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The lineshape of inelastic neutron scattering in the relaxor ferroelectrics
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We show that a microscopic reason for a steep dropping of the optical phonon branch into the acoustic one (the
so-called waterfall effect) in relaxor ferroelectrics may be the coupling of phonons with the defects and impurities
of different kinds, which is always present in relaxors. Namely, we do not specify the type of impurities but rather
represent them as an ensemble of so-called two-level systems (TLS). This approach permits to trace the evolution of
the „waterfall“ with temperature and the TLS concentration. To facilitate the planning of experiments on inelastic
neutron scattering, we present a modification of the so-called Latin Hypercube Sampling method, which, based on
some significance criteria, permits, to perform the measurements which are the most signeficant to elucidate the
physical nature of, e. g., phonon dispersion laws in relaxor ferroelectrics.

Partial financial support was given to this work by the European Community 5th Framework Programme
(MEVIPRO Project).

1. Introduction

The advantages of the neutron scattering method (as
compared to, e. g., Raman spectroscopy) in the investigation
of ferroelectrics and antiferroelectrics are well known [1,2].
Since the wavelenght of neutrons equals (by order of magni-
tude) to the lattice constant of a solid and their energy and
momentum is comparable to that of phonons, the neutron
scattering permits to obtain the information inaccessible by
other (e. g. optical) methods. For instance, it is possible to
obtain the dependence of phonon energy on its momentum
known as its despersion law. Inelastic neutron scattering
permits to obtain the detailed information about soft phonon
mode (and actually any other phonon mode) dispersion
throughout entire Brillouin zone. Such investigations for
relaxor ferroelectric PbMg1/3Nb2/3O3 have been performed,
e. g., in [3]. It is also possible to study the thermal
displacements of ions from their equilibrium positions in the
elementary cell, also during ferroelectric phase transition.
Besides that the inelastic neutron scattering is free from
limitations imposed by the optical selection rules.

Recently, much attention has been paid to the investi-
gation of phonon dispersion in relaxor perovskites. The
main peculiar (and puzzling) feature here is the so-called

”
waterfall effect“ or very steep dropping of the optic

phonon branch into acoustic one at some value qwf of
momentum transfer. This effect has been first observed
in [4] and qwf was interpreted as a characteristic wave

vector corresponding to the reciprocal size of so-called polar
nanoclusters (in other words, short range ordered polar
clusters), which prevent the optical phonons with q < qwt

to propagate in a lattice.
In the disordered ferroelectrics, the size of the above

nanoclusters is defined by the so-called correlation radius.
Latter quantity, being the characteristic length of the
fluctuations of polarization, is a characteristic feature of
any ferroelectric (antiferroelectric) substance, see, e. g. [5].
The correlation radius grows infinitely near the ferroelec-
tric (antiferroelectric) phase transition temperature. The
knowledge of the soft mode dispersion law at different
temperatures permits to extact the temperature dependence
of the correlation radius. Measurements of the correlation
radius in the PbMg1/3Nb2/3O3 (PMN) relaxor [6,7] revealed
its peculiar temperature dependence: a plateau at T ≤ Tg

(Tg is the freezing temperature of the dipole glass state)
and another plateau at T ≥ 400 K.

The waterfall effect was later observed in a number
of relaxors [8] and described in terms of coupled optical
and acoustic phonon branches in [9]. The authors of [9]
based their explanation on the model, suggested in the
earlier work [10]. Their key assumption was the drastic
increase of the damping of the

”
bare“ (i. e. before

coupling) optical phonon branch at q ≤ qwf. Another
explanation of the waterfall effect was proposed in [11],
which uses essentially the same approach as above (i. e.
the mode coupling model), but does not attribute qwf to
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the size of polar nanoclusters. In other words, the authors
of [11] do not assume the sudden change of optical mode
damping at q ≤ qwf, but rather use a model of two coupled
damped harmonic oscillators representing optic and acoustic
branches. The coefficients of the corresponding

”
bare“

dispersion laws as well as of damping have been taken
phenomenologically from the best fit to experiments.

