01;04

Граничные условия на катоде для гидродинамических уравнений при моделировании разрядов на правой ветви кривой Пашена

© А.А. Кудрявцев, Л.Д. Цендин

С.-Петербургский государственный университет E-mail:akud@ak2138.spb.edu С.-Петербургский государственный технический университет

Поступило в Редакцию 7 февраля 2002 г.

Показано, что при гидродинамическом описании разрядов на правой ветви кривой Пашена необходимо учитывать изменение эффективного коэффициента вторичной эмиссии γ_{eff} на катоде, вызванное обратным рассеянием электронов. Получены простые кинетические выражения для γ_{eff} и показано, что величина γ_{eff} определяется начальной энергией эмитируемых электронов и амплитудой приложенного поля.

При пробое на правой ветви кривой Пашена ($pd > (1-5) \text{ cm} \cdot \text{Torr}$) поля невелики и имеет место сильная экспоненциальная зависимость $\alpha/p = Ae^{-Bp/E}$. При этом электрон успевает прийти в равновесие с внешним полем, и ионизацию можно характеризовать с помощью коэффициента Таунсенда $\alpha(E/p)$, зависящего от локального поля. В таком случае можно пользоваться гидродинамической (fluid) моделью, заменяющей весь ансамбль электронов неким средним электроном, характеризуемым средней энергией $3T_e/2$, дрейфовой скоростью $V_{ed} = b_e E$ и коэффициентом диффузии $D_e = b_e T_e/e$. Эта модель (или ее различные комбинации с другими подходами — так называемые hybrid models)

1

часто используется для моделирования переходных (transient) разрядов, например в ячейках плазменных дисплеев (PDP), когда прикладываемое напряжение падает после пробоя и локальное приближение остается применимым в течение всего разряда (см., например, [1–8]). В качестве граничного условия на катоде обычно используется условие Таунсенда для токов электронов и ионов

$$j_e(0,t) = \gamma_{eff} j_i(0,t).$$
 (1)

Здесь γ_{eff} — второй коэффициент Таунсенда, отражающий вклад различных процессов вторичной эмиссии электронов с катода.

Величины, входящие в (1), не могут быть вычислены в рамках гидродинамической модели. Они должны находиться из микроскопического анализа. В противном случае для каждой пары газ-материал электрода необходимо восстанавливать γ_{eff} из экспериментальных данных. Поскольку определенная таким образом величина γ_{eff} достаточно сильно зависит от параметра E/p, то ее изменение необходимо отслеживать при описании нестационарных разрядов. Наиболее последовательно этот подход развивается в работах A.V. Phelps с соавторами [9], где в результате детального анализа тщательно выполненных экспериментов затабулированы значения γ_{eff} для Ar (т. н. apparent secondary-electron emission coefficient).

Для теоретического вычисления связи коэффициента γ_{eff} , входящего в граничное условие (1), с коэфициентом γ , характеризующим процесс эмиссии на поверхности катода ("истинным" γ), необходимо решить кинетическую задачу. Еще в [10] было показано, что при выборе $j_e(0, i)$ в виде $j_e(0, t) = n_e V_{ed} + n_e V/4$, использованном также в [1–5], где V — хаотическая скорость электронов, фактор ухода f_{es} , определенный согласно $\gamma_{eff} = f_{es}\gamma$, есть

$$f_{es} = 1/(1 + V/4V_{ed}) = 1/(1 + 3\lambda_T/2\lambda).$$
(2)

Здесь введена величина $\lambda_T = T_e/eE$ — характерная длина установления дрейфовой скорости электрона (длина его энергетической релаксации [11]). Видно, что пока $V_{ed} \ll V$, большая часть эмитированных электронов будет возвращаться обратно на катод, и сама эта доля будет меняться при изменении E/p.

Наиболее детально эта проблема рассмотрена в [12,13]. В этих работах была использована одна и та же запись кинетического уравнения

(см. ниже (9)), основанная на нелокальном приближении [11] (см. (2) в [12] и (12) в [13]). Для сечений неупругих процессов с порогом ε^* в [12] и [13] была выбрана одинаковая линейная аппроксимация, так что и результирующие формулы ((6) в [12] и (24) в [13]) полностью идентичны. Так как начальные энергии ε_e электронов эмиссии обычно малы (порядка нескольких eV), в [12,13] рассматривался лишь случай $\varepsilon_e \ll \varepsilon^*$. Доля быстрых электронов с $\varepsilon > \varepsilon^*$ при этом мала. Выражения же для EDF в этой области энергий достаточно сложны. Это привело к тому, что даже для моноэнергетического источника электронов конечные выражения в [12,13] весьма громоздки и с трудом поддаются интерпретации. Вклад этой части EDF может быть существен лишь в случае смесей газов, в которых легкоионизуемая компонента представляет собой малую присадку.

