Квантовые поправки к проводимости в естественной сверхрешетке Nd_{2-x}Ce_xCuO₄

© Г.М. Миньков, А.И. Пономарев, А.А. Шерстобитов, С.Г. Новокшонов, А.А. Иванов*

Институт физики металлов Уральского отделения Российской академии наук,

620219 Екатеринбург, Россия

* Московский инженерно-физический институт,

115410 Москва, Россия

E-mail: grigori.minkov@usu.ru

(Поступила в Редакцию 12 октября 2004 г. В окончательной редакции 2 февраля 2005 г.)

Экспериментально исследованы и проанализированы температурные и магнитополевые зависимости сопротивления и эффекта Холла в слоистых монокристаллических пленках $Nd_{2-x}Ce_xCuO_4$ (x = 0.12). Показано, что в этом материале ярко проявляются квантовые эффекты, характерные для 2D-полупроводниковых структур: отрицательное магнитосопротивление, обусловленное подавлением интерференционной квантовой поправки магнитным полем; близкая к логарифмической зависимость проводимости от температуры; температурная зависимость эффекта Холла, связанная с e-e-взаимодействием. Показано, что при анализе экспериментальных данных необходимо учитывать межслоевые переходы. Такой учет приводит к количественному согласию эксперимента с общепринятой теорией квантовых поправок.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 03-02-16150, 02-02-16942), РФФИ-Урал (грант № 04-02-96084) и Госконтракта № 40.012.1.1.1146 (договор 12/04).

1. Введение

Nd_{2-x}Ce_xCuO₄ занимает особое место среди оксидных сверхпроводников (СП) с перовскитной структурой. Стандартные ВТСП-материалы содержат проводящие слои CuO₂ с кислородными пирамидами (YBaCuO, BiSrCaCuO) или октаэдрами (LaSrCuO), в то время как оптимально отожженные кристаллы NdCeCuO содержат слои CuO₂ без апикальных атомов кислорода, т.е. слои CuO₂ образуют квазидвумерные (2D) плоскости, отстоящие друг от друга на расстояние a = 6 А. Поэтому монокристаллы NdCeCuO можно рассматривать как селективно допированную систему квантовых ям (слои CuO₂), разделенных барьерами, допированными церием (буферные слои NdO). Данное утверждение основывается на том, что слоистые ВТСП-материалы демонстрируют ярко выраженные 2D-свойства носителей тока в макроскопических 3D-кристаллах.

Недопированное соединение Nd₂CuO₄ является диэлектриком. Допирование Nd₂CuO₄ церием и понижение содержания кислорода до стехиометрического приводят к *n*-типу проводимости в слоях CuO₂ кристалла Nd_{2-x}Ce_xCuO₄. По мере ухода лишних электронов в плоскости CuO₂ в буферном слое между этими плоскостями формируется потенциал случайно распределенных в решетке заряженных примесных центров Ce⁴⁺, рассеяние на котором определяет, по-видимому, подвижность носителей тока.

Расчет зонной структуры NdCeCuO [1] показал, что уровень Ферми расположен в $pd\sigma$ -зоне, образованной $3d(x^2 - y^2)$ -орбиталями меди и $p\sigma(x, y)$ -орбиталями кислорода. Эта $pd\sigma$ -зона носит ярко выраженный 2D-характер, почти не обнаруживая дисперсии в направлении c, перпендикулярном проводящим плоскостям

СиО₂ (плоскостям *ab*). Из-за малой вероятности переходов между плоскостями кристаллы NdCeCuO обладают большой анизотропией проводимости в нормальной фазе $\sigma_{ab}/\sigma_{c} \geq 10^{3}$ [2–4]. Квазидвумерная природа носителей тока приводит к тому, что температурные и магнитополевые зависимости σ_{ab} в кристаллах NdCeCuO в значительной степени определяются квантовыми поправками к проводимости Друде. Различают два вида квантовых поправок к проводимости: 1) поправки, обусловленные интерференцией электронных волн, распространяющихся в противоположных направлениях вдоль замкнутых траекторий (слабая локализация); 2) поправки, обусловленные электрон-электронным (е-е) взаимодействием, которые можно разделить на поправки в диффузионном канале (член Альтшулера-Аронова) и поправки в куперовском канале (также известные как поправки за счет СП-флуктуаций). Абсолютные величины этих поправок увеличиваются при понижении температуры или с ростом беспорядка, и именно они в основном определяют явление переноса в 2D-системах при низких температурах.

