05;12 Об анизотропии диэлектрической проницаемости монокристаллических подложек алюмината лантана

© Ю.Г. Макеев, А.П. Моторненко, Н.Т. Черпак, И.П. Бабийчук, М.Б. Космына

Институт радиофизики и электроники им. А.Я. Усикова НАН Украины, Харьков E-mail: briz@ire.kharkov.ua

Институт монокристаллов НАН Украины, Харьков

Поступило в Редакцию 13 апреля 2001 г. В окончательной редакции 22 октября 2001 г.

Приведены результаты микроволнового исследования диэлектрических свойств подложек из монокристалла LaAlO₃ в диапазоне частот 20–28 GHz. Использован резонатор в виде пересечения запредельных круглого и радиального волноводов с основным поляризационно-вырожденным типом колебаний. В различных образцах монокристалла, в том числе полученных из двух источников, в плоскости (100) обнаружена анизотропия, изменяющаяся в пределах $\Delta \varepsilon = 0.1 \div 0.9$.

Необходимость эпитаксии при изготовлении пленок высокотемпературных сверхпроводников (ВТСП) требует использования монокристаллических диэлектрических подложек с поверхностью, имеющей четырехкратную кристалллографическую симметрию [1]. Ряду необходимых требований к подложкам удовлетворяют вещества типа перовскитов, имеющие химическую формулу ABO₃, среди которых особенное внимание уделялось алюминату лантана LaAlO₃. Результаты исследования диэлектрических свойств монокристалла LaAlO₃ приведены в работах [2–6]. Известные литературные данные о параметрах решетки этих материалов свидетельствуют о небольшом отличии их структуры от кубической. В связи с этим структуру LaAlO₃ можно представить как псевдокубическую, в которой каждая единичная ячейка имеет стороны длиной a и описывается углом α [2,3]. В кристаллах перовскитов может проявляться так называемое двойникование. Согласно [2], оно вы-

12

зывает некоторую непредсказуемость диэлектрической проницаемости, что может привести к определенным трудностям при проектировании микроволновых устройств, в которых резонансная частота задается с высокой точностью.

В [1] указывается, что "подложка LaAlO₃ имеет довольно высокое значение диэлектрической постоянной ($\varepsilon = 24$ при T = 77 K), изменяющееся слегка по направлению из-за двойникования". Следовательно, возникают вопросы о величине возможной анизотропии микроволновых свойств LaAlO₃ и причинах проявления этого эффекта. Последние могут быть обусловлены как отличием структуры кристалла от кубической, так и влиянием различного рода дефектов, включая, прежде всего, двойникование. Нами проведены исследования диэлектрических свойств подложек из монокристалла LaAlO₃ по влиянию их возможной анизотропии на величину частотного расщепления поляризационновырожденных колебаний в микроволновом диапазоне.

Метод измерения диэлектрической проницаемости анизотропных монокристаллических образцов основан на использовании поляризационно-вырожденных колебаний $HE_{11\delta}^{c,s}$ в резонаторе на цилиндрическом волноводе [7,8]. При помещении анизотропного диэлектрика конечной длины в отрезок волновода, поперечное сечение которого полностью заполняется образцом, снимается вырождение колебаний. При этом возникают два собственных колебания $HE_{11\delta}^c$ и *HE*^s₁₁₆, в плоскостях поляризации которых лежат направления наибольшего и наименьшего значений диэлектрической проницаемости образцов с ромбической, гексагональной или кубической сингониями. Расчет значений диэлектрической проницаемости образца проводится по измеренным величинам собственных частот резонатора, образованного отрезком запредельного цилиндрического волновода и диском из исследуемого материала. Направление осей устанавливается по поляризации колебаний относительно кристалла.

В [7] приведены необходимые расчетные выражения и описание конструкции измерительной секции. Конструкция позволяет измерять параметры круглых образцов и непригодна для измерения подложек другой формы.

