удк 621.315.592 Нелинейная фотолюминесценция варизонных твердых растворов $AI_xGa_{1-x}As$

© В.Ф. Коваленко, А.Ю. Миронченко, С.В. Шутов

Институт физики полупроводников Национальной академии наук Украины, 73008 Херсон, Украина

(Получена 2 июля 2001 г. Принята к печати 13 сентября 2001 г.)

Изучены зависимости интенсивности фотолюминесценции нелегированных и легированных варизонных твердых растворов $Al_x Ga_{1-x} As$ ($x \leq 0.36$) от уровня возбуждения J ($10^{19} \leq J \leq 10^{22}$ квант/см²с) при различных значениях встроенного электрического поля $E = e^{-1} \nabla E_g$ ($85 \leq E \leq 700$ В/см). Установлено, что при ускоряющем действии поля E зависимость интенсивности краевой фотолюминесценции (I) от уровня возбуждения (J) имеет сложный характер. Нелинейность зависимости I(J) объясняется вкладом двухфотонного поглощения фотолюминесцентного излучения при его переизлучении. Существует оптимальный диапазон значений E ($120 \leq E \leq 200$ В/см), обеспечивающих наибольший вклад двухфотонного поглощения в процесс переизлучения в нелегированных твердых растворах.

Излучательные характеристики варизонных полупроводников при ускоряющем действии встроенного электрического поля $E = e^{-1} \nabla Eg$ (∇E_g — градиент ширины запрещенной зоны) в общем случае определяются дрейфом неравновесных носителей заряда (ННЗ) в этом поле и фотонным дрейфом ННЗ, связанным с переизлучением рекомбинационного излучения. Вклад этих факторов в формирование люминесцентных свойств определяется параметрами полупроводников [1]. Так, при малых значениях Е преобладающим является фотонный дрейф ННЗ, обусловливающий формирование как спектрального состава, так и интенсивности излучательной рекомбинации [2-5]. Люминесцентные свойства полупроводников со средними и большими значениями ∇E_g , в которых доминирующим в процессе переноса ННЗ является их дрейф в поле Е, определяются совместным действием дрейфа ННЗ в поле *Е* и переизлучения. Исследованию вклада первого фактора в формирование спектрального состава излучения в таких полупроводниках уделено большое внимание [1,6,7]. Влияние же переизлучения на их люминесцентные характеристики изучено недостаточно. Известно [8,9], что при дрейфе HH3 в поле Eпереизлучение приводит к увеличению внешнего квантового выхода люминесценции. Однако механизм процесса переизлучения в таких полупроводниках практически не был исследован.

В настоящей работе рассмотрены особенности переизлучения в варизонных твердых растворах $Al_xGa_{1-x}As$ при дрейфовом механизме переноса ННЗ в поле *E*, установленные из измерения зависимости их спектров фотолюминесценции от уровня возбуждения.

1. Методика эксперимента

Исследовались нелегированные $(n \leq 10^{16} \,\mathrm{cm^{-3}})$ и легированные теллуром $(n \simeq 10^{18} \,\mathrm{cm^{-3}})$ эпитаксиальные слои твердых растворов $\mathrm{Al}_x\mathrm{Ga}_{1-x}\mathrm{As}$, выращенные из ограниченного объема раствора–расплава на подложках

GaAs. Состав слоев изменялся в направлении оси роста — на границе раздела слой-подложка содержание алюминия было максимальным ($x \simeq 0.36$) и уменьшалось к поверхности, где x = 0. Состав слоев изменялся линейно по толщине на участке, примыкающем к подложке и составляющем приблизительно 80% общей толщины d. Значения ∇E_g для разных нелегированных структур изменялись в пределах $85 \leq \nabla E_g \leq 700$ зВ/см. Увеличение ∇E_g обеспечивалось уменьшением толщины выращиваемых слоев при одном и том же содержании Al у границы раздела подложка-слой, которая в исследованных твердых растворах изменялась в пределах $16 \leq d \leq 70$ мкм. В легированных слоях значения ∇E_g составляли 150–170 зВ/см.