Опубликовано несколько работ, в которых сообщается о наблюдении и исследовании эффектов, обусловленных квантовыми поправками к σ_{ab} -проводимости кристаллов Nd_{2-x}Ce_xCuO₄. Так, линейная зависимость сопротивления от ln *T* (один из признаков 2D-слабой локализации) наблюдалась при $T < T_c$ в образце Nd_{2-x}Ce_xCuO₄ с x = 0.15, в котором СП-состояние было подавлено магнитым полем [5]. Высокая анизотропия отрицательного магнитосопротивления в полях $B \parallel CuO_2$ и $B \perp CuO_2$, также характерная для 2D-слабой локализации, наблюдалась в несверхпроводящих образцах Nd_{2-x}Ce_xCuO₄ с x = 0.11 [6], 0.15 [7], 0.18 [8]. Кроме того, авторы [7]

из анализа отрицательного магнитосопротивления в магнитном поле, перепендикулярном плоскости аb, оценили время релаксации спина $\tau_{so} > 5 \cdot 10^{-11}$ s и показали, что оно существенно больше времени релаксации фазы т_ф. Обрабатывая кривые отрицательного магнитосопротивления, авторы работы [6] нашли температурную зависимость времени релаксации фазы au_{arphi} : $1/ au_{arphi} \sim T^{0.4}$. Авторы [9] использовали теорию квантовых поправок к проводимости как в куперовском [10], так и в диффузионном [11,12] канале и нашли качественное согласие с экспериментом, выполненным на монокристаллических пленках Nd_{2-x}Ce_xCuO₄. В [13] исследовались зависимости $\rho_{ab}(T, H)$ на серии монокристаллических пленок $Nd_{2-x}Ce_{x}CuO_{4}$ c x = 0.12-0.18, $k_{F}l = 2-150$ $(k_{F} - 10.18)$ фермиевский квазиимпульс, *l* — длина свободного пробега) и наблюдались все три признака 2D-слабой локализации: логарифмическая температурная зависимость сопротивления; отрицательное магнитосопротивление в магнитном поле, перпендикулярном плоскости *ab*; анизотропия магнитосопротивления в полях В || СиО2 и $B \perp CuO_2$.

Из приведенного краткого обзора работ по исследованию вклада квантовых поправок в проводимость слоистых ВТСП-материалов видно, что эти исследования в основном носят фрагментарный характер. Остаются неясными, например, причина необычной температурной зависимости времени релаксации фазы $1/\tau_{\varphi} \sim T^{0.4}$, вклад e-e-взаимодействия в диффузионном канале, роль межслоевых переходов. Кроме того, несмотря на многочисленные исследования квантовых поправок в 2D-полупроводниковых структурах, таких как GaAs/AlGaAs, Ge/GeSi и др., до сих пор нет надежных данных о роли е-е-взаимодействия в куперовском канале. Это не кажется удивительным, поскольку вклад этого взаимодействия определяется параметром $(T-T_c)$ и должен быть существенным при температурах, близких к температуре сверхпроводящего перехода, который отсутствует в обычных 2D-полупроводниковых структурах. В этом смысле исследования квантовых поправок к проводимости в слоистых ВТСП-материалах представляют отдельный интерес, поскольку, меняя состав материала и содержание кислорода, можно в широких пределах изменять Т_с и таким образом проводить исследования при известном и контролируемом значении параметра $(T-T_c)$. На наш взгляд, для выяснения роли е-е-взаимодействия в куперовском канале прежде всего необходимо хорошо представлять (не только качественно, но и количественно) роль интерференционного вклада и вклада за счет *е*-*е*-взаимодействия в диффузионном канале в несверхпроводящих структурах. Именно этому и посвящена настоящая работа, в которой исследованы и проанализированы температурные и магнитополевые зависимости проводимости и эффекта Холла в несверхпроводящем $Nd_{2-x}Ce_xCuO_{4+\delta}$ (*x* = 0.12).

В настоящей работе показано, что в трехмерном кристалле $Nd_{2-x}Ce_xCuO_4$ ярко проявляются квантовые эффекты, характерные для 2D-полупроводниковых структур: отрицательное магнитосопротивление, обу-

словленное подавлением интерференционной квантовой поправки магнитным полем; близкая к логарифмической зависимость проводимости от температуры; температурная зависимость эффекта Холла, связанная с e-e-взаимодействием. Показано также, что межслоевые переходы приводят к кажущемуся насыщению времени релаксации фазы при понижении температуры, малому значению префактора в магнитосопротивлении, ослаблению температурной зависимости проводимости и отклонению ее от логарифмической.