В настоящей работе использован резонатор, представляющий собой ортогональное пересечение запредельных цилиндрического и радиального волноводов [8]. Преимуществом измерительной секции, выполненной на основе такого резонатора по сравнению с преды-

дущей, является возможность изучения плоскопараллельного образца монокристаллического диэлектрика заданной толщины любой формы. Единственным требованием в этом случае является условие, чтобы пятно электромагнитного поля в радиальном волноводе было меньше поперечных размеров диэлектрика. По измеренным значениям резонансных частот, геометрическим размерам измерительного резонатора и толщины подложки с помощью соотношений [9] вычисляются значения диэлектрической проницаемости исследуемой подложки. При необходимости измерения направлений кристаллографических осей в подложке в момент подавления одного колебания определяется направление проекции элемента возбуждения на плоскость подложки. Эти направления совпадают с направлениями проекций осей эллипсоида показателей преломления [10].

С использованием данной методики мы провели, прежде всего, контрольные измерения на диэлектрических образцах с хорошо известными значениями диэлектрических проницаемостей. Для этих целей выбрали плавленый и монокристаллический кварцы. Срезы монокристаллического кварца были выполнены в плоскостях, позволяющих определить величины ε_{\perp} и ε_{\parallel} . Толщина образцов варьировалась в пределах 0.25–1.0 mm, а форма их выбиралась в виде диска и параллелепипеда с линейными размерами 5-10 mm. Значения величин є для плавленого кварца составили 3.80 ± 0.04 , а для монокристаллического — $\varepsilon_{\perp} = 4.40 \pm 0.04$, $\varepsilon_{\parallel} = 4.60 \pm 0.04$. В процессе измерений образцы перемещались относительно центра радиального волновода и измерялись соответствующие значения резонансной частоты f_p . Оказалось, что вплоть до расстояния $z \ge 0.60\,\mathrm{mm}$ (где z — минимальное расстояние от края образца до края внутреннего диаметра цилиндрического волновода) значения f_p оставались неизменными. Это означает, что при $z \ge 0.60 \,\mathrm{mm}$ конечные размеры и форма образца не оказывают влияния на результат измерения.

Измерения на образцах LaAlO₃ проводились в миллиметровом диапазоне волн, для этого измерительный резонатор имел внутренний диаметр цилиндрического волновода 3.01 mm. Исследовались подложки, полученные из двух источников: Института монокристаллов (ИМ) НАН Украины и фирмы "Coating & Crystal Technology" (США). В ИМ НАН Украины монокристаллы LaAlO₃ выращивались методом Чохральского из шихты, полученной смешиванием исходных оксидов La₂O₃ и Al₂O₃ на установке "Кристалл" с регулятором поперечного сечения в иридиевых тиглях. Полученные кристаллы диаметром 30 mm имели фронт кристал-

№ п/п	1	2	3	4	5
Форма образца	Квадрат	Круг	Круг	Круг	Прямоугольник
Размеры образца, mm	$10\times10\times0.32$	Ø 7	Ø7	Ø7	$22\times20\times0.50$
ε_1	24.2	23.7	23.9	23.8	23.7
ε_2	23.3	23.1	23.4	23.6	23.6
$\Delta \varepsilon$	0.9	0.6	0.5	0.2	0.1

Таблица 1.

лизации в сторону расплава от выпуклого до практически плоского. Исследования структуры монокристаллов LaAlO₃ проводились рентгеновским методом. Оптические исследования монокристалла показали, что он однороден по упругим напряжениям. Образцы для исследований изготовлены следующим образом: на рентгеновской установке определялась плоскость (100) монокристалла, затем на станке "Microslice" проводилась его порезка на пластины в выбранной плоскости. Шлифовка пластин осуществлялась с помощью алмазного порошка зернистостью 10-14 µm. После шлифовки пластины с двух сторон полировались. Исследуемые подложки изготавливались в форме квадрата, прямоугольника или круга толщиной ~ 0.30 ÷ 0.60 mm. Неплоскопараллельность образцов не превышала 0.01 mm. С такой же точностью выполнялись внутренние размеры измерительных резонаторов. Образцы фирмы "Coating & Crystal Technology" толщиной 0.52 mm также были вырезаны в плоскости (100). После шлифовки они были отполированы с одной стороны.

Значения диэлектрической проницаемости, полученные для центральной области образцов LaAlO₃, изготовленных в ИМ НАН Украины, сведены в табл. 1.

