01;02 Теоретические исследования полной спиновой поляризации электронов упруго рассеянных атомами аргона в области энергий 0.5–500 eV

© В.И. Келемен

Институт электронной физики НАН Украины, 88000 Ужгород, Украина e-mail: kelemen@iep.uzhgorod.ua

(Поступило в Редакцию 25 мая 20001 г. В окончательной редакции 29 декабря 2001 г.)

В рамках модели феноменологического вещественного оптического потенциала с учетом спин-орбитального взаимодействия исследовано упругое рассеяние электронов атомами аргона в области энергий 0.5–500 eV. Рассчитаны и сравниваются с экспериментом энергетические зависимости угловых положений минимумов в дифференциальных сечениях. Определены энергии и углы четырех критических точек, где сечения достигают своих наименьших значений. Получено, что из трех высокоугловых (углы > 90°) критических минимумов самый глубокий расположен при (38.25 eV, 140.67°). Для этих минимумов определены энергетические и угловые окрестности, в которых параметр спиновой поляризации, так называемая функция Шермана, достигает своих экстремальных значений: (+1) и (-1).

Введение

Упругое рассеяние электронов атомами аргона в течение последних нескольких десятков лет было достаточно тщательно исследовано как экспериментальными, так и теоретическими методами (см., например, обзор работ в [1,2]). Гораздо меньше работ посвящено изучению поляризации электронов, возникшей в результате рассеяния изначально неполяризованного пучка электронов на атомах аргона в основном состоянии.

В работах [3–5] была измерена угловая зависимость параметра спиновой поляризации $S(\Theta)$ так называемой функции Шермана для энергий налетающих электронов от 10 до 150 eV в области углов от 30 до 150°. А в теоретических работах [6–8] была рассчитана угловая зависимость параметра $S(\Theta)$ в области энергий 3–300 eV. Наибольшее значение полученной в [3–8] спиновой поляризации не превысило 20%.

Вместе с тем известно (см., например, [9]), что в малых окрестностях наиболее глубоких минимумов дифференциальных сечений (ДС) так называемых "критических минимумов" существуют энергии и углы, при которых пучок рассеянных электронов может быть полностью или почти полностью поляризованным. Знание таких энергий и углов, с одной стороны, могло бы помочь измерить на эксперименте экстремальные значения функции Шермана (+1 и -1), а с другой стороны, в таких точках можно было бы эффективнее проверять как экспериментальные методики, так и теоретические модели.

Целью данной работы является определение в широкой области энергий 0.5–500 eV критических минимумов в ДС упругого рассеяния электронов атомами аргона и расчет в окрестностях этих минимумов энергий и углов, при которых поляризация рассеянных электронов могла бы достичь 100%.

Теоретический метод

Для расчета сечений рассеяния и параметров спиновой поляризации ниже используется метод фазовых функций [10,11], позволяющий рассчитать абсолютные значения фазовых сдвигов $\delta_l^{\pm} \equiv \delta_l^{l\pm 1/2}$ парциальных амплитуд рассеяния как пределы фазовых функций $\delta_l^{\pm}(r)$ при $r \to \infty$, полученных в результате интегрирования фазового уравнения

$$\frac{d\delta_l^{\pm}(r)}{dr} = -\frac{2V^{\pm}(r)}{k} \times \left[\cos\delta_l^{\pm}(r)j_l(kr) - \sin\delta_l^{\pm}(r)n_l(kr)\right]^2, \quad (1)$$

где j_l и n_l — функции Риккати-Бесселя (см., например, [10]), l— орбитальный момент, $k = (2E)^{1/2}$ — импульс, E — энергия налетающего электрона (здесь и далее используется атомная система единиц, $e = m_e = \hbar = 1$) и, наконец, $V^{\pm}(r)$ — потенциал взаимодействия налетающего электрона с атомом-мишенью.

Имея фазовые сдвиги δ_l^{\pm} , можно найти так называемые "прямую" амплитуду рассеяния

$$f(\Theta) = \frac{1}{2ik} \sum_{l=0}^{\infty} \left\{ (l+1) \left[\exp(2i\delta_l^+) - 1 \right] + l \left[\exp(2i\delta_l^-) - 1 \right] \right\} P_l(\cos\Theta)$$
(2)

и амплитуду рассеяния "с переворотом спина"

$$g(\Theta) = \frac{1}{2ik} \sum_{l=1}^{\infty} \left[\exp(2i\delta_l^-) - \exp(2i\delta_l^+) \right] P_l^1(\cos\Theta), \quad (3)$$