2. Образцы

Эпитаксиальные пленки $Nd_{2-x}Ce_xCuO_{4+\delta}$ были синтезированы методом импульсного лазерного напыления. Технологический процесс делится на две стадии.

1) Эпитаксиальный рост пленки в вакууме. Исходная керамическая мишень распылялась сфокусированным лазерным пучком с последующим осаждением вещества мишени на нагретую монокристаллическую подложку (материал подложки SrTiO₃ с ориентацией (100), размеры 5×10 mm, температура подложки 800° С, давление в процессе напыления 0.8 mm Hg, остаточный газ — воздух; мишень — спеченная керамическая таблетка $Nd_{2-x}Ce_xCuO_{4+\delta}$ заданного состава).

В полученных таким образом монокристаллических пленках плоскость CuO₂ (плоскость ab) параллельна плоскости подложки. Были синтезированы образцы Nd_{2-x}Ce_xCuO_{4+ δ} толщиной 120 Å с фиксированным содержанием церия x = 0.12.

2) Отжиг пленки в вакууме. Для получения стехиометрического состава образцы были подвергнуты термообработке (отжигу) при $T = 780^{\circ}$ С, давления $p = 10^{-2}$ mm Hg в течение 60 min.

По данным рентгеноструктурных исследований монокристаллические пленки $Nd_{2-x}Ce_xCuO_{4+\delta}$ на подложках SrTiO₃ являются эпитаксиальными с ориентацией плоскости поверхности (001).

С помощью фотолитографии были получены образцы в виде двойного креста с шириной центральной полосы 1 mm и расстоянием между потенциальными контактами 3 mm. После травления на образцы лазерным напылением в вакууме наносились контактные площадки из серебра. Измерения сопротивления ρ_{ab} проводились стандартным четырехконтактным способом, а измерения эффекта Холла — при двух направлениях электрического тока и магнитного поля.

3. Экспериментальные результаты и их обсуждение

Исследованы температурные $(1.5 \le T \le 40 \text{ K})$ зависимости сопротивления, магнитосопротивления и эффекта Холла монокристаллических пленок $Nd_{2-x}Ce_xCuO_4$ с x = 0.12. Температурные зависимости проводимости и магнитосопротивления $\sigma(B) - \sigma(0) \equiv 1/\rho_{xx}(B) - 1/\rho(0)$ в поле, перпендикулярном плоскости образца $(B \perp ab)$, приведены на рис. 1 и 2 (проводимость на этих рисунках

Puc. 1. *a*) Температурная зависимость проводимости в единицах $G_0 = e^2/\pi h = 1.23 \cdot 10^{-5} \Omega^{-1}$ при B = 0. I -экспериментальная зависимость проводимости, 2 -друдевская проводимость (см. текст), 3 -рассчитанная зависимость $\sigma(T) = \sigma(1.5 \text{ K}) - \Delta \sigma^{\text{WL}}(T) - \Delta \sigma^{ee}(T)$ с параметрами, найденными из анализа магнитосопротивления и эффекта Холла. *b*) Температурная зависимость $\Delta \sigma(T) = \sigma(T) - \sigma(1.5 \text{ K})$. I -эксперимент, 2 -интерференционная поправка к проводимости $\Delta \sigma^{\text{WL}}(T) - \Delta \sigma^{\text{WL}}(1.5 \text{ K})$, 3 -зависимость $\sigma(T) \approx a + 0.5 \ln(T)$, 4 -поправка за счет e - e-взаимодействия $\Delta \sigma^{ee}(T) - \Delta \sigma^{ee}(1.5 \text{ K})$, $5 - \Delta \sigma(T) - \Delta \sigma(1.5 \text{ K})$ с учетом WL-поправки и поправки за счет e - e-взаимодействия.

пересчитана на один слой и отложена в единицах $G_0 = e^2/\pi h = 1.23 \cdot 10^{-5} \,\Omega^{-1})$. Из этих рисунков видно, что зависимость $\sigma(T)$ близка к логарифмической в достаточно широком интервале температур от 1.5 до 10 К (рис. 1, *a*), а магнитосопротивление отрицательно (рис. 2).