All above approaches do not take into account the influ-
ence of the ensemble of defects and impurities (inherent
to any disordered ferroelectric and relaxor in particular)
on the phonon dispersion law. One of the aims of the
present paper is to suggest a formalism, permitting to
do that. The main physical idea is that impurities and
defects of different kind (for instance, impurity dipoles)
interact with each other indirectly via one of the transversal
optical phonon branches of a host dielectric. Due to this
interaction, the above mode by itself softens (i. e. its
frequency being renormalized by the impurities becomes
zero at some temperature and generally speaking wave
vector q) so that the ferroelectric phase transition may
occur. This mechanism had been shown to be the origin
of ferroelectricity in the incipient ferroelectrics [12]. The
long wavelength dispersion of the soft phonon mode of
such system was essentially renormalized by the impurities,
as compared to the case of host incipient ferroelectric.
This renormalized dispersion law defines the width of
the distribution function of random fields (created by the
impurity ensemble [13]) that influences all the observable
physical quantities of the disordered ferroelectrics. The
static and dynamic properties of the disordered systems have
been attributed to and expressed via the correlation radius
of a host lattice (see, e. g. [5,14,15]). The host lattice is
KTaO3 in the case of K1−xLixTaO3 (KTL) [12] and Burns
reference phase in the case of relaxor ferroelectrics [16].

The experimental investigations of relaxor ferroelectrics
by inelastic neutron scattering method are dependent
on many parameters (see, e. g. [3,6,7]) like temperature,
concentrations of different kinds of defects and impurities
(sometimes called degree of disorder), vectors of the
reciprocal lattice etc. To draw the correct conclusions
from such multifactor experiment, we should perfectly
know, which measurements (i. e. for which parameter
values) give the most significant information for the system
considered. Additional factor here is that the neutron
scattering experiments are quite costly and corresponding
equipment is present in very small number of laboratories.
So, the best way to improve the effectiveness of neutron
scattering experiments is to plan them in advance. Usually,
the task of multifactor experiment planning is performed
by the so-called Latin Hypercube Sampling (LHS) method,
first introduced by McKay et al. [17]. In this method,
the space of (n) experimental parameters is represented as
n-dimensional Euclidean space, where the point correspond
to each specific measurement performed with certain set
of above parameters. In the standard LHS method, all the
parameters are supposed to be of the same significance so
that the number of possible experiments is too high to be

performed in reasonable time. Here we present a modifica-
tion of the LHS method, which, based on some significance
criteria, permits to perform the measurements which are
the most significant to elucidate the physical nature of, e. g.,
phonon dispersion laws in relaxor ferroelectrics.

2. Neutron scattering lineshape of the
disordered dielectric

It is well-known (see, e. g. [2,18]) that the differential
cross section of the neutron scattering is proportional to
a Fourier image of the density-density correlation function

S(K, ω) =
∫

P(r, t) exp[i (Kr− ωt)]d3rdt, (1)

where

P(r, t) =
∫
〈ρ(r′, 0)ρ(r′ + r, t)〉d3r. (2)

Here angular brackets mean the quantum-statistical aver-
aging, ~K is a vector of a scattered neutron momentum,
~ω = ~2K2/2mk is its energy.

The scattering density ρ(r, t) can be expressed in the
form

ρ(r, t) =
∑

i

bi δ
(
r− ri (t)

)
, (3)

where bi is a scattering length for the i -th nucleus localized
at the point

ri (t) = rlk + ulk(t), (4)

where rlk is the equilibrium position of the k-th atom in
the l -th elementary cell, ulk(t) is its displacement. If this
displacement is due to lattice vibrations, we can expand it
over the phonon normal coordinates in the following way

ulk(t)=
(

~
2Nmk

)1/2∑
q, j

λk j(q)[Qj (q, t) exp(i qr lk)+c.c.].

(5)
Here Qj (q, t) is the normal coordinate of the phonon for the
j -th branch of the phonon spectrum, λk j is the polarization
of the phonon, q is its wave vector related (by virtue of
momentum concervation) to the wave vector K of scattered
neutron

K + q = τ ,

where τ is a reciprocal lattice vector. Note that most
often the neutron scattering measurements in relaxors are
performed for τ = (2, 0, 0) and (3,0,0) (see, e. g. [3,8]).
We will use this fact below for planning experiments by the
LHS method.

