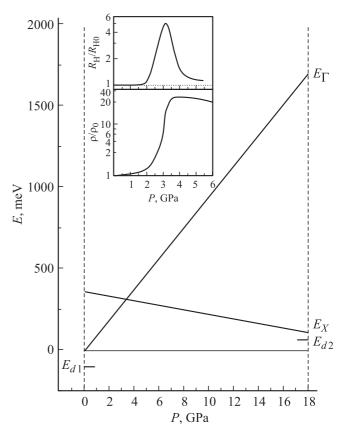
О глубоком донорном уровне в n-GaAs по данным об электронном транспорте при всестороннем давлении

© М.И. Даунов, У.З. Залибеков, И.К. Камилов, А.Ю. Моллаев¶

Институт физики им. Х.И. Амирханова Дагестанского научного центра Российской академии наук, 367003 Махачкала, Россия.

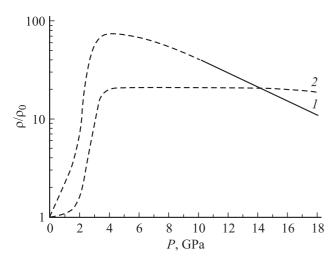
(Получена 21 ноября 2013 г. Принята к печати 19 декабря 2013 г.)

Приведены результаты количественного анализа экспериментальных данных о барических зависимостях электросопротивления и коэффициента Холла при всесторонних давлениях от атмосферного до 18 ГПа в n-GaAs. В интервале давлений $10 \le P \le 18$ ГПа обнаружен глубокий донорный центр. Обсуждаются положение его уровня энергии относительно края Γ -долины зоны проводимости при атмосферном давлении и его принадлежность вакансии мышьяка.


1. К эффективным внешним воздействиям с целью исследования примесного энергетического спектра относится высокое всестороннее давление. Особенно актуально применение высокого давления в случае, когда ставится задача обнаружения глубоких и глубоких резонансных, уровни энергии которых расположены на зонном континууме, примесных центров. В отличие от мелких примесных центров, которые "следят" при всестороннем давлении за собственной зоной, с которой они генетически связаны, энергия глубоких примесных центров относительно абсолютного вакуума, как показал анализ экспериментальных данных [1-4], практически, на уровне погрешности эксперимента, остается постоянной при изотропном сжатии кристаллической решетки. Это обусловлено тем, что их волновые функции следует строить по всей зоне Бриллюэна и характер воздействия всестороннего давления на их энергию определяется эволюцией всей структуры энергетического спектра, а не только ближайшими одной или двумя зонами [5–7].

Уместно отметить, что только лишь по результатам феноменологического описания примесного центра по данным об энергии ионизации, сечения захвата и т.п. при атмосферном давлении идентифицировать примесный центр, мелким или глубоким он является, затруднительно [1–4]. В этой связи исследование эволюции энергетического спектра носителей заряда в полупроводниках под воздействием всестороннего давления, особенно в хорошо изученных модельных объектах, каким является арсенид галлия, весьма актуально.

В данной работе приведены результаты количественного анализа экспериментальных данных о барической зависимости коэффициента Холла $R_{\rm H}$ и электросопротивления ρ в n-GaAs при всесторонних давлениях от атмосферного до P=18 ГПа [8,9].


2. Известно [9,10], что в n-GaAs с ростом всестороннего давления от атмосферного сопротивления ρ резко возрастает при P>2 ГПа, а при P=(5-6) ГПа выходит на насыщение. Коэффициент Холла до 2 ГПа слабо зависит от давления, проходит через экстремум и при P=(5-6) ГПа близок по величине к значению

при атмосферном давлении (рис. 1). Подобные зависимости $\rho(P)$ и $R_{\rm H}(P)$ обусловлены разнодолинным $\Gamma - X$ переходом в зоне проводимости (рис. 1) и перетеканием электронов в X-долину из Γ -долины. Барический коэффициент ширины запрещенной зоны относительно потолка валентной зоны отрицателен: $\Delta = dE_{gX}/dP = -14\,{\rm mps}/\Gamma \Pi a$. Край Γ — долины находится выше E_X более чем на 300 мэВ при

Рис. 1. Зависимости краев Γ -долины E_{Γ} и X-долины E_{X} зоны проводимости GaAs от всестороннего давления. E_{d1} и E_{d2} — энергии глубокого двойного донорного центра (разъяснение в тексте). На вставке — зависимости нормализованных удельного электросопротивления ρ/ρ_{0} и коэффициента Холла R_{H}/R_{H0} от всестороннего давления в образце n-GaAs [9].

[¶] E-mail: a.mollaev@mail.ru

Рис. 2. Зависимости нормализованного удельного электросопротивления ρ/ρ_0 от давления: сплошная линия — эксперимент [8], пунктирные линии — расчет для двух значений энергии глубокого двойного донорного центра (разъяснение в тексте).

