01;07

Зависимость спектрального разрешения рентгеновского дифрактора от формы и кривизны отражающей поверхности

© Е.М. Латуш, М.И. Мазурицкий

Ростовский государственный университет, Ростов-на-Дону E-mail: mazurmik@icomm.ru

Поступило в Редакцию 30 июля 2001 г.

В приближении точечного источника излучения проведено теоретическое исследование зависимости спектрального разрешения фокусирующего рентгеновского дифрактора от формы кристаллографических поверхностей. Представлена аналитическая зависимость разрешения от кривизны кристалла в плоскости круга фокусировки. Для несимметричного дифрактора получено значение радиуса кривизны, при котором достигается наилучшее спектральное разрешение.

Для монохроматизации рентгеновского излучения используются совершенные и мозаичные кристаллы (кварц, кремний, германий, фтористый литий, слюда, графит и др.). Традиционные кристаллдифракционные методы разработаны и описаны достаточно полно [1–4]. Под параметром разрешения принято понимать безразмерную величину отношения $\Delta E/E$ или $\Delta \lambda/\lambda$, где E — энергия кванта рентгеновского излучения (λ — соответствующая длина волны). Если θ — угол Брэгга между падающим лучом и касательной к атомной плоскости кристалла, то из закона Брэгга следует, что допустимая величина варьирования угла Брэгга $\Delta \theta$ определяет разрешение следующим образом:

$$\Delta \lambda / \lambda = \Delta \theta / \operatorname{tg} \theta \tag{1}$$

и зависит главным образом от ниже перечисленных факторов: мозаичного несовершенства используемого кристалла, метода разложения рентгеновского излучения в спектр, размера отражающей брэгговской поверхности кристалла-дифрактора. Под брэгговской (дифракционной) зоной отражения понимают совокупность точек кристаллографической поверхности, для которых при заданном интервале значений длин

49

волн $\lambda - \Delta \lambda \leqslant \lambda \leqslant \lambda + \Delta \lambda$ угол Брэгга находится в пределах $\theta - \Delta \theta \leqslant \theta \leqslant \theta + \Delta \theta$.

Чем больше величина $\Delta \theta$, тем больше площадь дифракционной зоны и, как следствие, больше величина апертуры и соответственно выше интенсивность получаемых спектров. Однако обычно требуется обеспечить одновременно с высокой интенсивностью и высокое спектральное разрешение (ассоциируемое с малым значением параметра спектрального разрешения $\Delta \lambda / \lambda$). Требование высокого спектрального разрешения неизбежно приводит к потере интенсивности спектров. На практике достигается компромисс между этими двумя параметрами.

В настоящее время для монохроматизации рентгеновского излучения используют отражение от плоских или изогнутых кристаллов. Последние применяются для точечных источников излучения (размеры которых, как правило, не превышают значения радиуса кривизны, умноженного на $\Delta\lambda/\lambda$) и позволяют обеспечивать фокусировку лучей заданной длины волны в приемное окно детектора. В работе [5] нами описаны алгоритм и результаты компьютерного моделирования формы брэгговских зон на поверхности изогнутого кристалла.

Исследуем зависимость спектрального разрешения от радиуса изгиба кристалла в плоскости фокального круга. На рис. 1 изображена схема расположения источника излучения S и кристалла-дифрактора K в плоскости круга фокусировки; XOY — система координат; O', O — центры круга фокусировки и кривизны кристалла соответственно. Обозначим через r отрезок O'A — радиус круга фокусировки. Окружность фокусировки, расположенная в плоскости XOY, проходит через точку S, где находится источник излучения, точку A — вершину дифрактора и точку D — местоположение детектора.

Рассмотрим наиболее распространенные типы изгиба кристалла: цилиндрический, сферический, эллипсоидальный и тороидальный. Сечение кристалла плоскостью XOY представляет собой дугу окружности с центром в точке O, радиусом OA = R. Плоскость круга фокусировки является плоскостью симметрии кристалла. Таким образом, на рисунке изображен общий случай сечения кристалла-дифрактора плоскостью круга фокусировки, соответствующий всем перечисленным выше типам изгиба. Видно, что для любой точки P, лежащей на отражающей поверхности кристалла в плоскости круга фокусировки (отличной от точки A — вершины дифрактора), угол θ_1 отличается от угла θ .

Письма в ЖТФ, 2002, том 28, вып. 1

Схема расположения источника излучения *S* и изогнутого кристалла *K* в плоскости круга фокусировки.

Иными словами, луч попадает в точку P под несколько другим углом к касательной, чем в точке A. Очевидно также, что углы θ_1 и θ отличаются тем больше, чем дальше точка P расположена от вершины кристалла. Таким образом, величина отличия угла дифракции θ_1 от истинного угла Брэгга θ равна $\Delta \theta = \theta_1 - \theta$ и зависит от x — абсциссы точки P. Значение $\Delta \theta$ для фиксированного x, в свою очередь, зависит от R — радиуса изгиба кристалла в плоскости XOY.