Фотолюминесценция (ФЛ) при 77 и 300 К возбуждалась с широкозонной и узкозонной сторон эпитаксиального слоя, т.е. со стороны E_g^{max} и E_g^{min} , как показано на вставке рис. 1, с использованием наклонных шлифов структуры [1] световым зондом диаметром ~ 30 мкм аргонового лазера ($\lambda = 0.488 - 0.514$ мкм). Интенсивность возбуждения фотолюминесценции *J* изменялась в пределах $10^{19} \leq J \leq 10^{22}$ квант/см²с. Спектры ФЛ регистрировались с помощью германиевого фотодиода по стандартной методике [1]. Внешний квантовый выход излучения оценивался с помощью калиброванного кремниевого фотодиода. Эффективная длина смещения ННЗ l_+ определялась по наклону низкоэнергетического спада полосы краевого излучения [1].

2. Экспериментальные результаты

Спектры ФЛ нелегированных твердых растворов содержали только полосу краевого излучения. При возбуждении ФЛ со стороны E_g^{\max} , т.е. при ускоряющем действии поля E, форма спектров ФЛ зависела от величины этого поля и уровня возбуждения J. Для краевого излучения зависимость его формы от E при низких уровнях возбуждения ФЛ ($J \leq 2 \cdot 10^{20}$ квант/см²с)

Рис. 1. Изменение формы спектра краевой фотолюминесценции нелегированного эпитаксиального слоя с $eE = \nabla E_g$ = 160 эВ/см в зависимости от уровня возбуждения при возбуждении со стороны E_g^{max} (1-4) и со стороны E_g^{min} (1', 4') при T = 300 К. J, квант/см²с: I, I' — 10¹⁹; 2 — 10²⁰; 3 — 2.5 · 10²¹; 4, 4' — 10²². На вставке представлены изменение ширины запрещенной зоны по толщине эпитаксиальных слоев для нелегированных твердых растворов и схема эксперимента. Стрелки — направления возбуждения фотолюминесценции. Нумерация стрелок соответствует нумерации спектров (1-4, I', 4').

рассмотрена нами в работе [6]. На рис. 1 показано изменение формы полосы краевого излучения одного из нелегированных слоев в зависимости от уровня возбуждения при освещении как со стороны E_g^{\max} (I^+ , кривые 1-4), так и со стороны E_g^{\min} (I^- , кривые I', 4'). Видно, что с увеличением Ј происходит расширение полосы в область низких энергий и смещение области излучательной рекомбинации из широкозонного в узкозонные участки слоя, которое проявляется в сдвиге коротковолнового максимума hv_m в длинноволновую область. Изменение формы спектра обусловливается увеличением эффективной длины смещения HH3 l₊ с ростом J. Величина сдвига hv_m в коротковолновую область пропорциональна увеличению l_+ . Значения этих характеристик зависят также от величины встроенного поля Е (рис. 2). При высоких уровнях возбуждения величина l_+ в слоях с $E \approx 160-260$ В/см максимальна.

С увеличением J имеет место возрастание интегральной интенсивности краевой полосы $\Phi \Pi I_{\Sigma}^+$ при освещении со стороны E_g^{max} , описываемое степенной зависимостью

$$I_{\Sigma}^{+} = CJ^{m}, \qquad (1)$$

где *С* коэффициент пропорциональности, учитывающий геометрию эксперимента, угловое распределение интенсивности ФЛ, показатель преломления полупроводника, взаимодействие возбуждающего света с полупроводником, скорость рекомбинации, внутренний квантовый выход ФЛ, время жизни ННЗ.