The expression for S(K, ω) assumes the following form
with respect to relations (3)–(5)

S(K, ω) = N
∑
q j

|Fj (K)|2
∫
8(q, t) exp(iωt)dt, (6)

where Fj (K) is a structural factor of inelastic scattering
and 8(q, t) = 〈Qj (−q, 0)Qj (q, t)〉 is the phonon (of the
j -th branch) displacement correlation function.
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Since the experimentally sensitive quantity is just above
correlator, here we are not interested in the precise form
of Fj (K). There are many ways to calculate the correlator.
Here, in order to capture the waterfall effect, we will use the
model of two coupled oscillators, being optical and acoustic
modes. In this paper, trying to keep everything as simple
as possible, we assume that only optical mode is coupled to
the impurity ensemble and this coupling is the source of its
damping.

The fluctuation-dissipation theorem relates the function
S(K, ω) ≡ S(q, ω) to the imaginary part of the retarded
phonon Green’s function Ĝ(q, ω), which in the case of two
coupled oscillators will be a 2× 2 matrix. More precisely

S(q, ω) =
T
ω

F(q)∗Im[Ĝ(q, ω)]F(q), (7)

where F(q) is a structure factor,

Ĝ−1(1, ω) =

(
ω2 − ω2

TA 1

1 ω2 − ω2
TO−51 − i52

)
, (8)

5∗ = 51 + i52 is a self-energy, which we write in the form
customary for interaction of phonons with two-level systems
(TLS) [19], namely

5∗ = α0

ω2
m∫

0

P(λ)dλ
ω2 + i0ω − λ . (9)

Here α0 is a phonon-TLS coupling coefficient, 0 defines the
damping of optical phonons due to their interaction with
TLS [23]1 and P(λ) is a TLS density of states. The value
ω2

m = cω2
D (ωD is Debye frequency) defines the width of

the distribution function P(λ) so that it is normalized by the
condition

ω2
m∫

0

P(λ)dλ = c, (10)

where c = NTLS/N is a dimensionless concentration of TLS,
defined as a ratio of the TLS number NTLS to the host lattice
particle number N, so that 0 < c < 1. We take P(λ) in a
simple form

P(λ) =
c

ln 2
1

ω2
m + λ

. (11)

To calculate the intensity S(q, ω), we should now evaluate
integrals (9) with respect to (11) and substitute the
dispersion laws for optical and acoustic phonons into inverse
matrix (8). We take the dispersion laws in long-wavelength
limit

ω2
TA = s2

0k2,

ω2
TO = a(T − Tc) + bk2, (12)

where we take Tc ≈ 400 K from [3]. Now integrals (9) can
be easily evaluated. Their explicit form is quite cumbersome
so we do not cite it here.

1 We do not consider here the imaginary part of 5∗ (9) (namely

5∗ = α
∫ ω2

m

0
P(λ)dλ

ω2+i 0−λ ) due to the Lifshitz tails of the density of states

as it is much smaller then its intrinsic damping term.

The specific calculations have been performed for the
following set of dimensionless variables

y =
ω

ωD
, yTA,TO =

ωTA,TO

ωD
, τ =

T
Tc
,

κ =
aTc

ω2
D

, q =

√
b
2

k
10ωD

, s =
10s0

√
2√

b
,

α =
α0

ω4
D

, γ =
0

ωD
, δ =

1

ω2
D

. (13)

Keeping in mind that in (12) a(T − Tc) ∝ 1/χ, χ is a
dielectric susceptibility of relaxor, it can be shown that
κ ∼ 1. Also, s ∼ 1. We perform our specific calculations for
a set of following values: α = 0.8, κ = 1, s = 2, δ = 10q2,
γ = 2. The shape of intensity profiles as functions of k
and ω are qualitatively similar to those from [8]. The most
interesting features reveal themselves in the dispersion curve
ω(k) (y(q) in dimensionless variables), obtained by usual
procedure of taking the positions of maximum intensity (7)
for several constant ω values.

Figure 1. Dispersion curves calculated for different temperatures
(thick lines) for F = (0.2, 0.8) and c > 0.4. a — general view for
larger temperature step, b — detailed wiew, showing the

”
decay“

of the
”
waterfall“. Figures near curves correspond to values of

the dimensionless temperature τ . Thin dashed lines correspond
to the frequencies of coupled optical and acoustic modes for
corresponding temperatures.
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Figure 2. Dispersion curves calculated for different c. Here
τ = 1.3, F = (0.2, 0.8). Thin dashed lines are coupled optical and
acoustic modes frequencies. Curve 1 corresponds to the same
values (i. e. c > 0.4) and F = (0.5, 0.5).

