Особенности магнетосопротивления в перекомпенсированном кремнии, легированном марганцем

© М.К. Бахадырханов, Г.Х. Мавлонов[¶], Х.М. Илиев, К.С. Аюпов, О.Э. Саттаров, С.А. Тачилин

Ташкентский государственный технический университет, 100095 Ташкент, Узбекистан

(Получена 11 ноября 2013 г. Принята к печати 3 декабря 2013 г.)

Экспериментально установлено, что достаточно большое отрицательное магнитосопротивление в кремнии наблюдается не только в компенсированном p-Si \langle B, Mn \rangle , а также в перекомпенсированном n-Si \langle B, Mn \rangle с положением уровня Ферми $F = E_C - 0.35 \div E_C - 0.55$ эВ. Величина, а также температурная область существования отрицательного магнитосопротивления в таких материалах определяется положением уровня Ферми.

1. Введение

В работах [1,2] нами было показано, что в компенсированных образцах кремния р-типа с комплексами атомов марганца [Mn]₄ при комнатной температуре наблюдается аномально высокое отрицательное магнетосопротивление (ОМС) $\frac{\Delta \rho}{\rho} \ge 100\%$. С понижением температуры ОМС увеличивается и достигает своего максимального значения при T = 230-240 К. Дальнейшее уменьшение температуры приводит к ослаблению ОМС, а при T = 170 - 180 K, происходит инверсия знака, т.е. ОМС переходит в небольшое положительное магнетосопротивление (ПМС). Также было показано, что в перекомпенсированных образцах кремния *n*-типа с марганцем, в которых не были обнаружены спектры ЭПР, связанные с комплексами атомов марганца [Mn]₄, при комнатной температуре всегда наблюдается небольшое ПМС. Поскольку комплексы атомов марганца обладают достаточно большим магнитным моментом и в компенсированных образцах находятся в многозарядном состоянии [1], аномально большое ОМС при комнатной температуре в *р*-кремнии объясняется магнитными моментами и многозарядным состоянием комплексов атомов марганца [Mn]₄ в таких образцах. В перекомпенсированных образцах, в которых атомы марганца в основном находятся в дискретном состоянии $(Mn^0, Mn^+ u Mn^{++})$, исследование магнетосопротивления (МС) в области низких температур позволяет определить вклад атомов марганца в магнитные свойства материала, что представляет интерес с точки зрения управления магнитными свойствами кремния, легированного марганцем.

2. Методика эксперимента

Образцы были изготовлены на основе монокристаллического кремния *p*-типа с $\rho = 5 \, \text{Om} \cdot \text{сm}$ (КДБ-5). Легирование марганцем проводилось методом низкотемпературной диффузии [3] при таких условиях, чтобы получить перекомпенсированный материал *п*-типа с $\rho \approx 10^2 - 10^5$ Ом · см. Если учесть, что атомы марганца в кремнии создают два донорных уровня $E_1 = E_C - 0.27$ эВ и $E_2 = E_C - 0.5$ эВ [4], то в полученных образцах уровни Ферми лежат в интервале $F = E_C - (0.31 - 0.5)$ эВ, т.е. атомы марганца в таких материалах находятся в основном в состоянии Mn⁺ и частично Mn⁰, Mn⁺⁺.

Исследование МС образцов в интервале температур T = 100-300 К при различных электрических полях и при B = 1 Тл проводилось на стандартной установке [5].

3. Результаты экспериментов и их обсуждение

Результаты исследования показали, что при $T = 300 \, \text{K}$ независимо от электрических и магнитных полей в исследуемых образцах всегда имеется небольшое ПМС.

Интересные результаты были получены в перекомпенсированных образцах при понижении температуры T < 300 К. Как видно из рисунка (рис. 1), с понижением температуры значение ПМС медленно уменьшается, а при $T \approx T_{\text{thr}}$ происходит инверсия знака MC, т.е. переход от ПМС к ОМС. При дальнейшем понижении температуры $T < T_{\text{thr}}$, значение ОМС достаточно быстро увеличивается и достигает своего максимального значения при определенной температуре $T = T_{\text{max}}$, а при $T < T_{\text{max}}$, во всех образцах значение ОМС уменьшается и при температурах $T < T_{\min}$ происходит температурное гашение ОМС. При температурах T < T_{min} MC опять меняет знак и переходит от ОМС к ПМС. Таким образом, наблюдается двойная инверсия МС. Следует отметить, что значение пороговой температуры $(T_{\rm thr})$, при которой происходит инверсия знака МС от ПМС к ОМС, зависит от положения уровня Ферми образцов, и со смещением уровня Ферми к середине запрещенной зоны, она смещается в сторону высоких температур (рис. 2). С ростом положения уровня Ферми этот эффект проявляется еще более существенно. Значения T_{max} , где наблюдается максимальное ОМС, и T_{min} — граница исчезновения ОМС, также зависят от положения уровня Ферми. В образцах со смещением к середине запре-

[¶] E-mail: mavlonov_g @mail.ru

Рис. 1. Температурная зависимость МС в кремнии при E = 50 В/см: B = 1 Тл: *n*-Si (B, Mn) $1 - F = E_C - 0.37$ эВ, $2 - F = E_C - 0.384$ эВ, $3 - F = E_C - 0.516$ эВ, $4 - F = E_C - 0.53$ эВ.