При низких и средних значениях $J \lesssim 10^{21}\,\mathrm{kBaht/cm^2c}$ интенсивности I_{Σ}^+ увеличение сверхлинейно $(m = m_{\Sigma} > 1)$. Степень сверхлинейности зависимости (1), т.е. величина показателя m_{Σ} , пропорциональна сдвигу коротковолнового максимума полосы краевого излучения и с ростом Е она проходит через максимум (рис. 3). В спектрах ФЛ слоев с наиболее существенным смещением параметр m_{Σ} увеличивается $hv_{\rm m}$ с ростом Ј, достигая при средних уровнях возбуждения

Рис. 2. Зависимости эффективной длины смещения неравновесных носителей заряда (1-3) и положения коротковолнового максимума в спектрах фотолюминесценции (1'-3') для нелегированных эпитаксиальных слоев от уровня возбуждения при T = 300 К. Значения встроенного поля *E*, B/см: 1, 1' — 89; 2, 2' — 160; 3, 3' — 256.

Физика и техника полупроводников, 2002, том 36, вып. 5

Рис. 3. Зависимости интегральной интенсивности краевого излучения (1-5), показателя степени m_{Σ} в соотношении (1) от уровня возбуждения (1'-3'), а также максимального значения показателя степени m_{Σ}^{max} от величины встроенного поля (6) в нелегированных твердых растворах при возбуждении со стороны E_g^{max} (1-3, 1'-3', 6) и E_g^{min} (4, 5) при T = 300 К. *E*, B/см: *I*, *I'* — 89; *2*, *2'* — 160; *3*, *3'* — 700; *4* — \lesssim 160; *5* — > 200.

 $(10^{20} \lesssim J \lesssim 10^{21}$ квант/см²с) значений $m_{\Sigma} > 2$. При этом степень сверхлинейности (т.е. величина m) изменяется с интенсивностью I_{λ}^{+} при различных длинах волн λ одной и той же полосы излучения. В области коротковолнового максимума она минимальна и возрастает с увеличением длины волны излучения, достигая максимальных значений ($m_{\Sigma} \lesssim 4$) для низкоэнергетического максимума (см. вставку на рис. 4). При высоких уровнях возбуждения ($J > 10^{21}$ квант/см²с) зависимость (1) становится сублинейной (m < 1), причем с увеличением J, E и длины волны излучения λ показатель m уменьшается (рис. 3). При возбуждении со стороны $E_g^{\rm max}$ происходит увеличение внешнего квантового выхода краевого излучения $\eta_{\rm ex}$ с ростом уровня возбуждения от 0.5–1% при $J = 10^{19}$ квант/см²с до 3–10% при $J \simeq 10^{22}$ квант/см²с в зависимости от *E*. Наибольшие значения $\eta_{\rm ex}$ наблюдаются в слоях с наименьшими величинами поля и уменьшаются с увеличением *E*.

На рис. 5 представлены зависимости интегральной интенсивности краевого (I_{Σ}^+) и примесного $(I_{\Sigma im}^+)$ излучения от J в спектрах ФЛ легированных слоев. Видно, что зависимости $I_{\Sigma im}^+(J)$ также нелинейно зависят от уровня возбуждения — из сублинейных при $J \leq 10^{20}$ квант/см² с увеличением J они переходят в сверхлинейные с увеличивающимся показателем степени m_{Σ} . Это изменение $I_{\Sigma im}^+(J)$ сопровождается смещением максимума примесной полосы hv_m^{im} в длинноволновую область спектра. При $J > 5 \cdot 10^{20}$ квант/см² с зависимость $I_{\Sigma im}^+(J)$ снова становится сублинейной. Этому ее участку соответствует область стабилизации положения hv_m^{im} (рис. 5).

Рис. 4. Спектральные зависимости интенсивности фотолюминесценции I_{λ}^{+} от уровня возбуждения *J* в различных участках полосы краевой фотолюминесценции, как показано на вставке (интенсивности $I_{\lambda_1}^{+}$, $I_{\lambda_2}^{+}$ и $I_{\lambda_3}^{+}$ соответствуют их зависимостям от *J*, представленным кривыми *I*-3), для нелегированного слоя твердого раствора с $E \simeq 180$ В/см и зависимость максимального показателя степени m_{λ}^{max} в соотношении (1) от энергии излучаемых фотонов в полосе краевой фотолюминесценции (4) при T = 300 К.