The above curves y(q) are reported in Fig. 1 for different
temperatures. It is seen from Fig. 1 that at temperatures
close to Tc the y(q) curves almost vertically (with very small
s-shape) rise towards (coupled with acoustic) corresponding
optical branch. At higher temperatures this

”
jump“ is more

s-shaped and at some temperature (around 1.61 in our
case, see Fig. 1, b)

”
splits“ into two parts, one of them

beins close to the acoustic and other to optical modes.
At further increasing of temperature the

”
acoustic“ part

degenerates into a small segment, which disappears at
τ ≈ 1.71. For higher temperatures instead of the waterfall
we have separete (although coupled by virtue of δ) acoustic
and optical branches. It should be noted here, that the parts
of s-shaped curves y(q), where dy/dq< 0, correspond
to the minimun of corresponding constant energy curves.
This means that two

”
waterfalls“ (i. e. a sharp drop or

increase in the corresponding dispersion curve) can be
observed experimentally by increasing or decreasing the
wave vector q. Possible experimental observation of such

”
waterfall hysteresis“ may be an argument in favor of the

present model and contrary, the absence of the effect would
demonstrate that feature is just an artifact of it. Note also
that here we adjust the rest parameters in such a way,
that waterfall disappears around T0 ≈ 1.6Tc = 640 K, which
corresponds to Burns temperature for PbMg1/3Nb2/3O3.

The above dispersion curves are also concentrationally
dependent. This dependence is shown in Fig. 2. It is seen
that, while lowering the concentration, the waterfall behaves
qualitatively similar to that while rising the temperature.
Also, at very small concentrations there are two distinct
phonon branches without any waterfall effect. This is due
to the simple fact that, at c→ 0, 5∗ ≡ 0 so that there is no
imaginary part in the matrix Ĝ.

Curve 1 in Fig. 2 shows the curve y(q) for different
bare structural factor F = (0.5, 0.5). It is seen that the
position of the waterfall qwf remains almost unchanged,
while the s-shape disappears. Our analysis shows that the

s-shape is regained at higher temperatures or at smaller
concentrations, while qwf will follow the corresponding
value for F = (0.2, 0.8).

3. The optimization of planning of
experiment by modified LHS method

To draw more specific conclusions about vibrational
spectra of relaxors, it is necessary to perform many
experiments to extract reliable phonon dispersion curves
from above inelastic neutron scattering lineshapes. Here
we are going to present the modified LHS method to plan
such experiments.

In the LHS method (see e. g. [17,20–24]), the range of all
d input variables (i. e. temperature, impurity concentrations
etc in our case) is divided into n intervals, n being the
number of sampling points. Each interval for each variable
is randomly chosen only once with equal probability.
A sampling point is chosen within each interval using the
uniform probability density. Such procedure prevents the
formation of the sampling points clusters.

Formally, suppose that xi , j (i = 1 . . . n, j = 1 . . . d) is
the i -th value of the j -th variable (i. e. experimental
parameter), n being the number of sampling points and
d being the number of input variables. Let us define pi , j

as the n + d matrix, each column being an independent
random permutation of the set (1 . . . n). Moreover, let ui , j

be n + d values of the uniform [0,1] independent random
variables. The LHS poinst are defined as

xi , j =
1
n

(pi , j − ui , j ). (14)

In this case, the points are well scattered and do not
form clusters because observations are restricted within the
respective interval. Moreover, it is possible to run the LH
sampling procedure many times to maximize the minimal
distance between two points in the generated sample.