где Θ — угол рассеяния, $P_l(\cos \Theta)$ — многочлены Лежандра, $P_l^1(\cos \Theta)$ — присоединенные функции Лежандра первого рода (см., например, [12]). Дифференциальное сечение упругого рассеяния и параметры спиновой поляризации рассеянных электронов выражаются через амплитуды *f* и *g* следующим образом [9]:

$$\frac{d\sigma(\Theta)}{d\Omega} = |f(\Theta)|^2 + |g(\Theta)|^2,$$

$$S(\Theta) = i \frac{fg^* - f^*g}{|f|^2 + |g|^2}, \quad U(\Theta) = \frac{fg^* + f^*g}{|f|^2 + |g|^2},$$

$$T(\Theta) = \frac{|f|^2 - |g|^2}{|f|^2 + |g|^2}.$$
(4)

Поскольку параметры поляризации связаны условием $S^2 + U^2 + T^2 = 1$, а в данной работе нас интересуют энергии и углы, при которых $S^2 = 1$, и, следовательно, $U^2 = T^2 = 0$, ниже мы ограничимся расчетами функции Шермана $S(\Theta)$ и ДС.

В качестве потенциала взаимодействия налетающего электрона с атомом-мишенью здесь используется феноменологический вещественный оптический потенциал

$$V^{\pm}(r, E) = V_s(r) + V_{so}^{\pm}(r) + V_e(r, E) + V_p(r).$$
 (5)

Электростатический потенциал $V_s(r)$ и плотность электронов атома аргона, необходимая для расчета обменного потенциала $V_e(r, E)$, найдены по аналитическим выражениям из [13], где значения параметров были получены в рамках метода Хартри–Фока с использованием метода наименьших квадратов.

Спин-орбитальное взаимодействие учтено здесь с помощью потенциала [14]

$$V_{so}^{\pm}(r) = \xi^{\pm}(j,l) \frac{1}{r} \frac{dV_s}{dr} \frac{\alpha^2}{2 + \alpha^2 [E - V_s(r)]}, \quad (6)$$

где $\xi^+(j,l) = l/2$ для j = l + 1/2 и $\xi^-(j,l) = -(l+1)/2$ для j = l - 1/2, j — полный угловой момент электрона, α — постоянная тонкой структуры.

В качестве обменного потенциала $V_e(r, E)$ и поляризационного потенциала $V_p(r)$, так же как и в наших предыдущих работах [15,16], были взяты локальный обменный потенциал, полученный в [17,18] в рамках приближения свободного электронного газа, и дипольный поляризационный потенциал с подгоночным параметром (см. (2) в [15], либо (10) в [16]). Потенциал ионизации атома аргона, используемый при вычислении V_e , взят из [19]: I = 15.76 eV, а дипольная поляризуемость атома аргона $\alpha_d = 11.08 a_0^3$ из [20]. Здесь и далее a_0 — первый боровский радиус атома водорода.

Поскольку потенциал (5) при $r \to 0$ имеет сингулярное поведение $r^2 V^{\pm}(r) \to r^2 V_{so}^{\pm}(r) \to \text{const} = \xi^{\pm}(j, l)$, то начальное условие для фазового уравнения в начальной точке интегрирования $r = \varepsilon$ имеет вид [11]

$$\delta_l^{\pm}(\varepsilon) = -q_l^{\pm} \frac{(k\varepsilon)^{2l+1}}{(2l+1)!!(2l-1)!!},$$

$${}^{\pm}_l = 1 + \frac{(2l+1)^2}{2\xi^{\pm}} - \frac{(2l+1)^2}{2\xi^{\pm}} \sqrt{1 + \frac{4\xi^{\pm}}{(2l+1)^2}}.$$
 (7)

q

.

Величина q_l^{\pm} лежит в пределах $-1 < q_l^{\pm} < 1$, а в случае притягивающего потенциала $V_{so}^-(r)$, т.е. когда $\xi^- = -(l+1)/2$, на величину ξ^- имеется ограничение, следующее из условия отсутствия падения частицы на центр, $\xi^- > -(l+1/2)^2$. Легко видно, что для любого $l \ge 1$ это условие выполняется.

Для численного решения фазового уравнения здесь, так же как и в [15,16], использован метод четвертого порядка с предсказанием по Адамсу-Башфорту с коррекцией по Адамсу-Мултону и модификацией [12] и с автоматическим контролем величины шага. В зависимости от энергии Е количество парциальных волн, рассчитанных с помощью фазового уравнения, было различным и составило, например, для 1 eV шесть волн, а для 500 eV — 26 волн. Для каждой энергии фазовые сдвиги δ_l^+ и δ_l^- рассчитывались до таких l = L, начиная с которых $|\delta_l^+ - \delta_l^-| < 0.01$ %. Для l > L мы полагали, что $\delta_l^+ = \delta_l^-$. И наконец, для тех парциальных волн, для которых значение фазового сдвига было, как правило, уже меньше 0.01 rad, для расчета δ_l была использована известная формула для асимптотических фаз, которая для случая, когда потенциал (5) на больших расстояниях r убывает как $-\alpha_d/2r^4$, имеет вид (см., например, [21])

$$\delta_l = \arctan \frac{\pi \alpha_d k^2}{(2l+3)(2l+1)(2l-1)}.$$
 (8)