Рис. 5. Зависимости интегральной интенсивности краевой фотолюминесценции (*I*), примесного излучения (*2*, *3*), а также энергии максимума полосы примесной фотолюминесценции (*4*) от уровня возбуждения для одного из легированных слоев с E = 154 В/см при возбуждении со стороны E_g^{max} (*1*, *2*, *4*) и E_g^{min} (*3*) при T = 77 К. На вставке представлена форма спектра этого слоя твердого раствора при возбуждении со стороны E_g^{max} (*J* = 10²¹ квант/см²с).

При возбуждении ФЛ со стороны E_g^{\min} , т.е. при тормозящем действии поля, форма полосы краевой ФЛ типична для прямозонных полупроводников постоянного состава (рис. 1, кривые 1', 4'). Положение ее максимума интенсивности (I^{-}) определяется составом возбуждаемой области твердого раствора и не зависит от уровня возбуждения. Форма полосы не изменяется. Интегральная интенсивность $\Phi \Pi I_{\Sigma}^{-}$ в нелегированных слоях с Е < 200 В/см возрастает линейно $(m_{\Sigma} = 1)$ при низких и средних уровнях возбуждения и сверхлинейно $(m_\Sigma \simeq 1.8)$ при высоких значениях J $(J \gtrsim 2 \cdot 10^{21}$ квант/см²с). В нелегированных слоях с $E \gtrsim 200$ В/см и в легированных слоях линейная зависимость $I_{\Sigma}^{-}(J)$ имеет место во всем интервале изменения J(рис. 3). Внешний квантовый выход краевой ФЛ при этом остается постоянным и не превышает 0.3-0.8% для различных слоев твердых растворов.

С увеличением *J* как форма примесной полосы излучения, так и зависимость $h\nu_{\rm m}^{\rm im}$ от *J* не изменяются, а интенсивность I_{Σ}^{-} линейно возрастает с уровнем возбуждения при $J < 10^{20}$ квант/см²с и сублинейно при более высоких *J* (рис. 5).

3. Обсуждение результатов

При однофотонном поглощении возбуждающего света зависимость (1) может быть линейной, когда $\Delta n < n_0$ (Δn и n_0 — концентрации HH3 и основных равновесных носителей заряда соответственно), при этом показатель степени $m_{(1)} = 1$ [индекс (1) указывает на однофотонное поглощение], либо квадратичной, когда $\Delta n > n_0$, при этом $m_{(1)} = 2$ [10]. При двухфотонном поглощении интенсивность межзонной ФЛ $I_{\rm PL}$ также является степенной функцией уровня возбуждения J, но с показателем степени $m_{(2)}$ [индекс (2) указывает на двухфотонное поглощение] в 2 раза бо́льшим, чем при однофотонном поглощении [11]:

$$I_{\rm PL} = C_{(2)} J^{m_{(2)}} = C_{(2)} J^{2m_{(1)}}, \tag{2}$$

т. е. при $\Delta n < n_0$ зависимость (2) будет квадратичной.

Создание же концентрации ННЗ $\Delta n > n_0$ обусловит зависимость $I_{\rm PL}$ от J в 4-й степени.

Таким образом, при реализации только однофотонного или только двухфотонного возбуждений и при выполнении условия $\Delta n < n_0$ показатель степени *m* в зависимости (1) будет принимать значения 1 или 2, а при выполнении условия $\Delta n > n_0$ — значения 2 или 4 соответственно. Очевидно, что реализация одно- и двухфотонного механизмов возбуждения ФЛ одновременно (при $\Delta n < n_0$ и $\Delta n > n_0$) обусловит непрерывный ряд значений *m* в интервале $1 \le m \le 4$ в зависимости от вклада того или иного механизма и уровня возбуждения.

