05.3 Ориентационные переходы в структуре доменных границ (ДГ) ортоферритов

© Г.Е. Ходенков

Институт электронных управляющих машин, Москва E-mail: angeline@mtu-net.ru

Поступило в Редакцию 11 января 2002 г.

Рассмотрено влияние высших констант анизотропии на ориентационные структурные переходы в ДГ в ортоферритах типа $G_x F_z$ (точка перехода определяется равенством двух независимых констант кристаллографической анизотропии 2-го порядка). Вблизи этой точки построены уравнения сокращенного описания структуры ДГ, аналогичные уравнениям Слончевского для одноосных ферромагнетиков. Помимо ДГ известных типов (*ab*- и *ac*-ДГ), в зависимости от соотношений между константами анизотропии 4-го порядка, могут существовать устойчивые ДГ и с иной плоскостью разворота спинов. В некоторых случаях в спектрах возможно возникновение локализованного на ДГ антисимметричного уровня, дополнительного к моде смещений ДГ.

Слабые ферромагнетики, в том числе и редкоземельные ортоферриты, являются материалами, обладающими болышим информационнотехнологическим потенциалом. В этой связи определенный интерес могут представлять специфические ориентационные фазовые переходы во внутренней структуре ДГ, возникающие при изменении (температурном или каком-либо ином) констант кристаллографической магнитной анизотропии. Один из таких переходов, по-видимому, наблюдался в [1]; теория этих переходов развивалась в основном Фарзтдиновым и сотрудниками [2], [3]. В [2], [3], однако, точка перехода определялась из условия равенства энергий различных доменных структур, т.е. по терминологии [4] в рамках равновесного термодинамического подхода. Ниже вблизи точки перехода строится простая теория, аналогичная уравнениям Слончевского для сильноанизотропных ферромагнетиков [5], позволяющая легко определить возможные промежуточные структуры ДГ и их локальную устойчивость.

Ограничимся ниже рассмотрением $G_x F_z$ состояния ортоферрита (вектор антиферромагнетизма l в доменах коллинеарен оси 0x) и

13

свяжем с кристаллографическими осями a, b, c соответственно координатные оси x, y, z. Воспользуемся также приближенной теорией, в которую входит лишь вектор l единичной длины (вектор намагниченности исключен), с эффективным лагранжианом (см. подробный вывод, например, в [6])

$$\mathscr{L} = \frac{M_0}{2\gamma\omega_E} \dot{\mathbf{l}}^2 - \widetilde{\Phi}, \tag{1}$$
$$\widetilde{\Phi} = \frac{1}{2}A(\nabla \mathbf{l})^2 + \frac{1}{2} \left(K_b^{(2)} l_y^2 + K_c^{(2)} l_z^2 \right) + \frac{1}{4} \left(K_{bb}^{(4)} l_y^4 + 2K_{bc}^{(4)} l_y^2 l_z^2 + K_{cc}^{(4)} l_z^4 \right).$$

Здесь M_0 — намагниченность подрешеток ортоферрита, γ — магнитомеханическое отношение, $\omega_E = \gamma a/M_0$, $a \sim 10^9 \, {\rm erg/cm^3}$ и $A \sim 10^7 \, {\rm erg/cm}$ — константы однородного и неоднородного обмена, $K^{(j)}_{...}$ — перенормированные константы анизотропии второго j = 2 ($\sim 10^6 \, {\rm erg/cm^3}$, положительны) и четвертого j = 4 ($\sim 0.1 | K^{(2)}_{...} |$) порядков (константа Дзялошинского перенормирует $K^{(2)}_b$ и не фигурирует в (1) явно). Аналогичные представления существуют и для других типов магнетиков и широко применяются в теории спектров ДГ [7], [8].

Пусть для определенности плоскость ДГ перпендикулярна оси 0у. Тогда, согласно (1), существует два простых типа одномерных ДГ с одной угловой степенью свободы $\varphi(y)$: *ab*-ДГ — поворот l(y) на 180° в плоскости *ab* (x0y) и *ac*-ДГ — поворот на 180° в плоскости *ac* (z0x). В частности, для *ab*-ДГ:

$$\cos \varphi = -\sqrt{1 + \kappa_{ab}} \operatorname{th} y / \sqrt{1 + \kappa_{ab}} \operatorname{th}^2 y,$$
$$\varphi'(y) = \sin \varphi \sqrt{1 + \kappa_{ab}} \sin^2 \varphi, \qquad (2)$$

где $\varphi(y)$ отсчитывается от 0x длины измеряются в единицах $\Delta_{ab} = \sqrt{A/K_b^{(2)}}$ — эффективной ширины ab-ДГ, $\kappa_{ab} = K_{bc}^{(4)}/2K_b^{(2)}$. Из (1) получаем два распадающихся уравнения для амплитуд малых колебаний δl :

$$\Omega^{2} \delta l_{\parallel,\perp} = \hat{L}_{\parallel,\perp} \delta l_{\parallel,\perp} \equiv \left(-\frac{d^{2}}{dy^{2}} + V_{\parallel,\perp}(y) \right) \delta l_{\parallel,\perp};$$

$$V_{\parallel}(y) = \varphi^{\prime\prime\prime}(y) / \varphi^{\prime}(y),$$

$$V_{\perp}(y) = \left(-2 + K_{bc}^{(4)} / K_{b}^{(2)} \right) \sin^{2} \varphi - 3 \left(K_{bc}^{(4)} / 2K_{b}^{(2)} \right) \sin^{4} \varphi + K_{c}^{(2)} / K_{b}^{(2)}, \quad (3)$$

