01;03 Аналитическое определение скорости скольжения разреженного газа вдоль твердой цилиндрической поверхности

© В.Н. Попов

Поморский государственный университет им. М.В. Ломоносова, 163006 Архангельск, Россия e-mail: popov.vasily@pomorsu.ru

(Поступило в Редакцию 13 марта 2002 г.)

Представлен аналитический метод решения полупространственной краевой задачи для неоднородного кинетического уравнения Больцмана с оператором столкновений в форме эллипсоидально-статистической модели в задаче о течении неоднородного по температуре и массовой скорости потока разреженного газа вдоль твердой цилиндрической поверхности. В линейном приближении по числу Кнудсена получены поправки к коэффициентам теплового и изотермического скольжений, учитывающие кривизну межфазной поверхности. Проведено сравнение с литературными данными.

Введение

Система граничных условий при обтекании разреженным газом произвольной гладкой поверхности получена с использованием БГК (Бхатнагар, Гросс, Крук) модели кинетического уравнения Больцмана в [1]. Позднее эта задача для случая твердой сферической поверхности решалась моментными методами как для линеаризованного уравнения Больцмана с оператором столкновений в форме Больцмана [2], так и для эллипсоидальностатистической (ЭС) модели кинетического уравнения Больцмана [3,4]. В [5] с использованием метода элементарных решений (метода Кейза) [6] на основе ЭС модели получено точное в замкнутой форме аналитическое выражение для коэффициента β_R , позволяющего учесть зависимость коэффициента теплового скольжения от радиуса кривизны обтекаемой разреженным газом твердой сферической поверхности. Значение найденного в [5] путем численного интегрирования окончательных выражений коэффициента β_R , хорошо согласуется с результатами, полученными в [2,7,8].

Целью настоящей работы является вычисление с использованием метода, представленного в [5], скорости скольжения разреженного газа вдоль твердой цилиндрической поверхности с учетом влияния кривизны межфазной поверхности на коэффициенты теплового и изотермического скольжения.

Постановка задачи. Вывод основных уравнений

Рассмотрим твердую цилиндрическую поверхность, обтекаемую потоком неоднородного по температуре разреженного газа при малых отклонениях от равновесного состояния. Течение газового потока будем описывать уравнением Больцмана с линеаризованным оператором столкновений в форме эллипсоидально-статистической модели [9,10], записанного в цилиндрической системе координат, ось *Oz* которой совпадает с осью цилиндра. Будем полагать, что градиент температуры вдали от поверхности перпендикулярен ее оси.

Линеаризуем функцию распределения, описывающую состояние газа, относительно локально-равновесной функции распределения в приближении Чепмена–Энскога [11]. Раскладывая функцию $Y(\rho, \varphi, C_i)$, учитывающую отклонение функции распределения газовых молекул по скоростям и координатам в слое Кнудсена от функции распределения в объеме газа, в ряд по малому параметру 1/R

$$Y(\rho, \varphi, C_i) = Y^{(1)}(\rho, \varphi, C_i) + R^{-1}Y^{(2)}(\rho, \varphi, C_i) + \dots,$$
(1)

придем к системе одномерных интегро-дифференциальных уравнений

$$C_{\rho} \frac{\partial Y^{(1)}}{\partial \rho} + Y^{(1)}(\rho, \varphi, C_{i}) = \pi^{-3/2} \int \exp(-C'^{2}) \times K(\mathbf{C}, \mathbf{C}') Y^{(1)}(\rho, \varphi, C_{i}') d^{3}C_{i}',$$
(2)

$$C_{\rho} \frac{\partial Y^{(2)}}{\partial \rho} + Y^{(2)}(\rho, \varphi, C_{i}) = \pi^{-3/2} \int \exp(-C'^{2})$$
$$\times K(\mathbf{C}, \mathbf{C}')Y^{(2)}(\rho, \varphi, C_{i}')d^{3}C_{i}' - C_{\varphi}^{2} \frac{\partial Y^{(1)}}{\partial C_{\rho}}$$
$$+ C_{\rho}C_{\varphi} \frac{\partial Y^{(1)}}{\partial C_{\varphi}} - C_{\varphi} \frac{\partial Y^{(1)}}{\partial \varphi}$$
(3)

с граничными условиями

$$\begin{split} Y^{(1)}(R,\varphi,C_i) &= -2C_{\varphi}U^{(1)}_{\varphi}|_{S} + C_{\varphi}\left(C^2 - \frac{5}{2}\right)k, \quad C_{\rho} > 0, \\ Y^{(2)}(R,\varphi,C_i) &= -2C_{\varphi}U^{(2)}_{\varphi}|_{S}, \quad C_{\rho} > 0, \\ Y^{(1)}(\infty,\varphi,C_i) &= 0, \quad Y^{(2)}(\infty,\varphi,C_i) = 0, \end{split}$$