Для определения параметра в поляризационном потенциале $V_p(r)$ был использован хорошо известный факт существования в низкоэнергетическом рассеянии электронов атомами аргона минимума Рамзауэра-Таундсена вблизи 0.3 eV (см., например, [22,23] и ссылки там). Для нескольких значений параметра был сделан расчет энергетической зависимости s-волнового фазового сдвига δ_0 при низких энергиях. Было получено, что для случая, когда параметр равен 1.99 a₀, сначала с увеличением энергии значение фазового сдвига δ_0 увеличивалось от 9.436 rad при E = 0.001 eV до 9.471 rad при $E = 0.07 \,\mathrm{eV}$, а затем уменьшалось, приобретая при $E = 0.3 \,\mathrm{eV}$ значение 9.426 rad $\approx 3\pi$. Следовательно, для потенциала (5) с таким параметром мы получили в s-волновом парциальном сечении при 0.3 eV глубокий минимум, обусловивший наличие в полном сечении минимума Рамзауэра-Таундсена.

Обсуждение результатов

Для дифференциальных сечений упругого рассеяния электронов атомами аргона в области энергий E = 3-140 eV характерно наличие двух минимумов: низкоугловых при углах < 90° и высокоугловых при углах > 90° (см., например, рис. 1). Поскольку в нашем случае значения ДС практически для всех углов, за исключением критических точек, определяются значениями прямой амплитуды $f(\Theta)$, угловые положения минимумов в сечении обусловлены интерференцией

Рис. 1. Угловая зависимость дифференциального сечения упругого рассеяния электронов атомами аргона при 30 eV. Эксперимент: 0 — [2], + — [24], △ — [25]; теория: сплошная кривая — [26], штриховая — данный расчет.

парциально-волновых слагаемых в этой амплитуде. Причем, так как при этих энергиях основной вклад в амплитуду f вносят первые три волны (например, для 30 eV и 40° этот вклад составил более 90%, причем вклад d-волны более 36%), наличие у $|f|^2$ двух минимумов, низкоуглового и высокоуглового, определяется нулевыми значениями полинома Лежандра $P_2(\cos \Theta)$ при 54.7° и 125.3°. Сравнение на рис. 1 нашего ДС с расчетом из [26] и экспериментальными данными из [2], [24] и [25] показало, что в отличие от эксперимента два различных теоретических расчета практически при всех углах, за исключением низкоуглового минимума, совпадают.

Заметим, что в [26] рассчитанные в области энергий 0-54.4 eV в нерелятивистском подходе парциальные фазовые сдвиги для l = 0-6 приведены в таблице для 29 значений энергий налетающего электрона, а значения ДС приведены для 9 энергий и углов от 0 до 180° с шагом 5°. Поэтому, для того чтобы уточнить угловые положения минимумов и значения ДС в этих минимумах, мы рассчитали сечение с меньшим шагом по углу, причем для $l \ge 7$ были использованы фазовые сдвиги, рассчитанные так же, как и в [26], по асимптотической формуле (8). Чтобы такие расчеты сделать для промежуточных энергий, мы аппроксимировали фазовые сдвиги из [26]. Таким образом, приведенные ниже энергетические зависимости угловых положений и минимальных значений ДС из [26] получены нами с использованием как табличных фазовых сдвигов, так и фазовых сдвигов, найденных с помощью аппроксимации.

На рис. 2, а и b продемонстрированы энергетические зависимости угловых положений низкоугловых и высокоугловых минимумов ДС. Экспериментальные значения углов минимумов для энергий 3–100 eV взяты из таблиц и рисунков в [2] и из табл. 1 в [27], а для энергий меньше 3 eV и больше 100 eV — из [28], где на рисунках представлена компиляция данных из шестнадцати экспериментов.

Как видно на рис. 2, a и b, наш расчет вполне удовлетворительно согласуется с большинством экспериментальных данных. Так, кривая низкоугловых минимумов (рис. 2, a) достигает минимального значения угла 19.4° при 2.1 eV, максимального значения угла 73.2° при 18.1 eV и затем плавно спадает до 59.4° при 133 eV. Расчет с фазовыми сдвигами из [26] дал минимальное значение угла 17° при 2.2 eV, а максимальное значение

Рис. 2. Энергетическая зависимость угловых положений низкоугловых (*a*) и высокоугловых (*b*) минимумов дифференциальных сечений упругого рассеяния электронов атомами аргона. Эксперимент: о — [2], △ — [24], □ — [27], × — [28], ⊽ — [31]; теория: сплошная кривая —[26], штриховая — данный расчет.