Наличие в зависимостях $I^+_{\Sigma}(J)$ и $I^+_{\lambda}(J)$ признаков, характерных для двухфотонного возбуждения ФЛ — сверхлинейности и "сверхквадратичности" с различными значениями показателя степени т $(1 < m_{\Sigma} \le 2.5; 1 < m_{\lambda} \le 4),$ — позволяет сделать следующее утверждение. При возбуждении варизонных твердых растворов $Al_xGa_{1-x}As$ со стороны E_g^{max} в измеряемую интенсивность краевой ФЛ дает вклад излучение, возникающее в результате рекомбинации ННЗ, генерированных как при однофотонном приповерхностном поглощении возбуждающего лазерного света, так и при одно- и двухфотонном поглощениях в объеме кристалла в процессе многократного переизлучения. О роли переизлучения в формировании интенсивности ФЛ свидетельствуют значения внешнего квантового выхода излучения η_{ex} при средних и высоких уровнях возбуждения, существенно превышающие максимальное теоретическое значение $\eta_{\mathrm{ex}}\simeq 1.5\%$ для однородных (гомозонных) полупроводников А^{III}В^V при внутреннем квантовом выходе излучения $\eta_{\rm in} = 100\%$ и выводе излучения через плоскую полированную поверхность в отсутствие переизлучения.

Совместное влияние: дрейфа ННЗ во встроенном поле E; координатной зависимости вероятности излучательной рекомбинации, обусловленной полем; расширения области возбуждения с ростом J, а также переизлучения, приводят к тому, что в различных участках слоя твердого раствора могут иметь место различные механизмы рекомбинации (линейный, квадратичный) и поглощения ФЛ (одно-, двухфотонный), причем их комбинация и роль в каждом из участков могут изменяться с изменением J. Поскольку I_{Σ}^+ является суперпозицией интенсивностей I_{λ}^+ от различных по составу участков, характеризующихся различным сочетанием механизмов рекомбинации ННЗ и поглощения ФЛ, то зависимость $I_{\Sigma}^+(J)$ имеет переменную степень сверхлинейности и "сверхквадратичности" m при разных значениях J.

Увеличение показателя степени m_{λ} в направлении дрейфа ННЗ связано, очевидно, с увеличением коэффициента двухфотонного поглощения $K_{(2)}$, описываемого для разрешенных переходов выражением [10]

$$K_{(2)}(h\nu) = a_1[h(\nu_1 + \nu_2) - E_g]^{1/2}\rho, \qquad (3)$$

где a_1 — коэффициент, зависящий от ориентации векторов поляризации фотонов hv_1 и hv_2 , ρ — плотность потока первичной ФЛ. Из соотношения (3) видно, что при одних и тех же значениях hv_1 , hv_2 и ρ = const значение $K_{(2)}$ возрастает при уменьшении E_g .

Зависимость параметра m_{Σ}^{\max} от величины встроенного поля E обусловлена, очевидно, следующими причинами.

Увеличение поля при E < 200 В/см приводит, с одной стороны, к увеличению коэффициента однофотонного поглощения ФЛ $K_{(1)}$, описываемого выражением [12]

$$K_{(1)}(z) = A[hv_1(z_1) - E_g(z_2) + E_g(z - z_2)]^{1/2}, \qquad (4)$$

где $z > z_2 > z_1$ — координаты в направлении уменьшения E_g ; $hv(z_1)$ — энергия фотона, излученного в координате z_1 ; $E_g(z_2)$ — ширина запрещенной зоны в координате z_2 ($E_g(0) = E_g^{max} > hv(z_1) > E_g(z_2)$). С другой стороны, увеличение E приводит к расширению области излучательной рекомбинации (в результате увеличения скорости дрейфа и эффективной длины смещения ННЗ l_+) в узкозонные участки слоя, в которых возрастает роль двухфотонного поглощения. Оба эти фактора увеличивают вклад переизлучения в генерацию ННЗ, что и приводит к возрастанию m_{Σ}^{max} с увеличением поля E в указанном диапазоне его изменения.