Локальная устойчивость ab-ДГ-(2) определяется условием положительности оператора $\hat{L}_{\perp} > 0$. С учетом условия $K_{...}^{(2)} > |K_{...}^{(4)}|$ нулевое приближение ($K_{...}^{(4)} = 0$) задачи (3) на собственные значения (с.з.) сводится к широко известному в теории ДГ потенциалу $1 - 2/ch^2 y$, для которого нижнее с. з. строго равно нулю и симметричная собственная функция (c. ф.) $\delta l_{\perp}^{(0)}(y) = 1/(\sqrt{2} ch y)$. Учитывая в $V_{\perp}(y)$ низшие степени разложения по $K_{...}^{(4)}$, приходим в первом порядке теории возмущений к условию устойчивости:

$$K_{c}^{(2)} - K_{b}^{(2)} + 2\left(K_{bc}^{(4)} - K_{bb}^{(4)}\right)/3 > 0.$$
(4)

Определим теперь дискретные уровни оператора \hat{L}_{\parallel} . Как показывает уже вид $V_{\parallel}(y)$ — (3), нижней с. ф. \hat{L}_{\parallel} является симметричная функция $\delta l_{\perp}^{(0)}(y) \sim \varphi'(y)$, которой отвечает с. з. $\omega = 0$ — трансляционный уровень спектра. Для определения дополнительных уровней [9] отметим, что для данного оператора, опять же в силу его вида, возможно представление

$$\hat{L}_{\parallel} = \hat{A}^{+} \hat{A} \equiv (d/dy + \varphi''/\varphi')(-d/dy + \varphi''/\varphi').$$
(5)

Вводя новую зависимую переменную $\hat{A}m_{\parallel}(y)$, получаем уравнение, эквивалентное исходному, но с иным потенциалом

$$V_{\parallel}^{*}(y) = 1 + 2\kappa_{ab}/ch^{4}y(1 + \kappa_{ab}th^{2}y).$$
(6)

Теперь очевидно, что дополнительный уровень существует при $\kappa_{ab} < 0$. Если $|\kappa_{ab}| < 1$, что выполняется в приближениях настоящей работы, справедливо приближение мелкого уровня. В этом приближении потенциал в (6) можно заменить на дельта-функцию: $1 - (8|\kappa_{ab}|/3)\delta(y)$ и получить

$$\Omega^{2} = 1 - \frac{16}{9} \kappa_{ab}^{2}, \qquad \delta l_{\parallel}^{(0)}(y) \sim \text{th} \, y \exp\left(-\frac{4}{3} \, |\kappa_{ab}| |y|\right). \tag{7}$$

Структура ДГ и ее спектр представлены на рисунке ($\kappa_{ab} = -0.1$); расчетное с. з. отличается от (7) лишь в третьем знаке после запятой, с. ф. в масштабе рисунка практически неразличимы.

Структура и с.ф. *ab*-ДГ ($\kappa_{ab} = -0.1$): *I* — угол $\varphi(y)$ согласно (2); *2* — потенциал $V_1(y)$ — (3); *3* — ненормированные нижняя ($\Omega = 0$) ~ $\varphi'(y)$ и *4* — антисимметричная ($\Omega^2 \approx 0.98$, см. (6)) с.ф.

Для изучения области перехода $K_c^{(2)} \approx K_b^{(2)}$, где могут существовать ДГ с двумя угловыми степенями свободы, представим ответственные за переход члены анизотропии в (1) в виде

$$\frac{1}{4} \left(K_b^{(2)} + K_c^{(2)} \right) \sin^2 \vartheta + \frac{1}{4} \left(K_b^{(2)} - K_c^{(2)} \right) \sin^2 \vartheta \cos 2\psi, \tag{8}$$

где вместо I введены угловые переменные в сферической системе: полярный угол ϑ отсчитывается от оси 0x, азимутальный ψ — от оси 0y, т.е. нормали к плоскости ДГ. Важно отметить, что в этом представлении второй, разностный, член мал, $\sim K^{(4)}$, и в задаче можно выделить параметр малости $\varepsilon = |K_b^{(2)} - K_c^{(2)}|/(K_b^{(2)} + K_c^{(2)})$. Настоящая задача, сформулированная подобным образом, формально совпадает с задачей о 180° ДГ в сильноанизотропном одноосном ферромагнетике (параметру ε соответствует 1 Q, где $Q \gg 1$ — так называемый фактор качества одноосного ферромагнетика). Известно, что в этом

случае возможно простое описание пространственно неодномерной низкочастотной динамики на основании редуцированной теории (с исключенной координатой у), уравнений Слончевского.