Our modification of the LHS method is to apply the pro-
bability density functions (PDF) to change the distribution
of the parameters of experiment. Suppose that xi , j is a
standard LH sample and Fj (x) is a probability function (for
the j -th variable) corresponding to the probability density
function (or distribution function) f j (x). We define the
modified LH sample as

xmod
i , j = F−1

j (xi , j ). (15)

Our extensive numerical modelling of the LHS planning of
experiments in different physical systems show that very
accurate adjustment of experimental parameters can be
accomplished by following three parameters PDF

f (x) =


b+(1−b)(p+1)

(
x
a

)p
, x ∈ (0, a]

b+(1−b)(p+1)
(

1−x
1−a

)p
, x ∈ (a, 0),

(16)

where: a ∈ (0, 1) affects the position of the position of the
peak of function f (x), b ∈ [0, 1 + 1/p] affects the elevation
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Figure 3. Examples of the density function for various parameters a, b and p: a — a = 0.2, b = 0.5, p = 1; b — a = 0.8, b = 0.5,
p = 3; c — a = 0.8, b = 0.5, p = 0.3; d — a = 0.8, b = 2.8, p = 0.3.

of the peak and p ∈ [0,∞) affects the strength of the curve.
For a = 0 or a = 1 the f (x) in (16) is undefined, so we
have to use boundary PDF instead

f (x) = b + (1− b)(p + 1)(1− x)p, a = 0,

f (x) = b + (1− b)(p + 1)xp, a = 1. (17)

For b = 0.5, p = 1 (and any a) we have standard triangle
distribution. Increasing the parameter p causes stronger
concentration of the PDF points in the area appointed
by parameter a. Decreasing the parameter p weakens
the concentration. If b > 1, we obtain the dispersion of
PDF points rather then their concentration. For b = 1 or
p = 0, Eq. (16) gives the standard uniform PDF in [0,1],
f (x) = 1. To visualize the above behavior of f (x), we plot
its shape for different values of parameters in Fig. 3. Thus,
adjusting the a, b and p parameters allows us to modify
the distribution of the points freely, and therefore to include
the knowledge of an expert into the LH sampling method.
Such knowledge in our case is, for example, the choice of
the proper reciprocal lattice vector τ (in [3], it is (3,0,0))
to clearly observe the soft mode. In particular, the authors
of [3] have shown that observation of the soft phonon mode

in PMN is much easier (as compared to previous results
performed in the Brillouin zone centered at (2,0,0)) in the
[010] direction near the (3,0,0) reciprocal lattice vector.

The next modification we propose is to allow a researcher
to indicate areas he wants to put a sampling point in.
On the other hand, it is possible to exclude certain areas
from the sampling procedure. Including (excluding) areas
is only allowed if there is still possibility to generate a
proper LH sample, e. g. it is forbidden to indicat more
than one area in the same row or to exclude all column.
The information about all indicated areas is stored in the
structure we call the

”
expert matrix“. After generating the

LH sample (see Fig. 4) the experiments should be done to
obtain the results. Then the surface of response parameters
(response surface) is created by interpolating the results
throughout the desured area. The surface is then used for
further analysis, e. g. optimization procedures.

Our comparison of the standard and modified LHS
methods according to several criteria show that the modified
LHS method substantially decreases the number of mea-
surements, necessary to achieve our goal. Latter method is
especially useful when it is possible to include the expert
knowledge (see above) into consideration, see Appendix for
details.
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Figure 4. Standard (a) and modified (b–d) LHS grids. In part a n = 8, d = 2, parts b, c correspond to n = 15, d = 2 and parameters
a, b and p from Fig. 3, b and d respectively. Fig. 4, d corresponds to the modified LHS grid with the

”
expert matrix“, the areas marked

with crosses include sampling points and those marked with open circles are omitted in the sampling procedure.

4. Conclusion

In the present paper we have considered the possibilities
of theoretical and experimental investigations of relaxor
ferroelectrics by inelastic neutron scattering method. We
suggest a simple model which permits to describe the
peculiarities of inelastic neutron scattering lineshapes in
ferroelectric relaxors. The essence of our model is to
consider the interaction of the phonon subsystem of relaxor
ferroelectrics with the ensemble of defects and impurities
which are always present in such cubstance. This interaction
has been taken into account in quite general yet simple
form without consideration of detailed nature of defects and
impurities. Our simple approach permits to obtain tem-
perature and concentrational dependences of the so-called
waterfall effect, which recently has attracted much attention
of scientists. Our dependencies of corresponding dispersion
laws on temperature and the impurities concentration are
in a qualitative agreement with available experimental
data (see, e. g. [8,9,11]). Unfortunately, to make more
specific comparison, we need to take into account many
additional factors, for instance the acoustic phonon damping.
Even in our simple model, the problem remains highly

