phys. Chem. Sol., 50, 297 (1989).

Редактор Л.В. Шаронова

The interaction of heterogenic thin films and phase formation in the TI-Fe-S system

E.B. Asgerov^{*+}, A.I. Madadzada^{*}, D.I. Ismayilov[♦], R.N. Mehdiyeva⁺

* Joint Institute for Nuclear Research,
141980 Dubna, Russia
+ Institute of Radiation Problems,
National Academy of Sciences of Azerbaijan,
Az-1143 Baku, Azerbaijan
* Institute of Physics named after H.M. Abdullayev,
National Academy of Sciences of Azerbaijan,
Az-1143 Baku, Azerbaijan

Abstract Phase formation and phase transition processes in thin films TI-Fe-S have been studied by high-energy electron diffraction and kinematic electronography methods. It was found that compounds of the systems TI-S, Fe-S are formed in an amorphous and in a highly dispersed polycrystalline states, respectively. Ternary compound of $TIFeS_2$ formed in the amorphous state crystallizes at heat treatment in a monoclinic lattice. The monoclinic lattice of secondary phase is formed during recrystallization of polycrystalline films of monoclinic TIFeS₂.