Как уже отмечалось ранее [5-9,13], проводимость слоистых ВТСП-купратов при температурах T < 30-40 К в значительной степени определяется квантовыми поправками. Проанализируем сначала отрицательное магнитосопротивление. В первом приближении будем считать, что вклад в проводимость от каждого из слоев CuO₂ одинаков и независим, т.е. пренебрежем переходами между слоями. В этом случае магнитосопротивление одного слоя, связанное с подавлением магнитным полем интерференционной квантовой поправки к проводимости, должно описываться известным выражением [14]

$$\Delta \sigma(B) = \sigma(B) - \sigma(0) = \alpha G_0 \operatorname{Hi}(x),$$

$$\operatorname{Hi}(x) = \psi\left(\frac{1}{2} + \frac{1}{x}\right) + \ln(x), \quad x = \frac{B}{B_{\varphi}}, \quad (1)$$

(~)

~

где ψ — дигамма-функция, $B_{\varphi} = \frac{\hbar}{4eD\tau_{\varphi}}, D = \sigma_{\rm Dr}/e^2 N_F$ — коэффициент диффузии, N_F — плотность состояний на

уровне Ферми, которая в 2D-случае равна $N_F = m^*/\pi\hbar^2$, τ_{φ} — время релаксации фазы, $\sigma_{\rm Dr}$ — друдевская проводимость, α — численный коэффициент (префактор), который в теории слабой локализации равен единице. Причины введения в (1) α < 1 будут обсуждаться далее. Выражение (1) получено в диффузионном приближении, когда $\tau_{\varphi}/\tau_p \gg 1$, $B \ll B_{\rm tr} = B_{\varphi}\tau_{\varphi}/\tau_p$, τ_p — время релаксации импульса. Физические параметры образца определены по величине проводимости и эффекта Холла при T = 30 K, когда величина квантовых поправок к проводимости невелика. Это дает $\tau_p = 3.7 \cdot 10^{-15}$ s, концентрация электронов на один слой $n_s = 2.5 \cdot 10^{14}$ cm⁻², длина свободного пробега электронов $l = 1.6 \cdot 10^{-7}$ сm. Эффективная масса полагалась равной массе свободного электрона ($m^* = m_0$).

При подгонке формулы (1) к экспериментальным зависимостям мы использовали два подгоночных параметра: α и τ_{φ} . Теоретические зависимости $\Delta\sigma(B)$, полученные после такой процедуры, и температурные зависимости подгоночных параметров τ_{φ} и α приведены на рис. 2 и 3. Отметим, что отношение $\tau_{\varphi}/\tau_{p} > 2 \cdot 10^{2}$, $B \ll B_{\rm tr} = 120$ T, так что условие применимости диффузионного приближения надежно выполняется. Видно,

Рис. 2. Зависимости изменения сопротивления (магнитопроводимости) от величины магнитного поля при разных температурах. Точки — эксперимент, сплошные линии теоретические зависимости без учета межслоевых переходов, рассчитанные по формуле (1) с различными параметрами α и τ_{φ} . *T*, K, α и $\tau_{\varphi} \cdot 10^{12}$, s: *I* — 1.5, 0.42, 6.9; *2* — 4.2, 0.41 и 4.1; *3* — 11.5, 0.42 и 2.2; *4* — 30, 0.60 и 0.51.

что рассчитанная согласно (1) форма магнитосопротивления (рис. 2) очень хорошо описывает экспериментальные кривые, но при значении параметра α , заметно меньшем единицы (рис. 3, *b*). При этом температурная зависимость подгоночного параметра τ_{φ} близка к теоретической зависимости $\tau_{\varphi} \sim 1/T$ при высоких температурах и заметно отклоняется от нее при T < 8-10 K (рис. 3, *a*). Аналогичное поведение $\tau_{\varphi}(T)$ в несверхпроводящем Nd_{2-x}Ce_xCuO₄ наблюдалось в работе [6]. Прежде чем обсуждать поведение $\tau_{\varphi}(T)$, рассмотрим причины малого значения префактора α .

Можно назвать по крайней мере две причины, которые могут привести к уменьшению величины префактора α : 1) вклад e-e-взаимодействия в куперовском канале; 2) наличие переходов между слоями.