15

Рис. 3. Энергетическая зависимость низкоугловых (a) и высокоугловых (b) минимальных значений дифференциальных сечений упругого рассеяния электронов атомами аргона. Данный расчет — штриховая кривая с критическими точками: $H1 = (8.44 \text{ eV}, 119.89^\circ)$, $H2 = (38.25 \text{ eV}, 140.67^\circ)$ и $H3 = (126.33 \text{ eV}, 118.12^\circ)$. Расчет с использованием табличных (+) и аппроксимированных (точки) фазовых сдвигов из [26].

угла 72.4° при 16.5 eV. Для остальных энергий два расчета практически совпадают. Для энергий больше 133 eV низкоугловые минимумы становятся пологими и значения ДС при 90° уже не превышают значений ДС при меньших углах.

На рис. 2, *b* наш расчет повторяет тенденцию экспериментальных данных: кривая высокоугловых минимумов ДС с ростом энергии сначала плавно спадает до 119.7° при 9.6 eV, затем достигает максимального значения угла 141.7° при 32.1 eV и снова плавно спадает до значения угла 96.6° при 500 eV. Начиная с 3.5 eV, наш расчет вполне удовлетворительно согласуется и с теоретическими результатами из [26].

Для того чтобы среди этих минимумов найти критические, удобно изобразить энергетическую зависимость минимальных значений ДС. На рис. 3, *a* и *b* представлены рассчитанные в данной работе такие зависимости. На рис. 3, *а* из всех низкоугловых минимумов самый глубокий расположен при (30.25 eV, 71.05°), где $|f|^2 = 6.5 \cdot 10^{-2} (a_0^2)$ и $|g|^2 = 7.4 \cdot 10^{-5} (a_0^2)$.

На рис. 3, *b* из всех высокоугловых минимумов три наименыших значения ДС в критических точках $H1 = (8.44 \text{ eV}, 119.89^\circ)$, $H2 = (38.25 \text{ eV}, 140.67^\circ)$ и $H3 = (126.33 \text{ eV}, 118.12^\circ)$ мы определяем, как высокоугловые критические минимумы. В H1: $|f|^2 =$ $= 5.9 \cdot 10^{-7}(a_0^2)$ и $|g|^2 = 1.7 \cdot 10^{-4}(a_0^2)$, в H2: $|f|^2 =$ $= 1.8 \cdot 10^{-8}(a_0^2)$ и $|g|^2 = 1.05 \cdot 10^{-5}(a_0^2)$ и, наконец, в H3: $|f|^2 = 9.7 \cdot 10^{-9}(a_0^2)$ и $|g|^2 = 1.45 \cdot 10^{-5}(a_0^2)$. Как видно, самый глубокий минимум расположен в H2.

Для сравнения полученных значений критических точек мы смогли воспользоваться результатами лишь двух экспериментальных работ (табл. 1), посвященных измерениям положений критических минимумов в ДС упругого рассеяния электронов атомами аргона в области средних энергий. В [29] для энергий налетающих электронов выше 30 eV найдены значения трех критических точек. В [2] для определения точного положения критических точек особенно тщательбыла исследована область энергий столкновений но 30 до 60 eV и область углов рассеяния от 60 OT до 150°. В результате они определили две критические точки. Сравнивая данные из [2] и [29], видим, что положение низкоуглового критического минимума отличается как по углу (на 3°), так и по энергии (на 15 eV), а положение высокоуглового критического минимума совпадает по углу, но отличается по энергии на 5 eV.

В [30] в релятивистском приближении с точным учетом обмена между налетающим электроном и электронами атома-мишени и с использованием ab initio поляризационного потенциала, найденного с помощью релятивистского метода поляризованных орбит, были рассчитаны угловые зависимости ДС для энергий и углов лишь из окрестности двух критических точек, найденных в [2]. Полученные в [30] положения критических минимумов хорошо согласуются с экспериментом [2], тем не менее для высокоуглового минимума отличие есть и по энергии, и по углу — 2 eV и 2°.

Как видно из табл. 1, теоретические расчеты подтверждают полученные в [2] угловое положение низкоуглового критического минимума и энергетическое положение высокоуглового критического минимума. Что касается различий в энергетическом положении низкоуглового минимума, то, как видно на рис. 2, *a*, в нашем расчете угловые положения минимумов ДС для энергии 30-40 eV плавно изменяются от 71.1 до 68.5° и находятся в пределах экспериментальной ошибки по углу.