из которых находим вид двух первых членов разложения (1). Здесь $\rho(3\mu_g/2p)\beta$ — размерный радиус-вектор, βU_i — компоненты массовой скорости газа, βC_i —

компоненты собственной скорости молекул газа, μ_g — динамическая вязкость газа, $\beta = (2k_BT_S/m)^{1/2}$, p — статическое давление, R и S — радиус и поверхность цилиндра,

$$k = \frac{1}{T_S} \left. \frac{\partial T}{R \partial \varphi} \right|_S,$$

$$K(\mathbf{C}, \mathbf{C}') = 1 + 2\mathbf{C}\mathbf{C}' + \frac{2}{3} \left(C^2 - \frac{3}{2} \right) \left(C'^2 - \frac{3}{2} \right)$$
$$- 2C_i C_j \left(C'_i C'_j - \frac{1}{3} \delta_{ij} C'^2 \right).$$

Уравнение (2) описывает процессы, происходящие на границе твердой плоской поверхности, а (3) позволяет учесть влияние кривизны межфазной поверхности.

Решение (2) ищем в виде разложения по двум ортогональным многочленам

$$Y^{(1)}(\rho, \varphi, C_i) = C_{\varphi} Y^{(1)}_a(\rho, \varphi, C_{\rho}) + C_{\varphi} (C_{\varphi}^2 + C_z^2 - 2) Y^{(1)}_b(\rho, \varphi, C_{\rho}).$$
(4)

Заметим, что ортогональность понимается здесь в смысле скалярного произведения

$$(f,g) = \int_{-\infty}^{+\infty} f(\rho,\varphi,C_i)g(\rho,\varphi,C_i)\exp(-C^2)d^3C_i.$$

Решение (3) ищем в виде

$$Y^{(2)}(\rho, \varphi, C_i) = C_{\varphi} Y^{(2)}_a(\rho, \varphi, C_{\rho}).$$
 (5)

Обозначим $\mu = C_{\mu}$. Тогда, подставляя разложения (4) и (5) в (3), домножая полученное соотношение на $C_{\varphi} \exp(-C_{\varphi}^2 - C_z^2)$ и интегрируя по C_{φ} и C_z от $-\infty$ до $+\infty$, получим уравнение для функции $Y_a^{(2)}(\rho, \varphi, \mu)$

$$\mu \frac{\partial Y_{n}^{(2)}}{\partial \rho} + Y_{a}^{(2)}(\rho, \varphi, \mu)$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} Y_{a}^{(2)}(\rho, \varphi, \mu') \exp(-\mu'^{2}) d\mu$$

$$- \frac{\mu}{\sqrt{\pi}} \int_{-\infty}^{\infty} \mu' Y_{a}^{(2)}(\rho, \varphi, \mu') \exp(-\mu'^{2}) d\mu'$$

$$+ \mu Y_{a}^{(1)}(\rho, \varphi, \mu) - \frac{3}{2} \frac{\partial Y_{a}^{(1)}}{\partial \mu}$$

$$+ 3\mu Y_{b}^{(1)}(\rho, \varphi, \mu) - \frac{3}{2} \frac{\partial Y_{b}^{(1)}}{\partial \mu}$$
(6)

с граничными условиями

$$\begin{split} Y_{a}^{(2)}(R,\varphi,\mu) &= -2U_{\varphi}^{(2)}|_{s}, \quad \mu > 0, \\ Y_{a}^{(2)}(\infty,\varphi,\mu) &= 0. \end{split} \tag{7}$$

Учитывая, что в случае скольжения разреженного газа вдоль твердой плоской поверхности результаты, полученные на основе ЭС и БГК моделей кинетического уравнения Больцмана, совпадают, имеем [6]

$$\begin{split} Y_a^{(1)}(\rho, \varphi, \mu) &= \int_0^\infty a(\eta, \varphi) F(\eta, \mu) \exp(-x/\eta) d\eta, \\ x &= \rho - R, \\ Y_b^{(1)}(\rho, \varphi, \mu) &= k \int_0^\infty \exp(-x/\eta) \delta(\eta - \mu) d\eta, \\ F(\eta, \mu) &= \frac{1}{\sqrt{\pi}} \eta P \frac{1}{\eta - \mu} + \exp(\eta^2) \lambda(\eta) \delta(\eta - \mu), \\ \lambda(z) &= 1 + \frac{1}{\sqrt{\pi}} z \int_{-\infty}^\infty \frac{\exp(-\mu^2)}{\mu - z} d\mu, \quad (8) \\ a(\eta, \varphi) &= \frac{\eta(\eta - Q_1) \exp(-\eta^2) X(-\eta)}{2|\lambda^+(\eta)|^2} k, \\ \lambda^{\pm}(\eta) &= \lambda(\eta) \pm \sqrt{\pi} i \eta \exp(-\eta^2), \\ X(z) &= \frac{1}{z} \exp\left\{\frac{1}{\pi} \int_0^\infty \frac{\Theta(\tau) - \pi}{\tau - z} d\tau\right\}, \\ \Theta(\tau) - \pi &= -\pi/2 - \operatorname{arctg} \frac{\lambda(\tau)}{\sqrt{\pi\tau} \exp(-\tau^2)}. \quad (9) \end{split}$$