Обсудим сначала роль e-e-взаимодействия в куперовском канале. Как показано в [11], в малых магнитных полях вклад в магнитосопротивление вносят два члена

$$\Delta \sigma_1(B) = -\beta(g)G_0\varphi_1(B),$$

$$\Delta \sigma_2(B) = -g(T)G_0\varphi_2(B).$$
 (2)

Первый (известный как поправка Маки–Томпсона) имеет ту же полевую зависимость, что и интерференционная поправка (1), т.е. $\varphi_1(B) = \text{Hi}(B)$. Функция $\beta(g)$ всегда положительна и не зависит от знака затравочной константы g(T), а зависит лишь от ее модуля. Второй член

Рис. 3. *а*) температурные зависимости времени релаксации фазы $\tau_{\varphi}(T)$ (*1*, *2*) и времени межслоевых переходов (*3*). *I* — без учета межслоевых переходов (расчет по формуле (1)); *2* — с учетом межслоевых переходов (расчет по формуле (3)). Сплошная прямая — зависимость 1/T. *b*) *I* — температурная зависимость префактора α , полученная путем подгонки формулы (1) к эксперименту, *2* — $\alpha = 1$ — теоретическое значение, полученное без учета межслоевых переходов.

(density of states term) имеет несколько другие полевую и температурную зависимости (функция $\varphi_2(B)$ приведена в работе [12]). Константа g(T) может быть положительной или отрицательной при эффективном отталкивании или притяжении между электронами соответственно. чтобы оценить насколько вклады $\Delta \sigma_1$ и $\Delta \sigma_2$ могут изменить префактор α , мы рассчитали суммарное магнитосопротивление $\Delta \sigma(B) = G_0 \operatorname{Hi}(B) + \Delta \sigma_1(B) + \Delta \sigma_2(B)$ для различных g(1.5 K) при значении τ_{φ} , приведенном в подписи к рис. 2 для T = 1.5 K. Описывая это магнитосопротивление выражением (1) так же, как и экспериментальные зависимости $\Delta \sigma(B)$, и используя величины α и τ_{φ} в качестве подгоночных параметров, можно добиться хорошего согласия и в этом случае. Причем, когда величина g(T) отрицательна, значение префактора оказывается близким к единице и в противоречии с экспериментом практически не зависит от температуры. Это обстоятельство связано с тем, что в малых магнитных полях $(B \ll B_{\rm tr})$ поправки $\Delta \sigma_1$ и $\Delta \sigma_2$ почти полностью компенсируют друг друга. При положительном g(1.5 K) = 0.34 значение префактора уменьшается до величины, близкой к экспериментальному значению $\alpha = 0.45$, но при этом у префактора появляется очень сильная зависимость от температуры. Например, уже при $T = 5 \,\mathrm{K}$ префактор должен уменьшиться до $\alpha = 0.07$, что не согласуется с экспериментальными результатами, приведенными на рис. 3, b. Таким образом, малое значение префактора а не связано с вкладом е-е-взаимодействия в куперовском канале.

Другой возможной причиной малого значения α и отклонения температурной зависимости τ_{φ}^{-1} от линейной может быть ненулевая вероятность перехода носителей между слоями, которой мы пренебрегли при предварительной обработке результатов. Влияние переходов между слоями в многослойных структурах и межподзонных переходов в структурах с несколькими заполненными подзонами размерного квантования на интерференционную поправку к проводимости рассмотрено в ряде работ (см. например, [15–18]).

Качественно влияние переходов между слоями легко объяснить с помощью следующей модели. При движении в поле случайных рассеивателей электрон имеет ненулевую вероятность возвращения в стартовую точку. Такую замкнутую тректорию он может проходить как по часовой стрелке, так и против нее. Интерференция этих путей, если при движении по ним не произошло сбоя фазы волновой функции, конструктивна и приводит к возрастанию рассеяния назад, т.е. к уменьшению проводимости. Таким образом, полная величина интерференционной поправки пропорциональна вероятности возвращения в стартовую точку за время, меньшее времени сбоя фазы τ_{φ} . Пусть, например, структура представляет собой два параллельных слоя. Если переходов между слоями нет, то каждый из них дает поправку к проводимости $-G_0 \ln(\tau_{\varphi}/\tau_p)$, а общая поправка к проводимости такой двухслойной структуры будет $-2G_0 \ln(\tau_{\phi}/\tau_p)$. К чему приведут переходы между слоями?

Если время перехода из слоя в слой τ_{ij} сравнимо с временем сбоя фазы τ_{φ} , то вместо того чтобы вернуться в стартовую точку, электрон может оказаться в соседнем слое с теми же координатами x, y, но с другим z(x, y — координаты в плоскости CuO₂, z — координата в направлении, перпендикулярном плоскости CuO₂). Ясно, что такие траектории перестанут вносить вклад в интерференцию, и величина поправки будет меньше чем $-2G_0 \ln(\tau_{\varphi}/\tau_p)$. Этот эффект не только уменьшит полную величину интерференционной поправки, но и изменит форму кривой отрицательного магнитосопротивления.