В данном сообщении для разрядов на правой ветви кривой Пашена получены простые кинетические выражения для γ_{eff} , обобщающие и упрощающие результаты [12,13]. Показано, что попытки нахождения γ_{eff} в рамках гидродинамического подхода бесперспективны.

Действительно, в рамках гидродинамического приближения уравнение непрерывности в медленно меняющемся поле имело бы вид

$$D_e n''_e - V_{ed} n'_e + v_i n_e = 0.$$
(3)

При записи (3) учтена диффузия электронов, роль которой вблизи катода может быть значительна [10]. Если использовать характерные размеры: $\lambda_T = T_e/eE$ и $\alpha = \nu_i/V_{ed}$, то решение уравнения (3) при ненулевой граничной концентрации электронов $n_e(0) = n_{e0}$ есть

$$n_e(x) = n_{e0} \exp(x/2\lambda_T) \operatorname{sh}((L-x)\sqrt{1-4\alpha\lambda_T}/2\lambda_T)/\operatorname{sh}(L\sqrt{1-4\alpha\lambda_T}/2\lambda_T).$$
(4)

Поскольку зазор *L* составляет несколько длин ионизации α^{-1} , а на правой ветви кривой Пашена $\alpha \lambda_T \ll 1$, то, разлагая (4) по этому параметру, получим хорошо известный закон Таунсенда

$$n_e(x) = n_{e0} \exp(\alpha x), \quad j_e(x) = j_{e0} \exp(\alpha x).$$
(5)

Соответственно результирующий поток от катода

$$j_{e0} = j_e(0) = -D_e n'_e + V_{ed} n_e = -V_{ed} \alpha \lambda_T n_{e0} + V_{ed} n_{e0} \approx V_{ed} n_{e0} \qquad (6)$$

определяется в основном дрейфом. Другими словами, при $L \gg \lambda_T$ роль диффузии мала и ее учет не изменяет классическую формулу

Таунсенда (5) для электронного тока в разрядном промежутке. Простейший учет кинетического характера проблемы соответствует известному приближению средней длины пробега [14]. При этом поток электронов представляется как разность $j_e(0) = j_{e+}(0) - j_{e-}(0)$ односторонних потоков от катода (+) и к катоду (-) (см., например, [14])

$$j_{e+}(0) = \frac{n_{e0}V}{4} + \left(\frac{-D_e n'_e}{2} + V_{ed} n_e\right), \qquad j_{e-}(0) = \frac{n_{e0}V}{4} - \frac{-D_e n'_e}{2}.$$
 (7)

В свою очередь, граничное условие на катоде находится из условия

$$j_{e+}(0) = j_{e0} = \gamma j_i(0), \tag{8}$$

которое после использования (4)–(6) дает для фактора f_{es} выражение (2), совпадающее с полученным еще в [10]. В рамках этого приближения дальнейшее уточнение граничных условий [15,16] представляется малоперспективным. Поскольку сама fluid модель (в том числе и понятие о V_{ed}) применима лишь с расстояний $x > \lambda_T$ от границ разрядного объема, то, чтобы проследить более детально за динамикой формирования дрейфового потока электронов от катода, необходим последовательный кинетический анализ. Основываясь на развитом в [11] подходе, ниже мы дадим простое и физически прозрачное рассмотрение.

Кинетическое уравнение для изотропной части EDF в переменных x и полной энергии $\varepsilon = mV^2/2 - eEx$ при неупругом балансе энергии электронов в поле $(eE\lambda > \varepsilon_1 \sqrt{2m/M})$ имеет вид [11]:

$$\frac{\partial}{\partial x} \left(\frac{(\varepsilon + eEx)}{3N\sigma(\varepsilon + eEx)} \frac{\partial f_0(\varepsilon, x)}{\partial x} \right) = N\sigma^*(\varepsilon + eEx)f_0(\varepsilon, x)(\varepsilon + eEx), \quad (9)$$

где σ , σ^* — соответственно сечения упругого и неупругого рассеяния, зависящие от кинетической энергии $w = \varepsilon + eEx$, а $\lambda = 1/N\sigma$ — длина пробега электрона.

