Линейчатый спектр поглощения галогенофуллерена C₆₀Cl₂₄

© Б.С. Разбирин, А.Н. Старухин, А.В. Чугреев, А.С. Згода, В.П. Смирнов*, Ю.С. Грушко**, С.Г. Колесник**, П.-Ф. Коэр***, Ж. Льевэн***, Р. Колэн***

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Санкт-Петербургский государственный институт точной механики и оптики, 197101 Санкт-Петербург, Россия ** Институт ядерной физики им. Б.П. Константинова, 188350 Гатчина, Ленинградская обл., Россия *** Universite Libre de Bruxelles, 1050 Brussels, Belgium E-mail: b.razbirin@pop.ioffe.rssi.ru

(Поступила в Редакцию 29 декабря 2001 г.)

Исследованы оптические спектры галогенофуллерена $C_{60}Cl_{24}$ в кристаллическом состоянии, а также спектры матрично-изолированных молекул $C_{60}Cl_{24}$. В обоих случаях обнаружена богатая линейчатая структура спектров поглощения в диапазоне энергий 1.5–3.0 eV. Предложена схема электронных энергетических уровней молекулы, ответственных за наблюдающиеся оптические переходы. Рассчитаны параметры геометрической структуры молекулы $C_{60}Cl_{24}$ в предложении ее T_h -симметрии. Эти данные использованы для теоретического исследования эффекта встраивания молекулы $C_{60}Cl_{24}$ в кристаллическую матрицу толуола, приводящего к возникновению тонкой структуры спектра (аналог эффекта Шпольского), наблюдавшейся экспериментально в данной работе.

Работа поддержана грантами Российского фонда фундаментальных исследований № 00-03-33016, Министерства образования РФ Е 00-5.0-338 (В.П.С.), программой Министерства науки РФ "Фуллерены и атомные кластеры", грантами INTAS 97-11894, INTAS YSF 00-59 (А.В.Ч.).

Галогенизированные фуллерены относятся к так называемым синтонам, являющимся типичными промежуточными звеньями в синтезе ряда фуллереновых производных, представляющих интерес для разнообразных практических приложений. Поэтому изучение физических свойств и, в частности, электронной структуры галогенофуллеренов оптическими методами представляет собой актуальную задачу. В результате соединения фтора, хлора или брома с C₆₀ формируются устойчивые молекулы галогенофуллеренов с различной стехиометрией [1–3] с образованием сильных ковалентных связей, в то время как йодофуллерены характеризуются слабыми ван-дер-ваальсовыми связями молекулярного йода с углеродным каркасом.

Галогенофуллерены при нормальных условиях являются молекулярными кристаллами. В то же время они растворимы в ряде органических растворителей с сохранением структуры молекулы, что позволяет проводить сравнительные исследования их оптических спектров как в кристаллическом состоянии (в фуллеритах), так и в молекулярном состоянии, в виде "замороженного газа" матрично-изолированных молекул. В настоящей работе приводятся результаты исследований оптических электронных спектров наименее изученного C₆₀Cl₂₄ в кристаллическом и молекулярном состояниях. Впервые установлено, что в отличие от других галогенофуллеренов C₆₀Cl₂₄ обладает весьма четкой линейчатой структурой в ближней ИК и видимой областях спектра. В работе также кратко описан метод получения C₆₀Cl₂₄ и результаты теоретического исследования геометрической структуры этой молекулы (в предположении ее T_h -симметрии).

1. Синтез C₆₀Cl₂₄

Синтез C₆₀Cl₂₄ проведен методом хлорирования кристаллического С₆₀ в атмосфере хлора при нагревании. Фуллерен С₆₀ выделен из фуллереносодержащей сажи, приготовленной стандартным методом Кретчмера [4] в электрической дуге из спектрально-чистых графитовых стержней. Выделение и очистка проводились методом селективной рекристаллизации, далее флэш-хроматографией на активированном угле и вакуумным отжигом. Чистота полученного С₆₀, по данным высокоэффективной жидкостной хроматографии (HPLC) на колонне со стационарной фазой С18-силикагель, составляла 99.9% +. Хлор получен окислением НС1 в концентрированном растворе хромовой кислоты при нагревании, высушен последовательно над CaCl₂ и P₂O₅ и очищен от кислорода пропусканием над пористым углем при 750°С. Нагревание С₆₀ проведено в темноте при 310°C в потоке хлора 15 ml/min; изменение веса образца периодически контролировалось. Было обнаружено, что вес продукта реакции увеличивался, приближаясь асимптотически к значению, соответствующему формуле C₆₀Cl₂₄. Нам удалось получить максимальное содержание хлора в молекуле, соответствующее атомному отношению углерода к хлору 60:23.97. (рис. 1). На основе этих результатов можно заключить, что при данных условиях синтеза в исходном продукте отсутствуют молекулы, содержащие более 24 атомов хлора.

Полученный продукт представлял собой желто-бурый мелкокристаллический порошок, хорошо растворимый в органических растворителях.

Геометрическая структура молекулы С₆₀Cl₂₄

Согласно [5], линии в колебательных спектрах хлорофуллерена $C_{60}Cl_{24}$ оптически активны либо в рамановских, либо в ИК спектрах, следовательно, можно сделать вывод о наличии у молекулы центра инверсии. Поэтому есть основания полагать, что молекула $C_{60}Cl_{24}$ имеет симметрию T_h , как и молекула $C_{60}Br_{24}$. В такой структуре все атомы хлора эквивалентны.