Роль переходов между слоями в многослойных структурах рассмотрена теоретически в двух предельных случаях: время переходов между слоями $au_{i\,i} < au_p$ и $\tau_{ii} > \tau_p$ [15,16,18]. Физический смысл этих предельных случаев ясен: \hbar/τ_{ij} характеризует ширину минизоны сверхрешетки, а \hbar/τ_p — размытие состояний. Таким образом, в том случае, когда $\tau_{ij} < \tau_p$, трехмерная поверхность Ферми образуется (propagative Fermi surface), и квантовые поправки такой структуры естественно рассматривать так же, как для трехмерного анизотропного проводника. Во втором случае, когда $\tau_{ii} > \tau_p$, трехмерная поверхность Ферми не образуется (diffusive Fermi surface), и поведение квантовых поправок будет ближе к двумерному случаю. Поскольку исследуемый материал имеет очень большую анизотропию проводимости $\sigma_{ab}/\sigma_c \geq 10^3$, естественно считать, что $\tau_{ii} > \tau_p$, и в этом случае магнитосопротивление, обусловленное подавлением интерференционной поправки к проводимости ($\Delta \sigma^{WL}$), и зависимость этой поправки от температуры должны описываться выражениями [15]

** **

$$\Delta \sigma^{WL}(B) = -G_0 F(\delta, \delta'),$$

$$F(\delta, \delta') = \sum_{n=0}^{\infty} \left[(n+1/2+\delta)(n+1/2+\delta') \right]^{-1/2} - 2\ln\left[(n+1+\delta)^{1/2} + (n+1+\delta')^{1/2} \right] + 2\ln\left[(n+\delta)^{1/2} + (n+\delta')^{1/2} \right],$$

$$\delta = \frac{B}{B_{\varphi}}, \qquad \delta' = \frac{B}{B_{\varphi}} + \frac{B}{B_{\varphi}} 2\left(\frac{\tau_{\varphi}}{\tau_{ij}}\right), \qquad (3)$$

$$\Delta \sigma^{WL}(T) = -G_0 \ln\left(\frac{\tau_{\varphi}}{\tau_p}\right) + G_0 \ln\left(\frac{1}{2} + \left(\frac{1}{4} + \frac{1}{2}\frac{\tau_{\varphi}}{\tau_{ij}}\right)^{0.5}\right). \qquad (4)$$

Используя в качестве подгоночных параметров только τ_{ij} и τ_{φ} (не вводя префактора α), сравним экспериментальные зависимости магнитосопротивления с выражением (3) (рис. 4). Видно, что при низких температурах в больших полях согласие несколько хуже, чем при описании магнитосопротивления выражением (1) для чисто двумерного случая с малым значением префактора, но

Рис. 4. Сопоставление теоретических зависимостей магнитосопротивления (магнитопроводимости) с экспериментом при учете межслоевых переходов (расчет по формуле (3)). Значения подгоночных параметров при разных температурах. *T*, K, $\tau_{ij} \cdot 10^{13}$ s и $\tau_{\varphi} \cdot 10^{11}$ s: *I* — 1.5, 9.1 и 3.7; *2* — 4.2, 6.9 и 1.4; *3* — 8.7, 5.0 и 0.65; *4* — 26.6, 1.7 и 0.18.

в целом его можно считать удовлетворительным. Зависимости параметров τ_{φ} и τ_{ij} от температуры, найденные при подгонке выражения (3) к эксперименту, приведены на рис. 3, *а*. Видно, что температурная зависимость τ_{φ} близка к 1/T во всем диапазоне температур, как и предсказывает теория для случая, когда релаксация фазы определяется неупругостью *е*-*е*-взаимодействия [11].

Из рис. 3, *а* видно, что время переходов между слоями τ_{ij} уменьшается с ростом температуры; по величине оно меньше, чем τ_{φ} , но существенно больше, чем τ_p . Такое соотношение времен τ_{ij} и τ_p согласуется с большой анизотропией проводимости в исследуемом материале

$$\frac{\sigma_{ab}}{\sigma_c} = \left(\frac{l}{a}\right)^2 \frac{\tau_{ij}}{\tau_p}.$$

При T = 1.5 K это дает $\sigma_{ab}/\sigma_c = 1.9 \cdot 10^3$, а при $T = 32 \text{ K} \sigma_{ab}/\sigma_c = 2.5 \cdot 10^2$, что согласуется с результатами работ [2–4].