Характер движения электронов с начальной энергией ε иллюстрируст рисунок. При $\varepsilon < \varepsilon^*$ на длине $x_1(\varepsilon) = (\varepsilon^* - \varepsilon)/eE$ кинетическая энергия электронов меньше ε^* и они двигаются с сохранением полной энергии ε . Поскольку при этом $\sigma^* = 0$, то дифференциальный поток

$$\Phi(\varepsilon) = \frac{2(\varepsilon + eEx)}{3m} f_1(\varepsilon, x) = \frac{2(\varepsilon + eEx)}{3mN\sigma(\varepsilon + eEx)} \frac{\partial f_0(\varepsilon, x)}{\partial x}$$
(10)

также сохраняется. При $x > x_1(\varepsilon)$ электрон претерпевает неупругий удар, т. е. скачкообразно теряет энергию возбуждения ε^* (перескакивает на нижележащую ступеньку $\varepsilon = -eEx$ на рисунке). Только эти электроны далее "подхватываются" полем и не могут возвратиться обратно на катод (в отличие от электронов в верхней полуплоскости $\varepsilon > 0$, которые возвращаются). В условиях применимости двучленного разложения EDF ($\sigma \gg \sigma^*$) характерные пространственный $\lambda_{\varepsilon}^* = \sqrt{\lambda\lambda^*/3}$ и энергетический $T^* = eE\lambda_{\varepsilon}^*$ масштабы спада EDF при $\varepsilon > \varepsilon^*$ малы по сравнению с $\lambda_{\varepsilon} = \varepsilon_1/eE$ и ε_1 соответственно. Поэтому EDF за порогом ε^* резко спадает, и для ее нахождения можно воспользоваться моделью "черной стенки", наложив нулевое граничное условие при энергии ($\varepsilon^* + T^*$), соответствующей расстоянию ($x_1(\varepsilon) + \lambda_{\varepsilon}^*$) (см.

рисунок) [11]. Решение (9) можно представить в виде

$$f_0(\varepsilon, x) \Big/ \int\limits_x^{x_1(\varepsilon)} \frac{\sigma(\varepsilon + Ex)dx}{(\varepsilon + eEx)} = f_0(\varepsilon, 0) \Big/ \int\limits_0^{x_1(\varepsilon)} \frac{\sigma(\varepsilon + eEx)dx}{(\varepsilon + eEx)} = \Phi(\varepsilon),$$
(11)

(11) где $x_1(\varepsilon) = (\varepsilon^* + T^* - \varepsilon)/eE = \lambda_{\varepsilon} + \lambda_{\varepsilon}^* - \varepsilon/eE$. Поскольку $\lambda_{\varepsilon} \gg \lambda_{\varepsilon}^*$, то, как уже отмечалось выше, вклад быстрых электронов с $\varepsilon > \varepsilon^*$ в ток и в концентрацию мал (порядка $\lambda_{\varepsilon}^*/\lambda_{\varepsilon} \ll 1$).

Из условий Маршака [17] для EDF у стенки (ср. с (7))

$$j_{+} = f_0/4 + f_1/2, \qquad j_{-} = f_0/4 - f_1/2$$
 (12)

следует граничное условие на катоде (ср. с (8))

$$j_{+}(\varepsilon, 0) = j_{0}(\varepsilon), \tag{13}$$

где $j_0(\varepsilon)$ — поток эмитируемых с катода электронов.

Подставляя EDF (10) в (12), получим для парциального (т.е. соответствующего моноэнергетическому источнику электронов на катоде) фактора $f_{es}(\varepsilon)$:

$$\frac{1}{f_{es}(\varepsilon)} = \frac{\gamma(\varepsilon)}{\gamma_{eff}(\varepsilon)} = \frac{1}{2} + \frac{\varepsilon}{4} \int_{0}^{x_1(\varepsilon)} \frac{N\sigma(\varepsilon + eEx)dx}{(\varepsilon + eEx)},$$
(14)

Проще всего выглядит решение, если подынтегральная зависимость $2(\varepsilon + eEx)/mN\sigma(\varepsilon + eEx) \approx \text{соnst}$, что приближенно выполняется для рамзауэровских газов (Ar, Kr, Xe). Тогда из (11) получаем линейно падающую по координате EDF:

$$f_0(\varepsilon, x) = f_0(\varepsilon, 0) \big(1 - eEx/(\varepsilon^* + T^* - \varepsilon) \big), \tag{15}$$

а выражение для f_{es} (14) при этом совпадает с (2) с $\lambda_T = x_1(\varepsilon) = = \lambda_{\varepsilon} + \lambda_{\varepsilon}^* - \varepsilon/eE$.