multiparametric — we have six parameters of the model
additionally to the temperature and concentration. Small
variation of several above parameters may cause very large
diffenences in behaviour of calculated S(q, ω). To have
better parameters of our theory (such as κ, s0 etc), more
experiments on relaxors aiming to obtain, e. g., the precise
values of coefficients in phonon dipersion laws, should
be performed. Also, other approaches can be used as
complementary ones to calculate S(q, ω). One of them
is the so-called random field method, which has already
been applied for calculation of the correlation radius in
relaxors [5]. The latter calculation is also suitable to
calculate the renormalized (by dipole impurities) dispersion
law of the soft phonon mode in relaxors. The inclusion
of other types of impurities (like elastic dipoles and point
electric charges) into consideration will permit to estimate
their partial contribution into the peculiarities of neutron
scattering in relaxor, e. g. in waterfall effect.

Also, we suggest that to optimize the (multifactor) exper-
imental investigations of relaxor ferroelectrics by inelastic
neutron scattering method one may use the modified LHS
method. The essence of modification is the introduction

9 Физика твердого тела, 2005, том 47, вып. 10
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of empirical PDF (16) which permits to include the

”
knowledge of an expert“ into consideration.

We note finally, that to distinguish between different
microscopic physical mechanisms, leading to appearance
of peculiarities of neutron scattering in relaxors like the
discussed waterfall effect, the experiments, elucidating the
specific features of a certain theoretical model (like presence
or absence of a s-shape on the waterfall curve), are highly
desirable.

Appendix A

In this paragraph we will compare the standard and
modified LHS method according to several criteria. At
first we will generate standard LH sample and modified
LH sample the size of 10, 15, 20, 25, 30, 35 and 40 points.
To properly count the errors of response surface adjustment
we will take as a results an analytical function with single
extreme ( f 1, see Fig. 5, a) and, in second case, a function
with two separate maxima located on the boundaries — one
of them a bit higher than the other ( f 2, see Fig. 5, b).

Figure 5. Functions used in tests (a) function f 1 with a single
maximum; (b) function f 2 with two separate maxima.

Figure 6. Modified LHS design: for function f 1 (a) and for
function f 2 (b).

As a response surface model we will apply the widely
used kriging interpolation method [25]. Then, we will
compare obtained surfaces accouding to the following
criteria —

”
hitting the target“ (i. e. the distance between

the maximun of the function we are modeling and the
maximum of the evaluated surface)

Err d =
√

(xmax
1 − x̂max

1 )2 + (xmax
2 − x̂max

2 )2 (A1)

and the total mean square error (MSE) of the surface
adjustment

Err MSE =
1

N2

N∑
i , j =1

(
f (xi

1, x j
2)− f̂ (xi

1, x j
2)
)2
. (A2)

Considering the random character of the LHS design we
will repeat every experiment 100 times and take the average
values of the calculated criteria as a result.

To simulate the knowledge of an expert suspecting
nonlinearity in certain areas we will modify the distribution
of the LH sample points as shown in Fig. 6.
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Figure 7. Err d of standard (dashed) and modified (solid) LHS,
for function f 1 (a) and for function f 2 (b).

Figure 8. Err MSE of standard (dashed) and modified (solid) LHS,
for function f 1 (a) and for function f 2 (b).

Criterion 1 —
”
hitting the target“

This is a frequently encountered goal for an experiment.
Especially when dealing with optimization it is required to
properly indicate the extremum of the function. In our
experiment we will focus on finding the location of the test
functions’ maxima. As a measure we will take the distance
between the locations of real and evaluated maxima. As
we can see in Fig. 7, the error of finding the maximum
is significantly smaller (for both analyzed functions) if we
use the modified LHS. Of course, it also decreases when
we enlarge the size of the sample, still it is higher for the
standard LHS.

Criterion 2 — mean square error

In this case, we will focus on the overall adjustment of
the response surface. The measure will now be the mean
square error. For function f 1 (single maximun) we observe
better adjustment of the response surface when using the
modified LHS (see Fig. 8). On the other hand, the surface
obtained when using standard LHS is significantly better
for function f 2. The reason is that striving for the better
adjustment near the maxima of f 2 caused worse fitting in
the area between.

We are indebted to Bozena Hilczer for critical reading of
manuscript and attention to the work and to Sergei Vakhru-
shev for many helpful remarks.
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