Как следует из табл. 1, во всех трех теоретических работах получено угловое положение высокоуглового минимума H2 вблизи 141° , тогда как в экспериментальных работах получено 143.5° . Энергетическое же положение этого минимума, по-видимому, находится

1		
L	1	
·	'	

E_L , eV	Θ_L , deg	E_H, eV	Θ_H , deg	Ссылки	
56.1 ± 0.7	65.73 ± 0.05	$\begin{array}{c} 42.3 \pm 0.9 \\ 132.3 \pm 0.3 \\ 126.1 \end{array}$	$\begin{array}{c} 143.8 \pm 0.20 \\ 120.90 \pm 0.05 \\ 118.9 \end{array}$	[29]	
41.3 ± 0.02	68.5 ± 0.3	37.3 ± 0.02	143.5 ± 0.3	[2]	
30.25	71.05	8.44 38.25 126.33	119.89 140.67 118.12	Данный расчет	
31	70.4	8.76 38.29	119.22 140.83	Фазовые сдвиги из [26]	
39.3	68.5	39.5	141	[30]	

Таблица 1. Энергетические и угловые положения низкоугловых (E_L , Θ_L) и высокоугловых (E_H , Θ_H) критических минимумов

между 37 и 39 eV. По крайней мере из табл. 5 в [2] следует, что минимальные значения при 143.5° экспериментальные ДС имеют для энергий 37.3–39.3 eV.

Что касается критической точки H1, то необходимо отметить, что ярко выраженный глубокий минимум в ДС при 10 eV и вблизи 120° хорошо известен в литературе. Например, в данной работе угловое положение этого минимума равно 119.68°, в экспериментальных работах [2] и [24] — это 115°, в [27] и [31] — 118 и 119° соответственно, в теоретических работах [1] и [26] это 115 и 120° соответственно. С учетом того что в ряде работ значения ДС приводятся с шагом в 5°, можно утверждать, что минимум при 10 eV находится между 115 и 120°. На рис. 3, b видно, что расчет с использованием фазовых сдвигов из [26] дает низкоэнергетическую зависимость минимальных значений ДС такого же вида, что и у нас. Различие же теоретических положений критического минимума Н1 составило всего 0.3 eV и 0.7°.

Поскольку энергетическое положение критической точки H3 больше 100 eV, то мы можем сравнить положение этой точки с экспериментальными данными лишь из [29]. Отметим, во-первых, что энергетическое положение H3 совпадает с теоретическим результатом (126.1 eV) из [29], и, во-вторых, что угловое положение H3 всего лишь на 0.8° меньше теоретического и на 1.8° меньше экспериментального из [29].

Для того чтобы найти энергии и углы, при которых функция Шермана $S(E, \Theta)$ может достичь своих экстремальных значений, мы провели расчеты в малых окрестностях трех высокоугловых критических точек, где $|g|^2 \ge |f|^2$. Измерение параметров спиновой поляризации, как было отмечено в [9], задача достаточно трудная и наиболее тщательные экспериментальные анализы дают для функции Шермана неопределенность не менее $\pm 5\%$. Поэтому в табл. 2 приведены значения энергий и углов, при которых функция $S(E, \Theta)$ приобретает свои экстремальные значения: $S \approx 1$, когда $S \in [0.90, 1]$, и $S \approx -1$, когда $S \in [-1, -0.90]$.

Как следует из табл. 2, функция Шермана достигает своих максимальных и минимальных значений в некой, назовем ее экстремальной, окрестности критических точек. Для *H1* имеем, что при 119.78° $S \approx 1$ в интервале энергий [8.41, 8.44 eV] и при 119.99° $S \approx -1$ в интервале энергий [8.45, 8.48 eV]. Следовательно, размеры этой окрестности будут равны (0.07 eV, 0.21°). Аналогично получим, что размеры экстремальной окрестности точки *H3* будут равны (1.37 eV, 0.43°).

В отличие от этих критических точек энергия точки H2 (38.25 eV) не принадлежит ее экстремальной окрестности. Как видно на рис. 4, для любого угла из окрестности H2 $|S(38.25 eV, \Theta)| \le 0.5$ (кривая 4). Экстремальных же значений функция Шермана достигает при других энергиях из этой окрестности, а именно $S \approx 1$ в интервале энергий 38.12-38.20 eVи углов $140.71-140.74^{\circ}$ (кривые 1-3) и $S \approx -1$ в интервалах 38.29-38.17 eV и углов $140.61-140.63^{\circ}$ (кривые 5-7). Следовательно, возможны случаи, когда, для того чтобы найти энергии и углы полной спиновой поляризации, недостаточно, зная положения критических минимумов, исследовать лишь угловые окрестности этих минимумов, но необходимо также определять и их экстремальные энергетические окрестности.

Таблица 2. Экстремальные значения функции $S(E, \Theta)$ в окрестностях критических точек: $H1 = (8.44 \text{ eV}, 119.89^\circ)$, $H2 = (38.25 \text{ eV}, 140.67^\circ)$ и $H3 = (126.33 \text{ eV}, 118.12^\circ)$