Из (12)–(14) нетрудно получить общее выражение для произвольных энергетических зависимостей источника $f_0(\varepsilon, 0)$ и частоты упругих

столкновений $\sigma(\varepsilon + eEx)$:

$$\frac{1}{f_{es}} = \frac{\gamma}{\gamma_{eff}} = \frac{1}{2} + \frac{\int\limits_{0}^{\varepsilon_{1}+T^{*}} f_{0}(\varepsilon, 0)\sqrt{\varepsilon}d\varepsilon}{4\int\limits_{0}^{\varepsilon_{1}+T^{*}} \frac{f_{0}(\varepsilon, 0)d\varepsilon}{\sqrt{\varepsilon}\int\limits_{0}^{x_{1}(\varepsilon)} \frac{N\sigma(\varepsilon+eEx)dx}{(\varepsilon+eEx)}}},$$
(16)

которое можно рекомендовать для вычисления $\gamma_{eff}(E/p)$ по известному истинному γ .

Обычно значения $f_0(\varepsilon, 0)$ эмитированных электронов более или менее постоянны в диапазоне энергий от 0 до ε_e , где $\varepsilon_e = \varepsilon_i - 2e\varphi$ для потенциальной эмиссии ионами или $\varepsilon_e = \varepsilon^* - e\varphi$ для эмиссии метастабильными атомами (ε_i , $e\varphi$ — соответственно потенциал ионизации газа и работа выхода материала катода) [16]. Тогда (16) можно упростить, полагая, что $f_0(\varepsilon, 0)$ не зависит от энергии до $\varepsilon \leq \varepsilon_e$, т.е. $f_0(\varepsilon, 0) = 3n_{e0}/2\varepsilon_e^{3/2} = \text{const.}$

Для однокомпонентной среды $\varepsilon_e < \varepsilon^*$ и $f_{es}(16)$ приближенно соответствует (2) с $\lambda_T \approx \lambda_{\varepsilon}$. Например, для $f_0(\varepsilon, 0) = 3n_{e0}/2\varepsilon_e^{3/2} = \text{const}$ и зависимости $2(\varepsilon + eEx)/mN\sigma(\varepsilon + eEx) \approx \text{const}$ из (16) имеем (2) с $\lambda_T \approx \varepsilon_e^2 / (6e E \varepsilon_1 \ln((\sqrt{\varepsilon^*} + \sqrt{\varepsilon_e}) / (\sqrt{\varepsilon^*} - \sqrt{\varepsilon_e})) \approx \lambda_{\varepsilon}$. В смесях же газов, у которых значения ε_i заметно различаются, при использовании катодов с малыми $e\phi$ (например, He, Ne+Xe с катодом из MgO, используемые в PDP [1–10]), следует ожидать $\varepsilon_e > \varepsilon^*$. Действительно, при вторичной эмиссии электронов ионами и метастабильными атомами гелия или неона, имеющими $\varepsilon_i(\text{He}) = 24.6 \text{ eV}, \varepsilon_i(\text{Ne}) = 21.6 \text{ eV},$ энергия ε_e будет превышать порог возбуждения ксенона $\varepsilon^* = 8, 3 \, \text{eV}$. Поэтому для части эмитируемых электронов с энергией $\varepsilon_e - \varepsilon^*$ в выражение для фактора ухода (2) вместо длины λ_T будет входить не λ_{ε} , а $\lambda_{\varepsilon}^* < \lambda_{\varepsilon}$ (траектория движения таких электронов на фазовой плоскости (ε , x) изображена на рис. 1 пунктиром). Возможно, что этот факт является одной из причин улучшения характеристик разряда в ячейках PDP при использовании смеси Хе с буферными Не, Ne.