Здесь $\lambda(z)$ — дисперсионная функция Черчиньяни; Px^{-1} — распределение главного значения интеграла при интегрировании x^{-1} ; $\delta(x)$ — дельта-функция Дирака; $\Theta(\tau)$ — однозначная регулярная ветвь аргумента функции $\lambda^+(\tau)$, фиксированная в нуле условием $\Theta(0) = 0$.

Таким образом, задача свелась к решению уравнения (6) с граничными условиями (7).

Учет влияния кривизны поверхности на коэффициент теплового скольжения

Подстановка

$$Y_{a\eta}^{(2)}(\rho,\varphi,\mu) = \psi(\eta,\varphi,\mu) \exp(-x/\eta)$$

переводит (6) в неоднородное характеристическое уравнение

$$\left(1-\frac{\mu}{\eta}\right)\psi(\eta,\varphi,\mu) = \frac{1}{\sqrt{\pi}}\int_{-\infty}^{\infty}\psi(\eta,\varphi,\mu')\exp(-\mu'^2)d\mu'$$
$$-\frac{1}{\sqrt{\pi}}\mu\int_{-\infty}^{\infty}\mu'\psi(\eta,\varphi,\mu')\exp(-\mu'^2)d\mu' + Z(\eta,\varphi,\mu),$$
(10)

Журнал технической физики, 2002, том 72, вып. 10

$$Z(\eta, \varphi, \mu) = \mu a(\eta, \varphi) F(\eta, \mu) - \frac{3}{2} a(\eta, \varphi) \frac{\partial F}{\partial \mu} + 3\mu k \delta(\eta - \mu) - \frac{3k}{2} \frac{\partial}{\partial \mu} \delta(\eta - \mu).$$
(11)

Домножая (10) на $\exp(-\mu^2)$ и интегрируя по μ от $-\infty$ до
 $\infty,$ находим

$$\int_{-\infty}^{\infty} \mu \psi(\eta, \varphi, \mu) \exp(-\mu^2) d\mu$$
$$= -\eta \int_{-\infty}^{\infty} Z(\eta, \varphi, \mu) \exp(-\mu^2) d\mu.$$

Учитывая, что значение последнего интеграла равно нулю [5], перепишем (10)

$$(\eta - \mu)\psi(\eta, \varphi, \mu) = \frac{1}{\sqrt{\pi}} \eta m(\eta, \varphi) + \eta Z(\eta, \varphi, \mu), \quad (12)$$

$$m(\eta,\varphi) = \int_{-\infty}^{\infty} \psi(\eta,\varphi,\mu) \exp(-\mu^2) d\mu.$$
(13)

Общее решение уравнения (12) в пространстве обобщенных функций имеет вид [12]

$$\begin{split} \psi(\eta,\varphi,\mu) &= \eta P \, \frac{1}{\eta-\mu} \left[\frac{1}{\sqrt{\pi}} \, m(\eta,\varphi) + Z(\eta,\varphi,\mu) \right] \\ &+ g(\eta,\varphi) \delta(\eta-\mu). \end{split}$$

Явный вид функци
и $g(\eta, \varphi)$ находим, подставляя $\psi(\eta, \varphi, \mu)$ в (13),

$$g(\eta, \varphi) = \left[m(\eta, \varphi) \lambda(\eta) - \eta \int_{-\infty}^{\infty} P \frac{1}{\eta - \mu} Z(\eta, \varphi, \mu) \exp(-\mu^2) d\mu \right] \exp(\eta^2).$$

В [5] показано, что

$$\int_{-\infty}^{\infty} P \frac{1}{\eta - \mu} \mu F(\eta, \mu) \exp(-\mu^2) d\mu = -1,$$
$$\int_{-\infty}^{\infty} P \frac{1}{\eta - \mu} \left(F(\eta, \mu) \right)'_{\mu} \exp(-\mu^2) d\mu = -1,$$
$$\int_{-\infty}^{\infty} P \frac{1}{\eta - \mu} \mu \delta(\eta - \mu) \exp(-\mu^2) d\mu$$
$$= 2 \exp(-\eta^2) \left(\eta^2 - \frac{1}{2} \right),$$