P>6 ГПа $(dE_{g\Gamma}/dP=94\,\mathrm{mpB}/\Gamma\Pi$ а, $E_X-E_r=360\,\mathrm{mpB}$ при P=0), и концентрация электронов в Г-долине $n_r\approx 0$ [9,10]. Кроме того, из данных о температурных зависимостях $\rho(T)$ и $R_{\mathrm{H}}(T)$ при атмосферном давлении в объемных кристаллах $n\text{-}\mathrm{GaAs}$ с концентрацией избыточных доноров $N_d=1.8\cdot 10^{16}\,\mathrm{cm}^{-3}\div 5.5\cdot 10^{17}\,\mathrm{cm}^{-3}$ [9] обнаружен уровень энергии примесного центра $E_{d1}=(0.15-1.1\cdot 10^{-7}N_d^{1/3})$ эВ.

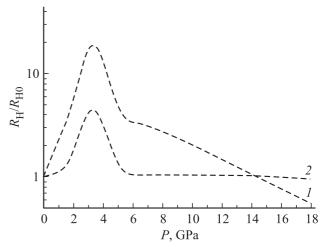
При $P>10\,\Gamma\Pi$ а, концентрации электронов в Γ -долине $n_{\Gamma} \approx 0$, наблюдается убывание ρ в интервале $10 < P < 18 \, \Gamma \Pi a$ (рис. 2) [8]. Это свидетельствует о наличии уровня энергии глубокого донорного центра под дном X-долины зоны проводимости E_X , так как с ростом давления энергетический зазор между ним и краем X-долины $(E_X - E_{d2})$ уменьшается (рис. 1) и соответственно растет концентрация электронов в X-долине. По результатам количественного анализа зависимости $\rho(P)$ при $10 < P < 18 \Gamma \Pi a$ выяснено, что при атмосферном давлении уровень энергии этого глубокого донора располагается вблизи края Г-долины. Расчеты были проведены при варьировании суммарной концентрации электронов в обеих долинах зоны проводимости $(10^{15} \div 10^{18}) \, \text{cm}^{-3}$ и при учете концепции независимости энергии глубоких примесных центров от всестороннего давления относительно абсолютного вакуума [1-4] с использованием соотношений:

$$\beta \exp E_{d1} = \frac{1 - A}{A \exp[(P_1 - P_3)\Delta^* - \eta_{X3}] - \exp[(P_1 - P_{21})\Delta^* - \eta_2]},$$

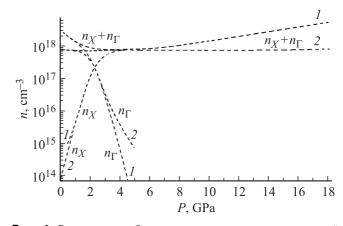
$$(1)$$

$$A = \frac{n_{C1} - n_{C3}}{n_{C1} - n_{C2}} \frac{\exp[(P_1 - P_2)\Delta^* + \eta_1 - \eta_2] - 1}{\exp[(P_1 - P_3)\Delta^* + \eta_1 - \eta_3] - 1},$$

$$(2)$$


$$\frac{n_{C1} - n_{C3}}{n_{C1} - n_{C2}} = \frac{n_{d3} - n_{d1}}{n_{d2} - n_{d1}},\tag{2a}$$

$$n_{dj} = \frac{N_d}{1 + \beta \exp(E_{dj} - \eta_{Xj})},\tag{3}$$


$$\frac{\rho}{\rho_0} = \frac{n_{\Gamma 0}}{n_{\Gamma}} \frac{b}{b+c},\tag{4}$$

$$\frac{R_{\rm H}}{R_{\rm H0}} = \frac{n_{\rm \Gamma0}}{n_{\rm \Gamma} + n_{\rm X}} \frac{(b^2 + c)(1 + c)}{(b + c)^2},\tag{5}$$

 $b=\mu_{\Gamma}/\mu_{X},\ c=n_{X}/n_{\Gamma}.$ Индекс "0" соотносит параметр к атмосферному давлению. Принято отношение подвижностей b=20, эффективные массы плотности состояний электронов Γ - и X-долин $m_{d\Gamma}=0.072m_{0},$ $m_{dX}=1.2m_{0}$ [9,10]. Давления $P_{1}< P_{2}< P_{3}$ ($8\leq P\leq 18$ $\Gamma\Pi a$), $\eta_{X1},\ \eta_{X2},\ \eta_{X3},\ \Delta^{*}$ — приведенные энергии Ферми относительно края X-долины и барического коэффициента $\Delta,\ \beta$ — параметр спинового

Рис. 3. Рассчитанные зависимости нормализованного коэффициента Холла $R_{\rm H}/R_{H0}$ для двух значений энергии глубокого двойного донорного центра (разъяснение в тексте).

Рис. 4. Рассчитанные барические зависимости концентраций электронов в Γ - (n_{Γ}) и X (n_X) -долинах для двух значений энергии глубокого двойного донорного центра (разъяснение в тексте).