При E > 200 В/см величина l_+ становится сравнимой с толщиной исследуемых слоев или превышает ее. В этом случае с увеличением E все большая часть генерированных внешним возбуждением у широкозонной поверхности ННЗ достигает тыльной узкозонной поверхности, где рекомбинирует безызлучательно, о чем свидетельствует переход сверхлинейных и сверхквадратичных зависимостей $I_{\Sigma}^+(J)$ и $I_{\lambda}^+(J)$ в сублинейные

с выходом на насыщение в слоях с большими значениями *E* при высоких уровнях возбуждения. В результате с ростом *E* уменьшается доля HH3, рекомбинирующих излучательно в объеме, снижается вклад переизлучения в генерацию HH3, затрудняется или становится невозможным выполнение условия $\Delta n > n_0$ и, следовательно, уменьшается степень сверхлинейности зависимостей $I_{\Sigma}^{+}(J)$ и $I_{\lambda}^{+}(J)$.

При возбуждении со стороны E_g^{\min} характер зависимости $I_{\Sigma}^{-}(J)$ указывает на линейную рекомбинацию в нелегированных слоях с E > 200 В/см во всем интервале изменения J. В нелегированных слоях с E < 200 В/см линейная рекомбинация при низких и средних уровнях возбуждения сменяется квадратичной при $J > 10^{21}$ квант/см² с вследствие увеличения диффузионной длины HH3, а, следовательно, времени жизни HH3 с уменьшением ∇E_g [13]. Низкие значения $\eta_{\rm ex}$ указывают на большие безызлучательные потери, главным образом, на освещаемой поверхности и на отсутствие переизлучения при торможении HH3 полем E.

Рассмотрим особенности зависимости интенсивности примесной ФЛ $I_{\rm im}$ от уровня возбуждения. В легированных слоях наличие полосы примесной ФЛ обусловлено переходами с участием центров ${\rm Te}_{\rm As}V_{\rm Ga}$, создающих глубокий уровень в нижней части запрещенной зоны [14]. Известно [15], что в однородном полупроводнике *n*-типа интенсивность излучательных переходов на такой уровень при малых значениях J, обеспечивающих выполнение условия $\Delta n < n_0$, равна

$$I_{\rm im} \simeq \eta_{\rm in} C_n n_0 \Delta p, \tag{5}$$

где $\eta_{\rm in}$ — внутренний квантовый выход излучения в центрах, C_n — коэффициент захвата электронов центром, Δp — концентрация неравновесных дырок ($\Delta p = \Delta n$). Когда $\Delta p < N_r$ (N_r — концентрация центров), $I_{\rm im}$ линейно возрастает с уровнем возбуждения при условии, что $\Delta p \propto J$. С увеличением J, когда $\Delta p > N_r$, но $\Delta n < n_0$, происходит заполнение всех центров дырками и наступает или насыщение (при $\eta_{\rm in} = {\rm const}$), или сублинейное возрастание (при увеличении $\eta_{\rm in}$ с ростом J) величины $I_{\rm im}$, сопровождаемое линейным увеличением интенсивности краевой ФЛ. В этом случае $I_{\rm im}$ может быть представлена в виде

$$I_{\rm im} \simeq \eta_{\rm in} C_n n_0 N_r. \tag{6}$$

При высоких уровнях возбуждения ($\Delta n > n_0$, $\Delta n = \Delta p > N_r$) интенсивность примесной полосы $\Phi \Pi I_{\rm im}$, описываемая выражением

$$I_{\rm im} \cong \eta_{\rm in} C_n N_r \Delta n, \tag{7}$$

возрастает с увеличением J. Зависимость $I_{im}(J)$ при этом определяется главным образом характером изменения Δn с ростом уровня возбуждения, при квадратичной зависимости интенсивности краевого излучения от J [15].