E, eV	Θ , deg	S	E, eV	Θ , deg	S
8.41	119.78	0.93	8.45	119.99	-1.0
8.43	119.78	1.0	8.46	119.99	-0.99
8.44	119.78	0.99	8.48	119.99	-0.91
38.12	140.74	0.90	38.29	140.63	-0.90
38.17	140.72	1.0	38.32	140.63	-1.0
38.20	140.71	0.93	38.37	140.61	-0.92
125.63	118.34	-0.90	126.32	118.01	0.96
126.07	118.26	-1.0	126.58	117.98	1.0
126.31	118.23	-0.96	127.0	117.91	0.90
	<i>E</i> , eV 8.41 8.43 8.44 38.12 38.17 38.20 125.63 126.07 126.31	E, eV Θ , deg8.41119.788.43119.788.44119.7838.12140.7438.17140.7238.20140.71125.63118.34126.07118.26126.31118.23	E, eV Θ, deg S 8.41 119.78 0.93 8.43 119.78 1.0 8.44 119.78 0.99 38.12 140.74 0.90 38.17 140.72 1.0 38.20 140.71 0.93 125.63 118.34 -0.90 126.07 118.26 -1.0 126.31 118.23 -0.96	E, eV Θ, deg S E, eV 8.41 119.78 0.93 8.45 8.43 119.78 1.0 8.46 8.44 119.78 0.99 8.48 38.12 140.74 0.90 38.29 38.17 140.72 1.0 38.32 38.20 140.71 0.93 38.37 125.63 118.34 -0.90 126.32 126.07 118.26 -1.0 126.58 126.31 118.23 -0.96 127.0	E, eV Θ, deg S E, eV Θ, deg 8.41 119.780.93 8.45 119.99 8.43 119.781.0 8.46 119.99 8.44 119.780.99 8.48 119.99 38.12 140.740.90 38.29 140.63 38.17 140.721.0 38.32 140.63 38.20 140.710.93 38.37 140.61 125.63 118.34 -0.90 126.32118.01 126.07 118.26 -1.0 126.58117.98 126.31 118.23 -0.96 127.0117.91

Рис. 4. Угловые зависимости функции Шермана $S(E, \Theta)$ в окрестности критической точки *H2* для энергий *E* (eV). I = 38.12, 2 = 38.17, 3 = 38.20, 4 = 38.25, 5 = 38.37, 6 = 38.32, 7 = 38.29.

Поскольку предсказание размеров экстремальных окрестностей является предметом теоретического исследования, возникает вопрос, в какой мере эти размеры зависят от выбора того или иного потенциала. Для того чтобы ответить на этот вопрос, выразим функцию Шермана через вещественные и мнимые части амплитуд f и g

$$S = \frac{2(\text{Re } f \,\text{Im } g - \text{Im } f \,\text{Re } g)}{(\text{Re } f)^2 + (\text{Im } f)^2 + (\text{Re } g)^2 + (\text{Im } g)^2}.$$
 (9)

Как видно из (9) S = 1, когда Re f = Im gи Im f = -Re g, и S = -1, когда Re f = -Im gи Im f = Re g. Эти два случая продемонстрированы на рис. 5 на примере критической точки H2, в экстремальной окрестности которой (как видно из табл. 2) S = 1 при 38.17 eV и 140.72° и S = -1при 38.32 eV и 140.63°.

Для всех энергий из этой окрестности значения амплитуды g практически совпадают со значениями для 38.25 eV, и, следовательно, будем считать, что для всей окрестности $\operatorname{Re} g = -2.95 \cdot 10^{-3}(a_0)$ и $\operatorname{Im} g = -1.36 \cdot 10^{-3}(a_0)$. Для энергии 38.17 eV и угла 140.72° имеем, что $\operatorname{Re} f = -1.47 \cdot 10^{-3}(a_0)$ и $\operatorname{Im} f = 2.97 \cdot 10^{-3}(a_0)$, т.е., действительно, $\operatorname{Re} f \approx \operatorname{Im} g$ и $\operatorname{Im} f \approx -\operatorname{Re} g$. А для энергии 38.32 eV имеем, что $\operatorname{Re} f = 1.17 \cdot 10^{-3}(a_0)$ и $\operatorname{Im} f = -2.78 \cdot 10^{-3}(a_0)$, т.е., действительно, $\operatorname{Re} f \approx \approx -\operatorname{Im} g$ и $\operatorname{Im} f \approx \operatorname{Re} g$. Для промежуточных же энергий из этой окрестности, например для 38.25 eV, имеем,

что для любого угла из окрестности |Re g| > |Re f|и |Im g| > |Im f|, следовательно, $|g|^2 > |f|^2$. Таким образом, размеры экстремальной окрестности зависят как от величины $|g|^2$, так и от ширины минимума $|f|^2$ на границах окрестности, где $|f|^2 \approx |g|^2 = 1.1 \cdot 10^{-5} (a_0^2)$.