Образцы в табл. 1 расположены по мере уменьшения $\Delta \varepsilon$. Приведенные в таблице значения ε_1 и ε_2 представляют собой усредненный результат после серии (из 10 и более) измерений. При каждом измерении повторялось размещение центральной части образца в области максимума электромагнитного поля резонатора. Разброс экспериментальных значений резонансных частот при каждом измерении находился в пределах ± 50 MHz, что в пересчете на величину погрешности определения

№ п/п	1	2			
Форма образца	Прямоугольник	Прямоугольник			
Размеры образца, тт	9.4 imes 6.2 imes 0.52	$12 \times 6 \times 0.52$			
ε_1	23.7	23.5			
ε_2	23.4	23.4			
$\Delta \varepsilon$	0.3	0.1			

Таблица 2.

 $\Delta \varepsilon$ не превышает ± 0.1 . Измерения проводились в частотном диапазоне $20 \div 28$ GHz. Значения ε_1 и ε_2 , полученные аналогичным образом для подложек фирмы "Coating & Crystal Technology", приведены в табл. 2.

Как следует из сравнения данных образцов № 5 табл. 1 и № 2 табл. 2, они оба имеют значения $\Delta \varepsilon = 0.10$, в то время как технология их изготовления разная, как разными являются и геометрические размеры.

Для проверки, не является ли результат, полученный на образце № 5 табл. 1, следствием того, что его размеры самые большие по сравнению с остальными образцами, мы смещали его относительно центра радиального волновода и измеряли величину f_p (аналогично проведенным измерениям на образцах из кварца). При этом получали величины $\Delta \varepsilon = 0.1$ вплоть до случая, когда минимальное значение z составило 0.30 mm. Уменьшение z для образца LaAlO₃ по сравнению с образцом из кварца неудивительно, поскольку из-за больших значений диэлектрической проницаемости пятно поля в радиальном волноводе с образцом из LaAlO₃ было меньшим по сравнению с кварцем.

Из приведенных данных следует, что монокристалл алюмината лантана в плоскости (100) является анизотропным с небольшой степенью анизотропии. Исследования ряда образцов показывают, что они имеют различия не только в величине степени анизотропии, но и в значениях диэлектрических проницаемостей. Эти различия, как следует из таблиц, зависят как от технологии изготовления кристаллов, так и от конкретного образца, выращенного по одной и той же технологии. По-видимому, эти отличия обусловлены как кристаллографической анизотропией, так и наличием дефектов в структуре кристалла LaAlO₃, в частности двойников. Для выяснения вклада в полученное значение $\Delta \varepsilon$ каждой

из составляющих, необходимы дальнейшие комплексные исследования. Полученные данные показывают, что при разработке и изготовлении микроволновых устройств на основе ВТСП пленок, нанесенных на подложки из монокристалла LaAlO₃, для последних необходим микроволновый мониторинг их диэлектрических свойств перед последующим нанесением пленок ВТСП.

Список литературы

- [1] *Shen Z.Y.* // High-Temperature Superconducting Microwave Circuits. Boston– London: Artech House, 1994. 276 p.
- [2] Young K.H., Negrete G.V., Eddy M.M., Sun I.Z. et al. // Proc. ICMCTE-91. San-Diego, 1991.
- [3] Ramesh R., Snam A., Bonner W.A. et al. // Appl. Phys. Lett. 1989. V. 55. N 11. P. 1138–1140.
- [4] Konaka T., Sato M., Osano H., Kubo S. // Journal of Superconductivity. 1991.
 V. 4. N 4. P. 283–288.
- [5] Konopka J., Wolff I. // IEEE Trans. on Microwave Theory Techn. 1992. V. 40. N 12. P. 2416–2423.
- [6] Zuccaro C., Winter M., Klein N., Urban K. // Appl. Phys. 1997. V. 82. N 11. P. 5695–5704.
- [7] Макеев Ю.Г., Коробкин В.А., Пятак Н.И. и др. // ПТЭ. 1978. № 6. С. 104– 107.
- [8] Коробкин В.А., Макеев Ю.Г. Устройство для неразрушающего контроля диэлектриков и ферритов. А.с. N 1117538 // Бюл. 1984. № 37.
- [9] Макеев Ю.Г., Моторненко А.П. // ЖТФ. 1994. Т. 64. № 9. С. 117–126.
- [10] Коробкин В.А., Макеев Ю.Г., Катрич Н.П. н др. // ПТЭ. 1981. № 4. С. 156– 158.