4* Письма в ЖТФ, 2002, том 28, вып. 1

Исследуем поведение функции $\Delta \theta = F(R)$ на множестве $R \in [r, \infty)$ при фиксированном значении $x \neq 0$. (При x = 0 $\theta_1 = \theta$ и функция F(R) = 0 для $\forall R$). Покажем, что функция F(R) при $x \neq 0$ является знакопеременной на множестве значений $R \in [r, \infty)$ и принимает единственное нулевое значение в точке этого множества. Обозначим углы наклона прямых *PS* и *PO* к оси *X* через α_1 и α_2 соответственно. Используя координаты точек *P*, *O*, *S*, легко получить выражения для tg α_1 и tg α_2 :

$$\operatorname{tg} \alpha_1 = \frac{\sqrt{R^2 - x^2} - R + 2r\sin^2\theta}{x + 2r\sin\theta\cos\theta}, \qquad \operatorname{tg} \alpha_2 = \frac{\sqrt{R^2 - x^2}}{x}. \tag{2}$$

Как видно из рис. 1, $\theta_1 = 90^\circ - (\alpha_2 - \alpha_1)$, тогда

$$\operatorname{tg} \theta_1 = \frac{1 + \operatorname{tg} \alpha_2 \operatorname{tg} \alpha_1}{\operatorname{tg} \alpha_2 - \operatorname{tg} \alpha_1}$$
 и $\operatorname{tg} \Delta \theta = \frac{\operatorname{tg} \theta_1 - \operatorname{tg} \theta}{1 + \operatorname{tg} \theta \operatorname{tg} \theta_1}$, где $\Delta \theta = \theta_1 - \theta$. (3)

Известно, что для дифракторов, применяемых в рентгеновской спектроскопии, значение $|x/R| \leq 10^{-2}$, т. е. малая величина. Приближенно, с точностью до членов второго порядка малости, можем представить выражение $\sqrt{R^2 - x^2} = R\sqrt{1 - (x/R)^2}$ в виде ряда Тейлора и пренебречь членами с x/R в степени большей, чем 2. Получим приближенное выражение

$$\sqrt{R^2 - x^2} \approx R - \frac{x^2}{2R}.$$
 (4)

Учитывая (2)-(4), запишем:

$$\operatorname{tg}\Delta\theta \approx \frac{x}{R} \cdot \frac{(2r + (x\operatorname{ctg}\theta)/2) - R}{x\operatorname{ctg}\theta + 2r + x^2(R - 2r)/(2R^2)}.$$
 (5)

Тогда

$$\Delta\theta \approx \arctan\left(\frac{x}{R} \cdot \frac{(2r + (x \operatorname{ctg} \theta)/2) - R}{x \operatorname{ctg} \theta + 2r + x^2(R - 2r)/(2R^2)}\right).$$
 (6)

Очевидно, что нули функци
и $\Delta \theta$ совпадают с нулями функции tg $\Delta \theta,$ так как величин
а $|\Delta \theta|\leqslant 10^{-2}.$

Рассмотрим выражение (5) для tg $\Delta \theta$. Знаменатель дроби больше нуля для любых значений $R \in [r, \infty)$, поскольку параметры $\theta, r, x/R$ определены на следующих отрезках: $\theta \in [20^\circ, 60^\circ], r \in [100, 1000]$ mm,

Письма в ЖТФ, 2002, том 28, вып. 1

 $|x/R| \leq 10^{-2}$. Функция F(R) при $x \neq 0$ является знакопеременной на полуинтервале $R \in [r, \infty)$ и обращается в ноль, когда числитель дроби обращается в ноль, причем в единственной точке множества $[r, \infty)$ при

$$R = 2r + \frac{x \operatorname{ctg} \theta}{2}.$$
 (7)

Из выше доказанного следует, что минимальное значение $|\Delta\theta|$ достигается при условии (7). Поскольку $\Delta\theta$ определяет спектральное разрешение дифрактора (1), то для произвольной точки P(x, y), лежащей в плоскости фокального круга, наилучшее спектральное разрешение достигается именно при $R = 2r + (x \operatorname{ctg} \theta)/2$. Однако для разных точек дифрактора координаты x принимают различные значения, следовательно не существует единственного оптимального значения R для всех точек отражающей поверхности. Так как величина $2r \gg (x \operatorname{ctg} \theta)/2$, то на практике обычно используют значение радиуса кривизны в плоскости круга фокусировки R = 2r, полагая его наиболее близким к оптимальному.

Иногда встречаются дифракторы, несимметричные относительно плоскости YOZ, проходящей через точку A. Так, например, в серийно выпускаемом рентгеновском микроанализаторе Camebax-Micro (производство фирмы CAMECA, Франция) ширина дифрактора справа от точки A — 37 mm, а слева — 23 mm. В этом случае для получения минимального параметра спектрального разрешения берут значение R, отличное от 2r. Подставив в формулу (7) $\theta = 30^{\circ}$, r = 160 mm, x = 37 mm и x = -23 mm, получим выражения для правой и левой частей соответственно: $\Delta \theta_R$ и $\Delta \theta_L$. Решая уравнение $\Delta \theta_R = \Delta \theta_L$, получим оптимальное значение $R \approx 328$ mm, больше чем 2r = 320 mm.

Список литературы

- [1] Freund A.K. X-ray Optics. Grenoble: ESRF, 1987. P. 54.
- [2] Bonnelle C., Mande C. Advances in x-ray spectroscopy. Oxford and New York: Pergamon Press, 1982. 423.
- [3] DuMond J.W.M., Kirpatrick A. // Rev. Sci. Instrum. 1930. V. 1. P. 88.
- [4] Johann H.H. // Z. Phys. 1931. V. 69. P. 185.
- [5] Мазурицкий М.И., Солдатов А.В., Латуш Е.М., Ляшенко В.Л., Марчелли А. // Письма в ЖТФ. 1999. Т. 25. В. 19. С. 11–16.

Письма в ЖТФ, 2002, том 28, вып. 1