2 Журнал технической физики, 2002, том 72, вып. 10

$$\int_{-\infty}^{\infty} P \frac{1}{\eta - \mu} \left(\delta(\eta - \mu) \right)'_{\mu} \exp(-\mu^2) d\mu$$
$$= 2 \exp(-\eta^2) \left(\eta^2 - \frac{1}{2} \right).$$

Отсюда с учетом (11)

$$\int_{-\infty}^{\infty} P \frac{1}{\eta - \mu} Z(\eta, \varphi, \mu) \exp(-\mu^2) d\mu$$
$$= \frac{1}{2} a(\eta, \varphi) + 3k \exp(-\eta^2) \left(\eta^2 - \frac{1}{2}\right).$$

Принимая во внимание полученные результаты, пишем решение уравнения (6)

$$Y_{a}^{(2)}(\rho, \varphi, \mu) = \int_{0}^{\infty} \psi(\eta, \varphi, \mu) \exp(-x/\eta) d\eta,$$

$$\psi(\eta, \varphi, \mu) = \eta P \frac{1}{\eta - \mu} \left[\frac{1}{\sqrt{\pi}} m(\eta, \varphi) + Z(\eta, \varphi, \mu) \right]$$

$$+ \left[m(\eta, \varphi) \exp(\eta^{2}) \lambda(\eta) - \frac{1}{2} \eta a(\eta, \varphi) \exp(\eta^{2}) - 3k\eta \left(\eta^{2} - \frac{1}{2} \right) \right] \delta(\eta - \mu).$$
(14)

С учетом (7) перейдем от (14) к сингулярному интегральному уравнению с ядром типа Коши

$$-2U_{\varphi}^{(2)}|_{s} = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{\eta m(\eta,\varphi)}{\eta-\mu} d\eta$$
$$+ \int_{0}^{\infty} nZ(\eta,\varphi,\mu) \frac{d\eta}{\eta-\mu} + m(\mu,\varphi) \exp(\mu^{2})\lambda(\mu)$$
$$- \frac{1}{2}\mu a(\mu,\varphi) \exp(\mu^{2}) - 3k\mu \left(\mu^{2} - \frac{1}{2}\right), \quad \mu > 0.$$
(15)

В [5] показано, что

$$\begin{split} \int_{0}^{\infty} \eta P \, \frac{1}{\eta - \mu} \, a(\eta, \varphi) F(\eta, \mu) d\eta &= \left(\mu Y_a^{(1)}(R, \varphi, \mu) \right)_{\mu}^{\prime}, \\ \int_{0}^{\infty} \eta P \, \frac{1}{\eta - \mu} \left(a(\eta, \varphi) F(\eta, \mu) \right)_{\mu}^{\prime} d\eta &= \frac{1}{2} \left(\mu Y_a^{(1)}(R, \varphi, \mu) \right)_{\mu\mu}^{\prime\prime}, \\ \int_{0}^{\infty} \eta P \, \frac{1}{\eta - \mu} \, \delta(\eta - \mu) d\eta &= 1, \\ \int_{0}^{\infty} \eta P \, \frac{1}{\eta - \mu} \left(\delta(\eta - \mu) \right)_{\mu}^{\prime} d\mu &= 0. \end{split}$$

Учитывая, что

$$Y_a^{(1)}(R, \varphi, \eta) = (\eta^2 + Q_2)k,$$

находим

$$\int_{0}^{\infty} \eta Z(\eta, \varphi, \mu) \frac{d\eta}{\eta - \mu} = \left(3\mu^3 + Q_2\mu - \frac{3}{2}\mu\right)k.$$

Здесь символ Q_n используется для обозначения лоялковских интегралов [13]

$$Q_n = \frac{2}{\sqrt{\pi}} \int_0^\infty \frac{t^{n+1} \exp(-t^2) dt}{X(-t)}$$

С учетом полученных результатов (15) перепишем в виде

$$f(\mu, \varphi) = m(\mu, \varphi) \exp(\mu^2)\lambda(\mu)$$

+
$$\frac{1}{\sqrt{\pi}} \int_0^\infty \frac{\eta m(\eta, \varphi)}{\eta - \mu} d\eta, \quad \mu > 0, \qquad (16)$$

$$f(\mu, \phi) = -2U_{\phi}^{2}|_{s} - Q_{2}\mu + \frac{1}{2}a(\eta, \phi)\exp(\eta^{2}).$$
(17)

Введем вспомогательную функцию

$$M(z, \varphi) = \frac{1}{2\pi i} \int_{0}^{\infty} \frac{\eta m(\eta, \varphi)}{\eta - z} \, d\eta$$