Рис. 2. Зависимости T_{thr} (1), T_{max} (2) и T_{\min} (3) от положения уровня Ферми в образцах.

щенной зоны они смещаются в сторону более высоких температур (рис. 2).

На основе полученных данных по исследованию MC как в компенсированных, так и в перекомпенсированных образцах, была определена температурная область существования OMC (рис. 3) в зависимости от положения уровня Ферми.

Как видно из рис. 3, кремний, легированный марганцем, обладает большим ОМС в достаточно широком интервале температур. Управляя положением уровня Ферми в материале, можно изменять значение ОМС в достаточно широком интервале (5–100%). За границей положения уровня Ферми $F < F = E_V + 0.31$ и $F < F = E_C - 0.35$ зВ, а также в области температур T > 360 К и T < 120 К наблюдается только ПМС.

Наблюдаемое ОМС в *p*-Si(B, Mn) в области комнатной температуры (до $T = 360 \,\mathrm{K}$) и его аномально высокие значения говорят о том, что природа ОМС в этих материалах объясняется магнитными моментами и многозарядным состоянием комплексов атомов марганца [Mn]₄, которые состоят из 4 атомов, находящихся в эквивалентных межузельных состояниях вокруг отрицательно заряженного атома бора [1,6,7], который обладает максимальным спином S = 10. В перекомпенсированных образцах наличие ОМС определяется магнитным моментом атомов марганца S = 5/2 и их зарядовым состоянием. Со смещением уровня Ферми от средины запрещенной зоны к зоне проводимости, вопервых, концентрация атомов марганца увеличивается, во-вторых, атомы марганца постепенно переходят от состояния Mn⁺⁺ к Mn⁺, Mn⁰ и соответственно концентрация последнего увеличивается. Поэтому можно предполагать, что в перекомпенсированных образцах ОМС также определяется магнитным моментом, а также электрическим полем, созданным заряженными атомами

Рис. 3. Температурная область существования ОМС в зависимости от положения уровня Ферми.

марганца. Но при этом основную роль играет концентрация атомов марганца.

4. Заключение

Экспериментально установлено, что достаточно большое ОМС в кремнии наблюдается не только в компенсированном p-Si \langle B, Mn \rangle [1,2], а также в перекомпенсированном n-Si \langle B, Mn \rangle с положением уровня Ферми $F = E_C - 0.35 - E_C - 0.55$ эВ. Величина, а также температурная область существования ОМС в таких материалах определяются положением уровня Ферми. Необходимо отметить, что в отличие от других полупроводниковых материалов [8–10], в кремнии, легированном марганцем, ОМС в области низких температур, наоборот, существенно уменьшается. Эти результаты, с одной стороны, доказывают, что действительно ОМС в Si является высокотемпературным эффектом, а с другой — показывают эффект двойной инверсии знака магнетосопротивления при изменении температуры.

Список литературы

- [1] М.К. Бахадырханов, Г.Х. Мавлонов, К.С. Аюпов, С.Б. Исамов. ФТП, **44** (9), 1181 (2010).
- [2] М.К. Бахадырханов, К.С. Аюпов, Х.М. Илиев, Г.Х. Мавлонов, О.Э. Саттаров. Письма ЖТФ, 36 (16), 11 (2010).
- [3] М.К. Бахадырханов, Г.Х. Мавлонов, С.Б. Исамов, Илиев Х.М., К.С. Аюпов, З.М. Сапарниязова, С.А. Тачили. Неорг. матер., 47 (5), 545 (2011).
- [4] К.П. Абдурахманов, А.А. Лебедев, Й. Крейсль, Ш.Б. Утамурадова. ФТП, 19 (2), 213 (1985).
- [5] М.К. Бахадырханов, Х.М. Илиев, К.С. Аюпов, О.Э. Письма ЖТФ, 29 (17), 8 (2003).
- [6] G.W. Ludwig, H.H. Woodbury, R.O. Carlson. J. Phys. Chem. Sol., 8, 490 (1959).
- [7] J. Kreissl, W. Gehlhoff. Phys. Status Solidi B, 145, 609 (1988).
- [8] Т.И. Воронина, Т.С. Лагунова, М.П. Михайлова, К.Д. Моисеев, А.Ф. Липаев, Ю.П. Яковлев. ФТП, 40 (5), 519 (2006).
 [9] А.И. Вейнгер, А.Г. Забродский, Т.В. Тиснек. ФТП, 34 (7),
- [9] А.И. Беннер, А.І. Забродский, І.Б. Тиснек. ФТП, **34** (7), 774 (2000).
- [10] В.Э. Каминский. ФТП, **36** (11), 1360 (2002).

Редактор Т.А. Полянская

Magnetoresistance in overcompensated silicon doped with Manganese

M.K. Bakhadirkhanov, G.H. Mavlonov, X.M. Iliev, K.S. Ayupov, O.E. Sattarov, C.A. Tachilin

Tashkent State Technical University, 100095 Tashkent, Uzbekistan

Abstract It has been experimentally established that significantly high negative magnetoresistance in Si manifests itself not only in compensated *p*-Si \langle B, Mn \rangle but also in overcompensated *n*-Si \langle B, Mn \rangle with Fermi band $F = E_C - 0.35 \div E_C - 0.55 \text{ eV}$. The value of and the temperature range of the negative magnetoresistance in such materials is determined by location of Fermi band.