Из (3) следует, что величина амплитуды g зависит от величины спин-орбитального расщепления фазовых сдвигов $\Delta_l = \delta_l^- - \delta_l^+$. Поскольку в данной работе из всех релятивистских поправок мы ограничились учетом лишь спин-орбитального взаимодействия (так называемый "полурелятивистский подход"), сравним наш расчет с полностью релятивистским, например, для энергии и угла, близких к критической точке H2, а именно для 40 eV и 141°. Используя фазы из [6] для l = 1, 2, 3, имеем, что $\Delta_1 = 0.0110$ rad, $\Delta_2 = 0.0017$ rad, $\Delta_3 = -2 \cdot 10^{-4}$ rad $\mu |g|^2 = 8.5 \cdot 10^{-6} (a_0^2)$, a y Hac $\Delta_1 = 0.0119$ rad, $\Delta_2 = 0.0016$ rad, $\Delta_3 = 7 \cdot 10^{-5}$ rad $\mu |g|^2 = 1 \cdot 10^{-5} (a_0^2)$. Как видим, полурелятивистский подход дал почти такие же значения Δ_l и $|g|^2$, что и релятивистский. Следовательно, использованные здесь потенциалы вполне удовлетворительно описывают взаимодействие налетающего электрона с атомом аргона на малых расстояниях от ядра и позволяют с большой долей достоверности рассчитать амплитуду g.

Что касается амплитуды f, то, как видно на рис. 5, в окрестности минимума H2 Im f в отличие от Re fимеет меньший наклон и для некоторых энергий вообще не пересекает нулевую ось. Таким образом, положение минимума $|f|^2$ определяется прежде всего точкой пересечения Re f нулевой оси, а минимальное значение $|f|^2$ определяется в основном величиной Im f.

Рис. 5. Угловые зависимости вещественных и мнимых частей амплитуд f и g в окрестности критической точки H2. Энергии E, eV: Re f: I - 38.32, 2 - 38.25, 3 - 38.17; Im f: 4 - 38.17, 5 - 38.25, 6 - 38.32; Im g: 7 - 38.25; Re g: 8 - 38.25.

Журнал технической физики, 2002, том 72, вып. 9

Очевидно, что использование в расчетах иного оптического потенциала и прежде всего иного поляризационного потенциала даст другую энергетическую зависимость фазовых сдвигов, что приведет к иному положению критического минимума в ДС. Вместе с тем расчет $\operatorname{Re} f$ и $\operatorname{Im} f$ с использованием аппроксимированных фазовых сдвигов из [26] в малой окрестности критического минимума (38.29 eV, 140.83°) дал такое же поведение $\operatorname{Re} f$ и $\operatorname{Im} f$, что и на рис. 5. А именно Re f круто пересекают нулевую ось, причем угол пересечения, а следовательно, и угол минимума ДС с увеличением энергии сдвигается в сторону меньших углов (см. также рис. 2, b), а Im f, имея существенно меньший наклон, чем $\operatorname{Re} f$, с ростом энергии из области положительных переходят в область отрицательных значений. Ширина минимума ДС, где $|f|^2 \approx 1.1 \cdot 10^{-5} (a_0^2)$, для 38.29 eV составила 0.1°, как и у нас для 38.25 eV.

Для высокоуглового критического минимума *H1* расчеты с аппроксимированными фазовыми сдвигами из [26] дали в малой окрестности минимума такое же поведение Re *f* и Im *f*, как и у нас, а ширина минимума ДС, где для 8.76 eV $|f|^2 \approx |g|^2 = 1.7 \cdot 10^{-4} (a_0^2)$, составила 0.05°, как и у нас для 8.44 eV.

Что касается низкоуглового критического минимума, то поскольку в его малой окрестности Im f, так же как и Re f, круто пересекают нулевую ось, минимальные значения $|f|^2$ в одинаковой мере определяются как Im f, так и Re f. Как видно из рис. 1 и 2, a, полученные нами угловые положения низкоугловых минимумов ДС для энергий от 20 до 50 eV превосходно согласуются с результатами из [26]. Однако, как видно на рис. 3, а, при этих энергиях низкоугловые минимальные значения ДС оказались более чувствительными в точках пересечения $\operatorname{Re} f$ и $\operatorname{Im} f$ к небольшим различиям в энергетических зависимостях фазовых сдвигов, рассчитанных в [26] и в данной работе, чем в случае высокоугловых минимумов (рис. 3, *b*). Поэтому для экспериментального обнаружения полной спиновой поляризации электронов упруго рассеянных атомами аргона мы предлагаем использовать значения экстремальных окрестностей высокоугловых критических точек.

В заключение отметим, что рассчитанные в данной работе положения минимумов дифференциальных сечений хорошо согласуются с экспериментом. Получено превосходное согласие энергетических и угловых положений минимума H2 с экспериментом [2] и минимумов H1 и H3 с другими теоретическими расчетами. Рассчитанные нами значения энергий и углов в окрестности высокоугловых минимумов могут быть рекомендованы при постановке новых поляризационных экспериментов. Если же в последующих исследованиях будут уточнены положения критических минимумов в ДС, то тем не менее найденные здесь экстремальные окрестности критических точек по-прежнему могут быть использованы для оценки значений энергий и углов

полной спиновой поляризации рассеянных электронов при выполнении в окрестностях этих минимумов условий $|g|^2 \ge |f|^2$.