и сведем (16) к полупространственной краевой задаче Римана [14]

$$M^{+}(\mu, \varphi)\lambda^{+}(\mu) - M^{-}(\mu, \varphi)\lambda^{-}(\mu)$$

= $\mu f(\mu, \varphi) \exp(-\mu^{2}), \quad \mu > 0.$ (18)

Коэффициент краевой задачи (18) совпадает с коэффициентом краевой задачи о скольжении газа вдоль твердой плоской поверхности [5]. С учетом этого сведем (18) к задаче по скачку [14]

$$\begin{split} &M^+(\mu, \, \varphi) X^+(\mu) - M^-(\mu, \, \varphi) X^-(\mu) \\ &= \mu f(\mu, \, \varphi) \exp(-\mu^2) \, \frac{X^-(\mu)}{\lambda^-(\mu)}, \quad \mu > 0, \end{split}$$

которая имеет исчезающее на бесконечности решение при выполнении условия [15]

$$\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \frac{f(t,\varphi)}{X(-t)} t \exp(-t^2) dt = 0.$$
(19)

Подставляя (17) в (19) с учетом (9), находим

$$U_{\varphi}^{(2)}|_{S} = \frac{k}{2} \left[Q_{1}Q_{2} - \frac{1}{2\sqrt{\pi}} \int_{0}^{\infty} \frac{t^{2}(t-Q_{1})}{|\lambda^{+}(t)|^{2}} \exp(-t^{2}) dt \right].$$

Так как

$$\frac{1}{\sqrt{\pi}}\int_{0}^{\infty} \frac{t^2(t-Q_1)}{|\lambda^+(t)|^2} \exp(-t^2) dt = -3Q_3 - Q_1Q_2, \quad (20)$$

находим

$$U_{\varphi}^{(2)}\big|_{S}=rac{3k}{4}[Q_{3}+Q_{1}Q_{2}].$$

Подставляя в полученное выражение значения входящих в него Лоялковских интегралов [13] $Q_1 =$ = -1.01619, $Q_2 = -1.26663$, $Q_3 = -1.8207$, получаем $U_{\varphi}^{(2)}|_{s} = -0.40017k$.

Отсюда с учетом (1) находим скорость теплового скольжения разреженного газа вдоль твердой цилиндрической поверхности

$$U_{\varphi}|_{S} = U_{\varphi}^{(1)}|_{S} + R^{-1}U_{\varphi}^{(2)}|_{S}$$

= (0.38332 - 0.40017R^{-1})k. (21)

Так как, согласно принятому способу обезразмеривания физических величин, $R^{-1} = (3/\sqrt{\pi})$ Kn, то, переходя в (21) к размерным величинам, получаем

$$U_{\varphi}\big|_{S} = 1.14995\nu(1 - 1.7684 \,\mathrm{Kn}) \frac{1}{T_{S}} \left. \frac{\partial T}{R \partial \varphi} \right|_{S}$$

Таким образом, в случае обтекания потоком разреженного газа твердой цилиндрической поверхности $\beta_{R\perp} = 1.7684.$

Учет влияния кривизны поверхности на коэффициент изотермического скольжения

Предположим, что касательная к поверхности компонента массовой скорости не постоянна, а изменяется в направлении к нормали к поверхности, т.е. отлична от нуля величина

$$k_1 = \frac{\partial U_{\varphi}}{\partial \rho} \bigg|_{S}.$$

В этом случае решение (2) и (3) ищем в виде [6]

$$Y^{(j)}(\rho, \varphi, C_i) = C_{\varphi} Y_a^{(j)}(\rho, \varphi, C_{\rho}); \quad j = 1, 2.$$
 (22)

Подставляя разложения (22) в (3), домножая полученные соотношения на $C_{\varphi} \exp(-C_{\varphi}^2 - C_z^2)$ и интегрируя по C_{φ} и C_z от $-\infty$ до $+\infty$, получим уравнение для

Журнал технической физики, 2002, том 72, вып. 10

функции
$$Y_a^{(2)}(\rho, \varphi, \mu)$$

$$\mu \frac{\partial Y_a^{(2)}}{\partial \rho} + Y_a^{(2)}(\rho, \varphi, \mu)$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} Y_a^{(2)}(\rho, \varphi, \mu') \exp(-\mu'^2) d\mu'$$

$$- \frac{\mu}{\sqrt{\pi}} \int_{-\infty}^{\infty} \mu' Y_a^{(2)}(\rho, \varphi, \mu') \exp(-\mu'^2) d\mu'$$

$$+ \mu Y_a^{(1)}(\rho, \varphi, \mu) - \frac{3}{2} \frac{\partial Y_a^{(1)}}{\partial \mu}$$