Поскольку вблизи перехода можно положить $\sin \vartheta = 1/\cosh y/\Lambda$, $\Delta = \sqrt{2A/(K_b^{(2)} + K_c^{(2)})}$, то, воспользовавшись простейшей процедурой перехода к уравнениям Слончевского — усреднением плотности энергии по y, получаем вместо $\tilde{\Phi}$ в (1) поверхностную плотность энергии:

$$\sigma = \Delta \Big\{ A(\nabla_{x,z}\psi)^2 + (K_b^{(2)} + K_c^{(2)}) \sin^2 \psi \\ + \frac{1}{3} \Big[K_{bb}^{(4)} \cos^4 \psi + 2K_{bc}^{(4)} \sin^2 \psi \cos^2 \psi + K_{cc}^{(4)} \sin^4 \psi \Big] \Big\}.$$
(9)

Отметим, что, согласно (1), характерные ширины блоховских линий в ДГ ортоферритов $\Lambda = \sqrt{2A/(K_b^{(2)} - K_c^{(2)})}$ [2] значительно превосходят ширину ДГ Δ . Реальные ДГ с двумя угловыми степенями свободы в этом приближении заменяются на одноугловые. Поправки $\sim \varepsilon$ можно построить в рамках общего вывода уравнений Слончевского [10].

Ограничимся ниже рассмотрением лишь однородных состояний ДГ на основе (9). Рассмотренный выше ab-ДГ отвечает $\psi = 0$, π , причем условие ее локальной устойчивости $\partial^2 \sigma / \partial \psi^2 > 0$ точно совпадает с (4), которое следовало из строгой теории возмущений. В состояние ac-ДГ по (9) — $\psi = \pm \pi/2$, а условие локальной устойчивости, аналогичное (4), принимает вид

$$K_b^{(2)} - K_c^{(2)} + 2\left(K_{bc}^{(4)} - K_{cc}^{(4)}\right)/3 > 0.$$
⁽¹⁰⁾

Дополнительно, помимо простых *ab*- и *ac*-ДГ, уравнение $\partial \sigma / \partial \psi = 0$ допускает и ряд других решений (состояний):

$$\cos 2\psi = 3 \, \frac{K_c^{(2)} - K_b^{(2)} + 1/3(K_{cc}^{(4)} - K_{bb}^{(4)})}{K_{bb}^{(4)} - 2K_{bc}^{(4)} + K_{cc}^{(4)}},\tag{11}$$

которые устойчивы, если

$$\left|K_{c}^{(2)} - K_{b}^{(2)} - \frac{1}{3}(K_{cc}^{(4)} - K_{bb}^{(4)})\right| < K_{bb}^{(4)} - \frac{2}{3}K_{bc}^{(4)} + K_{cc}^{(4)}.$$
 (12)

Как показывают результаты настоящей работы, переходы между *ab*- и *ac*-ДГ в ортоферритах сопровождаются целым рядом интересных эффектов. Переходы оказываются "растянутыми" (сравни условия

локальной устойчивости (4), (10)): внутри области, имеющей размер $\sim \max |K^{(4)}|$, могут возникать новые состояния (фазы) ДГ, обладающие двумя угловыми степенями свободы, приближенно описываемые (11). Кроме того, при определенных условиях на константы анизотропии 4-го порядка возможно возбуждение антисимметричной высокочастотной моды (7), локализованной на ДГ.

Список литературы

- [1] Залесский А.В., Саввинов А.М., Желудев И.С., Иващенко А.Н. // ЖЭТФ. Т. 68. В. 10. С. 1449–1459.
- [2] Фарзтдинов М.М. Физика магнитных доменов в антиферромагнетиках и ферритах. М.: Наука, 1981. 156 с.
- [3] Фарзтдинов М.М. Спиновые волны в ферро- и антиферромагнетиках с доменной структурой. М.: Наука, 1988. 238 с.
- [4] Hubert A., Schaefer R. Magnetic Domains. Berlin-Tokyo: Springer Verlag, 1998. P. 696.
- [5] *Малоземов А., Слонзуски Дж.* Доменные стенки в материалах с ЦМД. М.: Мир, 1982. 382 с.
- [6] Bar'yakhtar V.G., Chetkin M.V., Ivanov B.A., Gadetskii S.N. Dynamics of Topological Magnetic Solitons. Berlin–Budapest: Springer-Verlag, 1994. P. 179.
- [7] Ivanov B.A., Kolezhuk A.K., Wysin G.M. // Phys. Rev. Lett. V. 76. N 3. P. 511-514.
- [8] Иванов Б.А., Муравьев В.М., Шека Д.Д. // ЖЭТФ. Т. 116. В. 3. С. 1096–1114.
- [9] Ходенков Г.Е. // ФММ. 1986. Т. 61. В. 5. С. 850-858.
- [10] Ходенков Г.Е. // ФММ. 1994. Т. 78. В. 3. С. 33–37.