Таким образом, при $\lambda_{\varepsilon} \gg \lambda$ большая часть эмитированных с катода электронов будет возвращаться обратно, и эффективный коэффициент вторичной эмиссии будет мал. Чтобы величина γ_{eff} была близка к истинной γ , формально необходимо выполнение условия $\lambda_{\varepsilon} - \varepsilon^* / eE \approx \lambda$, т. е. требуются такие сильные поля, чтобы электрон уже на одной

длине пробега сразу набирал энергию порядка ε^* . Использованное выше приближение "черной стенки" становится тогда несправедливым, а неупругие процессы можно рассматривать как квазиупругие, т.е. формально спад EDF при $\varepsilon > \varepsilon^*$ будет определяться величиной не T^* , а $T_h^* = T^*\lambda_\varepsilon^*/\lambda_\varepsilon$. К сожалению, основанное на двучленном разложении EDF рассмотрение, как и само понятие локального коэффициента $\alpha(E/p)$, становятся при этом неправомочными. Такие поля соответствуют насыщению экспоненциальной зависимости $\alpha(E/p)$ и переходу к условиям на левой ветви кривой Пашена. На правой же ветви, чтобы подхватиться полем к аноду, электрон должен пройти путь $x_1(\varepsilon_e) \approx (\varepsilon^* + T^* - \varepsilon_e)/eE = \lambda_\varepsilon + \lambda_\varepsilon^* - \varepsilon_e/eE$. Для малых начальных энергий электронов ε_e это расстояние есть $x_1 \approx \lambda_\varepsilon + \lambda_\varepsilon^*$, в то время как для больших $\varepsilon_e \approx \varepsilon^* - x_1 \approx \lambda_\varepsilon^* \ll \lambda_\varepsilon$. Поэтому увеличения γ_{eff} при заданном E/p в этом случае можно достичь путем увеличения начальной энергии ε_e эмитированных электронов.

Таким образом, при гидродинамическом описании разрядов на правой ветви кривой Пашена необходимо учитывать изменение эффективного коэффициента вторичной эмиссии на катоде, вызванное обратным рассеянием электронов. При этом величина γ_{eff} определяется главным образом начальной энергией эмитируемых электронов и амплитудой приложенного поля.

Один из авторов (Л.Д. Цендин) благодарит за поддержку гранты РФФИ 01-02-16874 и NATO SfR 974354.

Список литературы

- [1] Meunier J., Belenguer Ph., Boeuf J.P. // J. Appl. Phys. 1995. V. 78. P. 731.
- [2] Boeuf J.P., Punset C., Hirech A., Doyeux H. // J. Phys. IV. 1997. V. 7. C. 4–3.
- [3] Veerasingam R., Campbell R.B., McGrath R.T. // Plasma Sources Sci. Technol. 1997. V. 6. P. 157.
- [4] Jeong H.S., Shin B.J., Whang K.W. // IEEE Trans. Plasma Sci. 1999. V. 27. P. 171.
- [5] Rauf S., Kushner M.J. // J. Appl. Phys. 1999. V. 85. P. 3460.
- [6] Shin Y.K., Shon C.H., Kim W., Lee J.K. // IEEE Trans. Plasma. Sci. 1999. V. 27. P. 1366.
- [7] Oda A., Sakai Y., Akashi H., Sugawara H. // J. Phys. D: Appl. Phys. 1999. V. 32.
 P. 2726.

- [8] Ikeda Y., Verboncoeur J.P., Christenson P.J., Birdsall C.K. // J. Appl. Phys. 1999. V. 86. P. 243.
- [9] Phelps A.V., Petrovic Z. // Plasma Sourses Sci. Technol. 1999. V. 8. P. R21.
- [10] *Thompson J.J.* Conduction of electricity through gases. Cambridge Univ. Press, 1928.
- [11] Tsendin L.D. // Sov. J. of Plasma Phys. 1982. V. 8. P. 96, 228.
- [12] Shveigert V.A. // High Temperature. 1989. V. 27. P. 195.
- [13] Nagorny V.P., Drallos P.J. // Plasma Sourses Sci. Technol. 1997. V. 6. P. 212.
- [14] McDaniel E.W. // Collision phenomena in ionized gases. NY–London–Sydney: J. Wiley & Songs, 1964.
- [15] Hagelaar G.J.M., Kroesen G.M.W., van Slooten U., Schreuders H. // J. Appl. Phys. 2000. V. 88. P. 2252.
- [16] Hagelaar G.J.M., de Hoog F.J., Kroesen G.M.W. // Phys. Rev. E. 2000. V. 62. P. 1452.
- [17] Marshak R.E. // Rev. Mod. Phys. 1947. V. 19. P. 185.