`

с граничными условиями (7). Здесь $Y_a^{(1)}(\rho, \phi, \mu)$ определяется соотношением (8)

$$a(\eta, \varphi) = \frac{2 \exp(-\eta^2) X(-\eta)}{3|\lambda^+(\eta)|^2} k_1,$$
$$Y_a^{(1)}(R, \varphi, \eta) = \frac{4}{3} (\eta + Q_1) k_1.$$

В рассматриваемом случае

$$\begin{split} Z(\eta, \varphi, \mu) &= \mu a(\eta, \varphi) F(\eta, \mu) - \frac{3}{2} a(\eta, \varphi) \frac{\partial F}{\partial \mu}, \\ \int_{-\infty}^{\infty} P \frac{1}{\eta - \mu} Z(\eta, \varphi, \mu) \exp(-\mu^2) d\mu &= \frac{1}{2} a(\eta, \varphi), \\ \int_{-\infty}^{\infty} \eta Z(\eta, \varphi, \mu) \frac{d\eta}{\eta - \mu} &= \frac{2}{3} (4\mu^2 + 2Q_1\mu - 3)k_1, \\ f(\mu, \varphi) &= -2U_{\varphi}^{(2)}|_S - \frac{2}{3} (4\mu^2 + 2Q_1\mu - 3)k_1 \\ &\quad + \frac{1}{2} a(\mu, \varphi) \exp(\mu^2), \\ U_{\varphi}^{(2)}|_S &= \frac{k_1}{3} \Big[4Q_2 + 2Q_1 - 3Q_0 \\ &\quad - \frac{1}{\sqrt{\pi}} \int_0^{\infty} \frac{t^2}{|\lambda^+(t)|^2} \exp(-t^2) dt \Big]. \end{split}$$

Учитывая, что

$$\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{t^2}{|\lambda^+(t)|^2} \exp(-t^2) dt = \frac{3}{2},$$

$$2Q_2 + Q_1^2 = -\frac{3}{2}, \tag{23}$$

находим

$$U_{\varphi}^{(2)}\big|_{S} = -\frac{1}{2}k_{1}.$$

Отсюда с учетом (1) находим скорость изотермического скольжения разреженного газа вдоль твердой цилиндрической поверхности

$$U_{\varphi}|_{S} = U_{\varphi}^{(1)}|_{S} + R^{-1}U_{\varphi}^{(2)}|_{S}$$
$$= (0.67746 - 0.50000R^{-1})k_{1}.$$
(24)

Переходя в (24) к размерным величинам, получаем

$$U_{\varphi}\big|_{S} = 1.14665\lambda(1 - 1.24922 \,\mathrm{Kn}) \left. \frac{\partial U_{\varphi}}{\partial \rho} \right|_{S}.$$

Таким образом, $C_{m\perp}^{(1)} = 1.24922.$

Случай продольного обтекания цилиндрической поверхности (тепловое скольжение)

Предположим, что градиент температуры вдали от поверхности цилиндра направлен вдоль его оси. Обозначим

$$k_2 = \frac{1}{T_S} \left. \frac{\partial T}{\partial z} \right|_S.$$

Решение (2) и (3) ищем в виде

$$Y^{(1)}(\rho, C_i) = C_z Y^{(1)}_a(\rho, C_\rho) + C_z (C_{\varphi}^2 + C_z^2 - 2) Y^{(1)}_b(\rho, C_\rho), \qquad (25)$$

$$Y^{(2)}(\rho, C_i) = C_z Y_a^{(2)}(\rho, C_\rho).$$
(26)

Подставляя разложения (25) и (26) в (3), домножая полученное соотношение на $C_z \exp(-C_{\varphi}^2 - C_z^2)$ и интегрируя по C_{φ} и C_z от $-\infty$ до $+\infty$, получим уравнение для функции $Y_a^{(2)}(\rho,\mu)$

$$\begin{split} \mu \, \frac{\partial Y_a^{(2)}}{\partial \rho} + Y_a^{(2)}(\rho,\mu) &= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} Y_a^{(2)}(\rho,\mu') \exp(-\mu'^2) d\mu' \\ &- \frac{\mu}{\sqrt{\pi}} \int_{-\infty}^{\infty} \mu' Y_a^{(2)}(\rho,\mu') \exp(-\mu'^2) d\mu' \\ &- \frac{1}{2} \, \frac{\partial Y_a^{(1)}}{\partial \mu} + \mu Y_b^{(1)}(\rho,\mu) - \frac{1}{2} \, \frac{\partial Y_b^{(1)}}{\partial \mu} \end{split}$$