вырождения; n_{Γ} , $n_{\Gamma 0}$, n_{X1} , n_{X2} , n_{X3} и n_{d1} , n_{d2} , n_{d3} — концентрации электронов в Γ - и X-долинах и на глубоких донорных центрах; N_d — концентрация глубоких донорных центров.

В качестве иллюстрации на рис. 2–4 (кривые I) приведены результаты оценок с использованием соотношений (1)–(5) и экспериментальной зависимости $\rho(P)$ при $10 \le P \le 18$ ГПа для суммарной концентрации электронов в Г- и X-долинах порядка 10^{18} см $^{-3}$. По экспериментальной зависимости $\rho(P)$ при $10 \le P \le 18$ ГПа получено

$$E_X - E_{d2} = (289 - 14P)$$
 мэВ $(P - \Gamma \Pi a)$ (6)

и при P=0 $E_{d2}-E_{\Gamma}=70\,\mathrm{мэB}$ (рис. 1). Рассчитанные зависимости $\rho(P)$, $R_{\mathrm{H}}(P)$, n_{Γ} , n_{X} от P с учетом наличия глубокого донорного уровня E_{d2} (6) (рис. 2–4, кривые I) отличаются от экспериментальных данных, полученных при $P<6\,\Gamma\Pi a$ [9] (рис. 1).

Отметим, что наличие глубокого донорного центра в арсенидах III-V и $II-IV-V_2$ вероятно и электронный тип проводимости в специально нелегированных образцах обусловлен наличием вакансии мышьяка [11,12], а, согласно [13,14], вакансия мышьяка является двойным донором и формирует два относительно близко расположенных вблизи дна зоны проводимости уровня энергии при атмосферном давлении.

Действительно, при наличии глубокого донора, уровень энергии которого расположен вблизи края Γ -долины $E_{\Gamma}-E_{d1}\approx 150$ мэВ при P=0, рассчитанные зависимости $\rho(P)$, $R_{\rm H}(P)$ до P<6 ГПа согласуются с экспериментальными данными (рис. 1–4, кривые 2), но противоречат зависимости $\rho(P)$ при P>10 ГПа [8] (рис. 2).

Таким образом обнаруженный глубокий донорный центр E_{d2} в n-GaAs при $10 \le P \le 18$ ГПа является вторым вышележащим частично заселенным "альтернативным" уровнем двойного донора — вакансия мышьяка. Концентрация компенсирующих акцепторовов (N_a) в рассматриваемом случае $N_d < N_a < 2N_d$, что обусловлено технологической предысторией.

Список литературы

- [1] М.И. Даунов, И.К. Камилов, С.Ф. Габибов. ФТП, **35** (1), 58 (2001)
- [2] M.I. Daunov, I.K. Kamilov, A.B. Magomedov, S.F. Gabibov. Phys. Status Solidi B, **235** (2), 297 (2003).
- [3] М.И. Даунов, И.К. Камилов, С.Ф. Габибов. ФТТ, 46 (10), 1766 (2004).
- [4] И.К. Камилов, С.Ф. Габибов, М.И. Даунов, А.Ю. Моллаев. ФТП, 45 (12), 1604 (2011).
- [5] W. Paul. Proc. 9th Int. Conf. Semicond (Moscow, 1968) v. 1, p. 51.
- [6] V.A. Telejkin, K.B. Tolpigo. Semiconductors, 16, 1337, (1982).
- [7] In-Hwan Chor, Y.Yu. Peter. Phys. Statis Solidi B, 211, 143 (1999).

- [8] J.Z. Jiang, J. Staun Olsen, L. Gerward, S. Steenstrup. High Pressure Res., 22, 395 (2002).
- [9] G.D. Pitt, J. Lees. Phys. Rev. B, 2 (10), 4144 (1970).
- [10] О. Маделунг. Физика полупроводниковых соединений элементов III и IV группы (М., Мир, 1967).
- [11] В.Д. Прочухан. Матер. VI Зимней школы по физике полупроводников (Л., 1974).
- [12] В.Н. Брудный Изв. вузов, 39 (8), 84 (1986).
- [13] G.M. Martin, S. Makram-Ebeid. In: Deep Centers in Semiconductors, ed. by S.T. Pantelides (N.Y., Gordon & Breach, 1986) p. 399.
- [14] M. Baumler, U. Kaufmann, J. Windscheif. Appl. Phys. Lett., 46, 581 (1985).

Редактор Т.А. Полянская

Deep donor level in *n*-GaAs at electron transport data at hydrostatie pressure

M.I. Daunov, U.Z. Zalibekov, I.K. Kamilov, A.Yu. Mollaev

Amirkhanov institute of Dagestan scientific centre of Russian academy sciences, 367003 Makhachkala, Russia

Abstract The baric dependences of the resistivity and Hall coefficient is researched in n-GaAs at hydrostatic pressures from atmospheric up to 18 GPa. The results on the quantitative analysis of experimental data are reported. A deep donor center is found. A position of its energy level relative to the edge of conduction band Γ -valley at the atmospheric pressure and its belonging to arsenic vacancies is considered.