Автор признателен Б. Маринковичу (Белград) за проявленный интерес к работе и Е. Ремета за полезные дискуссии.

Список литературы

- Nahar S.N., Wadehra J.M. // Phys. Rev. A. 1987. Vol. 35. N 5. P. 2051–2064.
- [2] Panajotović R., Filipović D., Marinković B. et al. // J. Phys. B. 1997. Vol. 30. P. 5877–5894.
- [3] Mehr J. // Z. Phys. 1967. Vol. 198. P. 345-350.
- [4] Schackert K. // Z. Phys. 1968. Vol. 213. P. 316-322.
- [5] Beerlage M.J.M., Zhou Qing, Van der Wiel M.J. // J. Phys. B. 1981. Vol. 14. P. 4627–4635.
- [6] Sienkiewicz J.E., Baylis W.E. // J. Phys. B. 1988. Vol. 21. N 5. P. 885–894.
- [7] Nahar S.N., Wadehra J.M. // Phys. Rev. A. 1991. Vol. 43.
 N 3. P. 1275–1289.
- [8] Khare S.P., Raj D. // J. Phys. B. 1993. Vol. 26. P. 4807-4814.
- [9] Kessler J. // Adv. At. Mol. and Opt. Phys. 1991. Vol. 27. P. 81–163.
- [10] Калоджеро Ф. Метод фазовых функций в теории потенциального рассеяния. Пер. с англ. М.: Мир, 1972. 292 с.
- [11] Бабиков В.В. Метод фазовых функций в квантовой механике. М.: Наука, 1988. 256 с.
- [12] Корн Г., Корн Т. Справочник по математике. Пер. с англ. М.: Наука, 1977. 831 с.
- [13] Strand T.G., Bonham R.A. // J. Chem. Phys. 1964. Vol. 40. N 6. P. 1686–1691.
- [14] Cowan R. The Theory of Atomic Structure and Spectra, University of California Press (Berkeley, Los Angeles, London), 1981. 731 p.
- [15] Келемен В.И., Ремета Е.Ю., Сабад Е.П. // ЖТФ. 1991.
 Т. 61. Вып. 2. С. 46–50.
- [16] Kelemen V.I., Remeta E.Yu., Sabad E.P. // J. Phys. B. 1995. Vol. 28. P. 1527–1546.
- [17] Hara S. // J. Phys. Soc. Jap. 1967. Vol. 22. N 3. P. 710-718.
- [18] Sur S., Ghosh A.S. // Indian. J. Phys. B. 1983. Vol. 57. N 1. P. 67–70.
- [19] Радциг А.А., Смирнов Б.М. Параметры атомов и атомных ионов. Справочник. М., 1986. 344 с.
- [20] Miller T.M., Bederson B. // Advances in Atomic and Molecular Physics / Ed. D.R. Bates, B. Bederson. New York: Academic Press, 1977. Vol. 13. P. 1–55.
- [21] Бэрк Ф.Дж. Потенциальное рассеяние в атомной физике. М.: Атомиздат, 1980. 101 с.
- [22] Frost L.S., Phelps A.V. // Phys. Rev. 1964. Vol. 136. N 6A. P. A1538–A1545.
- [23] Гуськов Ю.К., Саввов Р.В., Слободянюк В.А. // ЖТФ. 1978. Т. 48. Вып. 2. С. 277–284.
- [24] Srivastava S.K., Tanaka H., Chutjian A. et al. // Phys. Rev. A. 1981. Vol. 23. P. 2156–2166.
- [25] Williams J.F., Willis B.A. // J. Phys. B. 1975. Vol. 8. P. 1670– 1682.
- [26] McEachran R.P., Stauffer A.D. // J. Phys. B. 1983. Vol. 16. P. 4023–4038.

- [27] Furst J.E., Golden D.E. et al. // Phys. Rev. A. 1989. Vol. 40. P. 5592–5600.
- [28] Filipović D.M., Marinković B. // Proc. XX Intern. Conf. on Phys. Electronic and Atomic Collisions. Vienna, 1997. P. TH 005.
- [29] Kessler J., Liedtke J., Lukas C.B. // Physics of Ionized Gases (Dubrovnik) / Ed. B. Navinšek. Ljubljana: J. Stefan Institute, 1976. P. 61.
- [30] Sienkiewicz J.E., Telega S., Konopińska V. // Proc. 7th European Conf. on Atomic and Molecular Physics (ECAMP). Berlin, 2001. P. 68; Sienkiewicz J.E., Konopińska V., Telega S., Syty P. // J. Phys. B. 2001. Vol. 34. P. L409–L418.
- [31] Williams J.F. // J. Phys. B. 1979. Vol. 12. P. 265-282.

20