с граничными условиями

$$Y_a^{(2)}(R,\mu) = -2U_z^{(2)}|_S, \quad \mu > 0, \quad Y_a^{(2)}(\infty,\mu) = 0.$$
 (27)

Здесь

$$Y_a^{(1)}(\rho,\mu) = \int_0^\infty a(\eta) F(\eta,\mu) \exp(-x/\eta) d\eta, \quad x = \rho - R,$$

2* Журнал технической физики, 2002, том 72, вып. 10

$$Y_{b}^{(1)}(\rho,\mu) = k_{2} \int_{0}^{\infty} \exp(-x/\eta) \delta(\eta-\mu) d\eta,$$

$$a(\eta) = \frac{\eta(\eta-Q_{1}) \exp(-\eta^{2}) X(-\eta)}{2|\lambda^{+}(\eta)|^{2}} k_{2},$$

$$Y_{a}^{(1)}(R,\mu) = (\mu^{2}+Q_{2})k_{2}.$$
 (28)

В рассматриваемом случае

$$\begin{split} Z(\eta,\mu) &= -\frac{1}{2} a(\eta) \frac{\partial F}{\partial \mu} + \mu k_2 \delta(\eta-\mu) - \frac{k_2}{2} \frac{\partial}{\partial \mu} \delta(\eta-\mu), \\ \int_{-\infty}^{\infty} P \frac{1}{\eta-\mu} Z(\eta,\mu) \exp(-\mu^2) d\mu \\ &= \frac{1}{2} a(\eta) + k_2 \exp(-\eta^2) \left(\eta^2 - \frac{1}{2}\right), \\ \int_{0}^{\infty} n Z(\eta,\mu) \frac{d\eta}{\eta-\mu} &= -\frac{1}{3} \mu k_2, \\ f(\mu) &= -2U_z^{(2)} \big|_S + \frac{1}{2} a(\mu) \exp(\mu^2) + \mu^3 k_2, \\ U_z^{(2)} \big|_S &= -\frac{k_2}{2} \Big[Q_3 + \frac{1}{2\sqrt{\pi}} \int_0^{\infty} \frac{t^2(t-Q_1)}{|\lambda^+(t)|^2} \exp(-t^2) dt \Big]. \end{split}$$

Отсюда с учетом (20) и (1) находим

$$U_{z}^{(2)}|_{s} = \frac{1}{4}(Q_{3} + Q_{1}Q_{2})k_{2},$$

$$U_{z}|_{s} = U_{z}^{(1)}|_{s} + R^{-1}U_{z}^{(2)}|_{s}$$

$$= (0.38332 - 0.13339R^{-1})k_{2}$$
(29)

или, переходя к размерным величинам,

$$U_z\Big|_S = 1.14995\nu(1-0.589495\,\mathrm{Kn})\frac{1}{T_S}\left.\frac{\partial T}{\partial z}\right|_S.$$

Таким образом, $\beta_{R\parallel} = 0.589495.$

Случай продольного обтекания цилиндрической поверхности (изотермическое скольжение)

Предположим, что отлична от нуля величина

$$k_3 = \frac{\partial U_z}{\partial \rho} \bigg|_S.$$

Решение (2) и (3) ищем в виде

$$Y^{(j)}(\rho, C_i) = C_z Y_a^{(j)}(\rho, C_\rho); \quad j = 1, 2.$$
(30)

Подставляя разложения (30) в (3), домножая полученное соотношение на $C_z \exp(-C_{\varphi}^2 - C_z^2)$ и интегрируя по

 C_{φ} и C_z от $-\infty$ до $+\infty,$ получим уравнение для функции $Y^{(2)}_a(\rho,\mu)$

$$\begin{split} \mu \, \frac{\partial Y_a^{(2)}}{\partial \rho} + Y_a^{(2)}(\rho,\mu) &= \frac{1}{\sqrt{\pi}} \int\limits_{-\infty}^{\infty} Y_a^{(2)}(\rho,\mu') \exp(-\mu'^2) d\mu' \\ &- \frac{\mu}{\sqrt{\pi}} \int\limits_{-\infty}^{\infty} \mu' Y_a^{(2)}(\rho,\mu') \exp(-\mu'^2) d\mu' - \frac{1}{2} \, \frac{\partial Y_a^{(1)}}{\partial \mu} \end{split}$$