Проанализируем теперь температурную зависимость проводимости $\sigma(T)$ (рис. 1). В том случае, когда она определяется квантовыми поправками к проводимости,

эта зависимость для двумерной системы имеет вид [11]

$$\sigma(T) = \sigma_{\rm Dr} + G_0 \ln\left(\frac{\tau_p}{\tau_{\varphi}}\right) + G_0 K_{ee} \ln\left(\frac{k_B T \tau_p}{\hbar}\right),$$
$$K_{ee} = 1 + 3\left(1 - \frac{\ln(1 + F_0^{\sigma})}{F_0^{\sigma}}\right), \tag{5}$$

где второй член — интерференционная поправка к проводимости, третий — поправка за счет е-е-взаимодействия в диффузионном канале, а F_0^{σ} — Фермижидкостная константа взаимодействия. При наличии переходов между слоями температурная зависимость $\sigma(T)$ с учетом только интерференционной поправки будет иметь вид (4). Изменение интерференционной поправки с температурой $\Delta \sigma^{\mathrm{WL}}(T) - \Delta \sigma^{\mathrm{WL}}$ (1.5 K) для параметров τ_{ω}, τ_{ii} , определенных выше, приведено на рис. 1, *b* (кривая 2). Она не сильно отличается от логарифмической в исследованном интервале температур, но имеет наклон не 1, как должно быть согласно (5), а примерно 0.5, что заметно меньше экспериментального наклона $\sigma(T)$ при T < 10 К. Такое расхождение может быть связано с вкладом в проводимость е-евзаимодействия. Особенность этого вклада в том, что он дает добавку к компоненте тензора σ_{xx} , но не дает к σ_{xy} [11]. Такая структура поправок приводит к тому, что появляется поправка к коэффициенту Холла. При этом

$$\frac{\Delta R_H}{R_H} = \frac{-2\Delta\sigma_{xx}^{ee}}{\sigma_{xx}} = \frac{-2G_0 K_{ee} \ln\left(\frac{k_B T \tau_p}{\hbar}\right)}{\sigma_{xx}}.$$
 (6)

Таким образом, измерение температурной зависимости коэффициента Холла $R_H(T)$ дает возможность оценить вклад e-e-взаимодействия в проводимость.

Результаты измерения $R_H(T)$ приведены на рис. 5. Заметный разброс экспериментальных точек связан с особенностями исследованного материала: высокая концентрация носителей тока и, следовательно, малая величина эффекта Холла; довольно низкая проводимость; сильная температурная зависимость сопротивления. Все эти факторы приводят к тому, что даже при очень малой неэквипотенциальности холловских контактов холловское напряжение оказывается гораздо меньше паразитного. Тем не менее из рис. 5 видно достоверное уменьшение коэффициента Холла с ростом температуры,

Рис. 5. Зависимость коэффициента Холла от температуры. Наклон $R_H(\ln T)$ соответствует $K_{ee} = 0.25$ (см. (5)).

которое можно связать с вкладом e-e-взаимодействия. Наклон зависимости $R_H(\ln T)$ соответствует величине $K_{ee} = 0.25 \pm 0.15$ в выражении (5), что отвечает значению Ферми-жидкостной константы взаимодействия $F_0^{\sigma} = -(0.37 \pm 0.06)$. Вклад e-e-взаимодействия $\Delta \sigma^{ee}(T) - \Delta \sigma^{ee}$ (1.5 K) и суммарный вклад квантовых поправок в температурную зависимость проводимости приведены на рис. 1, *b*. Видно, что учет квантовых поправок удовлетворительно описывает изменение проводимости с ростом температуры при T < 10 К. При более высоких температурах проводимость возрастает более резко. Причина такого поведения остается пока неясной.

Оценим полную величину квантовых поправок. Из выражений (4) и (5) при T = 1.5 К получим $\Delta \sigma^{WL} = -6.1G_0$, а $\Delta \sigma^{ee} = -2.5G_0$. Найдем величину друдевской проводимости $\sigma_{Dr} = \sigma (1.5 \text{ K}) - \Delta \sigma^{WL} - \Delta \sigma^{ee} \approx 19.9G_0$. Отметим, что суммарная величина квантовых поправок не мала: при T = 1.5 К она составляет почти половину друдевской проводимости, при этом интерференционная поправка примерно в 2.5 раза больше, чем поправка за счет e - e-взаимодействия.