В исследованных легированных твердых растворах при возбуждении со стороны E_g^{\min} реализуется характер зависимости $I_{im}(J)$, описываемой выражениями (5) и (6), а при возбуждении со стороны E_g^{\max} — выражением (7). Действительно, в последнем случае сверхлинейное увеличение интенсивности краевого излучения I_{Σ}^+ с ростом *J*, при сублинейном увеличении $I_{\Sigma im}^+$, свидетельствует о выполнении условия $\Delta n > n_0$ при $J < 10^{20}$ квант/см²с. Сверхлинейный рост $I_{\Sigma im}$ + при $J > 10^{20}$ квант/см² с связан со сверхлинейным увеличением концентрации ННЗ Δn за счет двухфотонного поглощения краевой ФЛ, о чем свидетельствует сверхквадратичная зависимость $I_{\Sigma}^+(J)$. Смещение области примесной ФЛ в узкозонную область и локализация ее у тыльной поверхности при высоких уровнях возбуждения, причина которых рассмотрена в [7], приводят к существенным безызлучательным потерям на этой поверхности. Это обусловливает сублинейную зависимость $I^+_{\Sigma im}(J)$ при $J\gtrsim 10^{21}$ квант/см²с аналогично тому, как это имеет место для зависимости краевой $\Phi \Pi \ I_{\Sigma}^{+}(J)$.

Список литературы

- [1] Г.П. Пека, В.Ф. Коваленко, А.Н. Смоляр. *Варизонные* полупроводники (Киев, Вища шк. 1989).
- [2] Г.В. Царенков. ФТП, 13 (6) 1095 (1979).
- [3] R.I. Roedel, V.G. Keramidas. *Photon recycling in* $Ga_{1-x}Al_xAs$: Si graded band gap LED's. J. Appl. Phys., **50** (10), 6353 (1979).
- [4] А.С. Волков, А.Л. Липко. ФТП, 16 (3), 412 (1982).
- [5] А.С. Волков, А.Л. Липко, С.А. Никишин, Б.В. Царенков, Г.В. Царенков. Письма ЖТФ, 5 (7), 655 (1979).
- [6] А.И. Базык, В.Ф. Коваленко, А.Ю. Миронченко, С.В. Шутов. ФТП, 35 (1), 53 (2001).
- [7] В.Ф. Коваленко, А.Ю. Миронченко, С.В. Шутов. ФТП, 36 (2), 192 (2002).
- [8] А.И. Базык, В.Ф. Коваленко, Г.П. Пека. УФЖ, 27 (7), 1007 (1982).
- [9] А.И. Базык, В.Ф. Коваленко, Г.П. Пека О.Д. Токалин. ЖПС, 42 (10), 441 (1985).
- [10] Излучательная рекомбинация в полупроводниках, под ред. Я.Е. Покровского (М., Наука, 1972).
- [11] В.П. Грибковский. Теория поглощения и испускания света в полупроводниках (Минск, Наука и техника, 1975).
- [12] M. Konagai, K.J. Takahashi. Appl. Phys., 46, 3542 (1975).
- [13] Ф.П. Кесаманлы, В.Ф. Коваленко, И.Е. Марончук, Г.П. Пека, Л.Г. Шепель. ФТП, **12** (7), 1318 (1978).
- [14] Н.К. Дряпико, В.Ф. Коваленко, Г.П. Пека. ФТП, 17 (5), 863 (1983).
- [15] K.D. Glinchuk, A.V. Prohorovich, V.E. Rodionov, V.I. Vovnenko. Phys. St. Sol. (a), 48, 593 (1978).

Редактор Т.А. Полянская

Non-linear photoluminescence of graded band-gap $AI_xGa_{1-x}As$ solid solutions

V.F. Kovalenko, A.Yu. Mironchenko, S.V. Shutov

Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 73008 Kherson, Ukraine

Abstract The dependence of the photoluminescence (PL) intensity of undoped and doped graded band-gap $Al_x Ga_{1-x} As$ $(x \leq 0.36)$ solid solutions on the excitation level J $(1 \cdot 10^{19} \leq J \leq 1 \cdot 10^{22} \text{ cm}^{-2} \text{s}^{-1})$ for different values of built-in quasi-electrical field $E = e^{-1} \nabla E_g$ ($85 \leq E \leq 700 \text{ V/cm}$) has been studied. It is found that the dependence I(J) of the near-band-edge PL at an accelerating action of the field E has a complex character. The non-linearity of I(J) dependence is explained by contribution of the two-photon absorption of the radiating recombination in the process of its remission. The optimum range of E values $(120 \leq E \leq 200 \text{ V/cm})$ providing the greatest contribution of the two-photon absorption PL is deternined.