с граничными условиями (27). Здесь $Y_a^{(1)}(\rho, \mu)$ определяется соотношением (28)

$$a(\eta) = \frac{2\exp(-\eta^2)X(-\eta)}{3|\lambda^+(\eta)|^2} k_3,$$

$$Y_a^{(1)}(R,\mu) = rac{4}{3} (\mu + Q_1) k_3.$$

В этом случае

$$Z(\eta,\mu) = -rac{1}{2} a(\eta) rac{\partial F}{\partial \mu},$$

$$\int_{-\infty}^{\infty} P \frac{1}{\eta - \mu} Z(\eta, \mu) \exp(-\mu^2) d\mu = \frac{1}{2} a(\eta),$$
$$\int_{0}^{\infty} \eta Z(\eta, \mu) \frac{d\eta}{\eta - \mu} = \frac{2}{3} k_3,$$
$$f(\mu) = -2U_z^{(2)} \Big|_S + \frac{2}{3} k_3 + \frac{1}{2} a(\mu) \exp(\mu^2),$$
$$U_z^{(2)} \Big|_S = \frac{k_3}{3} \Big[1 - \frac{1}{\sqrt{\pi}} \int_0^{\infty} \frac{t^2}{|\lambda^+(t)|^2} \exp(-t^2) dt \Big].$$

С учетом (24) находим

$$U_z^{(2)}\big|_S = -\frac{1}{6}k_3.$$

Таким образом, в случае продольного обтекания неоднородным по массовой скорости разреженным газом цилиндрической поверхности

$$U_{z}|_{s} = U_{z}^{(1)}|_{s} + R^{-1}U_{z}^{(2)}|_{s}$$

= (0.67746 - 0.166667R^{-1})k_{3} (31)

или в размерном виде

$$U_z|_{S} = 1.14665\lambda(1 - 0.415407 \,\mathrm{Kn}) \left. \frac{\partial U_z}{\partial \rho} \right|_{S}.$$

Отсюда $C_{m\parallel}^{(1)} = 0.415407.$

Журнал технической физики, 2002, том 72, вып. 10

Заключение

Из решения в слое Кнудсена ЭС модели кинетического уравнения Больцмана найдены скорости скольжения неоднородного по температуре и массовой скорости разреженного газа вдоль твердой цилиндрической поверхности. Полученные в линейном приближении по числу Кнудсена зависимости коэффициентов теплового и изотермического скольжений от радиуса кривизны имеют тот же вид, что и в [1]. В случае продольного обтекания цилиндрической поверхности полученные результаты для скорости теплового скольжения (29) совпадают с соответствующим результатом [1].

Если учесть, что при использовании БГК модели результаты по изотермическому скольжению отличаются в 3/2 раза от аналогичных результатов, полученных при использовании ЭС модели, то (31) запишется в виде

$$U_{z}|_{s} = U_{z}^{(1)}|_{s} + R^{-1}U_{z}^{(2)}|_{s} = (1.01619 - 0.25000R^{-1})k_{3}.$$

Таким образом, в случае продольного обтекания разреженным газом твердой цилиндрической поверхности совпадает с соответствующим результатом [1] и выражение для скорости изотермического скольжения.

Список литературы

- Sone Y. // Rar. Gas Dynam. New York: Academic Press, 1969. Vol. 1. P. 243–253.
- [2] Маясов Е.Г., Юшканов А.А., Яламов Ю.И. // Письма в ЖТФ. 1988. Т. 14. Вып. 6. С. 498–502.
- [3] Поддоскин А.Б., Юшканов А.А., Яламов Ю.И. // ЖТФ. 1982. Т. 52. Вып. 11. С. 2253–2261.
- [4] Яламов Ю.И., Поддоскин А.А., Юшканов А.А. // ДАН СССР. 1980. Т. 254. № 2. С. 343–346.
- [5] Гайдуков М.Н., Попов В.Н. // МЖГ. 1998. № 2. С. 165–173.
- [6] *Черчиньяни К.* Математические методы в кинетической теории газов. М.: Мир, 1973. 245 с.
- [7] Ролдугин В.И. // Коллоид. журн. 1987. Т. 49. № 1. С. 45–53.
- [8] Баканов С.П., Высоцкий В.В., Некрасов А.Н. // Коллоид. журн. 1986. Т. 48. № 5. С. 851–855.
- [9] Holway L.H. // Phys. Fluids. 1966. Vol. 3. N 3. P. 1658-1673.
- [10] Cercignani C., Tironi G. // Nuovo Chimento. 1966. Vol. 43B. N 1. P. 64–68.
- [11] Чепмен С., Каулинг Т. Математическая теория неоднородных газов. М.: ИЛ, 1960. 512 с.
- [12] Владимиров В.С. Уравнения математической физики. М.: Наука, 1988. 512 с.
- [13] Loyalka S.K. // Transport Theory and Statistical Physics. 1975. Vol. 4. P. 55–65.
- [14] Гахов Ф.Д. Краевые задачи. М.: Наука, 1977. 640 с.
- [15] Cercignani C. // Annals of Physics. 1962. Vol. 20. P. 219–233.