4. Заключение

В настоящей работе последовательно проанализированы температурные и магнитополевые зависимости проводимости и эффекта Холла в совершенных монокристаллических несверхпроводящих пленках Nd_{2-x}Ce_xCuO₄.

1) Доказано, что поперечное магнитосопротивление определяется подавлением квантовой интерференционной поправки к проводимости.

2) При количественном анализе отрицательного магнитосопротивления необходимо учитывать межслоевые переходы, при этом найденное отношение τ_{ij}/τ_p согласуется с анизотропией проводимости σ_{ab}/σ_c .

3) Установлено, что температурная зависимость времени релаксации фазы близка к 1/T, что соответствует предсказанию общепринятой теории для "грязного" предела, когда основным механизмом релаксации фазы является неупругость e-e-взаимодействия.

4) Оценены поправка к проводимости за счет e-eвзаимодействия и Ферми-жидкостная константа взаимодействия $F_0^{\sigma} = -(0.37 \pm 0.06)$.

5) Показано, что при T < 10 К температурная зависимость проводимости в отсутствие магнитного поля описывается суммарным вкладом квантовых поправок от e-e-взаимодействия и интерференции.

Список литературы

- S. Massida, N. Hamada, J. Yu, A.F. Freeman. Physica C 157, 571 (1989).
- [2] Z.Z. Wang, T.R. Chian, N.R. Ong, J.M. Tarascon, E. Wang. Phys. Rev. B 43, 4, 3020 (1991).
- [3] A.I. Ponomarev, V.I. Tsidilkovski, K.R. Krylov, T.B. Charikova, L.I. Leonyuk. J. Supercond. 9, 1, 27 (1996).

- [4] T. Ito, Y. Nakamura, H. Takagi, S. Uchida. Physica C 185–189, 1267 (1991).
- [5] Y. Hidaka, Y. Tajima, K. Sugiyama, F. Tomiyama, A. Yamagishi, M. Date, M. Hikita. J. Phys. Soc. Jap. 60, 4, 1185 (1991).
- [6] S.J. Hagen, X.Q. Xu, W. Jiang, J.L. Peng, Z.Y. Li, R.L. Green. Phys. Rev. B 45, 1, 515 (1992).
- [7] A. Kussmaul, J.S. Moodera, P.M. Tedrow, A. Gupta. Physica C 177, 415 (1991).
- [8] S. Tanda, M. Honma, T. Nakayama. Phys. Rev. B 43, 10, 8725 (1991).
- [9] V.F. Gantmakher, S.N. Ermolov, G.E. Tsydynzhapov, A.A. Zhukov, T.I. Baturina. Письма в ЖЭТФ 77, 8, 498 (2003).
- [10] V.M. Galitski, A.I. Larkin. Phys. Rev. B 63, 174506 (2001).
- [11] B.L. Alshuler, A.G. Aronov, D.E. Khmelnitsky. J. Phys. C: Solid State Phys. 15, 7367 (1982); B.L. Altshuler, A.G. Aronov. In: Electron-Electron Interaction in Disordered Systems / Eds A.L. Efros, M. Pollak. North-Holland, Amsterdam (1985).
- [12] Б.Л. Альтшулер, А.Г. Аронов, Д.Е. Хмельницкий. ЖЭТФ 81, 1333 (1982).
- [13] G.I. Harus, A.N. Ignatenkov, A.I. Ponomarev, L.D. Sabirzyanova, N.G. Shelushinina, N.A. Babushkina. Письма в ЖЭТФ 70, 2, 97 (1999); G.I. Harus, A.N. Ignatenkov, A.I. Ponomarev, L.D. Sabirzyanova, N.G. Shelushinina, A.A. Ivanov. ЖЭТФ 116, 5, 1723 (1999).
- [14] S. Hikami, A. Larkin, Y. Nagaoka. Prog. Theor. Phys. 63, 707 (1980).
- [15] A. Cassam-Chenai, D. Maily. Phys. Rev. B 52, 3, 1984 (1995).
- [16] N.S. Averkiev, L.E. Golub, G.E. Pikus. Solid State Commun. 107, 757 (1998).
- [17] G.M. Minkov, A.V. Germanenko, O.E. Rut, O.I. Khrykin, V.I. Shashkin, V.M. Danil'tsev. Phys. Rev. B 62, 24, 17089 (2000).
- [18] W. Szott, C. Jedrzejek, W.P. Kirk. Phys. Rev. B 40, 1790 (1989); Phys. Rev. B 45, 7, 3565 (1992).