Мы произвели расчет геометрической структуры молекулы $C_{60}Cl_{24}$ с использованием параметров уни-

Рис. 1. Зависимость массы продукта реакции от времени ее проведения.

Рис. 2. Геометрическая структура молекулы $C_{60}Cl_{24}$.

Таблица 1. Результаты квантово-химических расчетов геометрической структуры и распределения заряда в молекулах галогенофуллеренов

	C ₆₀ Cl ₂₄	C60Br24					
Длина С-С-связей, Å							
а	1.4876	1.4828					
b	1.5272	1.5235					
с	1.5231	1.5187					
d	1.3537	1.3559					
e	1.3351	1.3367					
Длина С-Х-связей, Å							
	1.7507	1.9425					
Распределение заряда							
Среднее значение заряда	+0.005488 e	+0.09325 e					
на один атом галогена							
Полный заряд, переданный,	+0.1317 e	+2.238 e					
углеродному остову							

версального силового поля (UFF) [6]. Далее геометрия $C_{60}Cl_{24}$ оптимизировалась в полуэмпирическом приближении Хартри–Фока квантово-химическим методом AM1 (Austin Model 1) с использованием расчетной программы GAUSSIAN 98 [7].

В такой молекуле присутствует типов С-С-связи пять, из которых 72 одинарные, а остальные 18 двойные (рис. 2). В табл. 1 приведены результаты расчетов для C₆₀Cl₂₄, где они сравниваются с данными для C₆₀Br₂₄, рассчитанными нами тем же методом, и экспериментальными данными [1]. Одинарные С-С-связи в молекуле C₆₀Cl₂₄ длиннее, чем в C₆₀Br₂₄, а двойные связи несколько короче. Расчетная длина C-Cl-связи (1.7507 Å) заметно меньше, чем соответствующая С-Вг-связь в С₆₀Вг₂₄. Анализ заселенности молекулярных орбиталей, выполненный методом АМ1, показывает, что электронная плотность в молекуле C₆₀Cl₂₄ смещена к атомам хлора. С каждого атома хлора фуллереновому остову передается заряд, в среднем равный +0.0055|e|, где он распределяется главным образом по атомам углерода в *sp*²-гибридизированных состояниях. В отличие от C₆₀Br₂₄, в котором все атомы углерода имеют излишек положительного заряда в результате сильного смещения электронной плотности, sp³- и sp²-атомы углерода в C₆₀Cl₂₄ имеют соответственно либо недостаток, либо избыток положительного заряда.

3. Оптические спектры C₆₀Cl₂₄

Спектроскопические исследования проводились с помощью установки на базе двойного монохроматора ДФС-12 с обратной дисперсией 0.5 nm/mm. Регистрация спектра осуществлялась ФЭУ-79 в режиме счета фотонов. Поликристаллические образцы C₆₀Cl₂₄ представляли собой слой порошкообразного материала толщи-

Рис. 3. Спектр поглощения кристаллического порошка $C_{60}Cl_{24}$. T = 80 K.

ной $100-200\,\mu$ m, помещенного между двумя стеклянными пластинками. Образцы матрично-изолированных молекул готовились путем замораживания раствора фуллерена в органическом растворителе, помещенном в стеклянную ампулу.

На рис. 3 представлен спектр пропускания поликристаллического $C_{60}Cl_{24}$ при T = 80 К. Как видно, он характеризуется наличием большого числа линий поглощения различной ширины, причем их ширина увеличивается по мере продвижения в коротковолновую сторону спектра. Наблюдающийся спектр в первом приближении можно разделить на 3 группы линий. Обозначим их как группы А, В и С. Длинноволновая группа (А) характеризуется наименьшей шириной линий (их полуширина составляет $\approx 10 \, \text{meV}$) и расположена в энергетическом интервале 1.5–1.8 eV. Вторая группа (B) наблюдается в интервале энергий 2.3-2.5 eV. Полуширина линий составляет $\approx 20 \,\mathrm{meV}$. Третья группа (C) состоит из двух полос полушириной ~ 50 meV. В пределах каждой группы можно выделить линии, соответствующие чисто электронным переходам, а также линии, отвечающие их колебательным повторениям. В табл. 2 приведены значения энергий всех наблюдающихся серий линий (А, В и С) и дана их предварительная интерпретация. В таблице указаны как энергии чисто электронных переходов (E_{0-0}) , так и энергии соответствующих колебательных квантов. Обратим внимание, что линия с максимумом 1.817 eV имеет большую ширину и, по-видимому, состоит из нескольких колебательных мод с энергиями в интервале 50-80 meV.

Люминесценция $C_{60}Cl_{24}$ чрезвычайно слаба, что указывает на значительную роль безызлучательных процессов. При T = 80 К нам удалось обнаружить лишь три слабые линии излучения в спектральном интервале 1.55–1.66 eV, по спектральному положению приблизительно совпадающие с соответствующими линиями поглощения (рис. 4). Исследование $C_{60}Cl_{24}$ в замороженных органических растворителях при T = 80 К показало, что спектры матрично-изолированных молекул почти не отличаются от спектра кристаллического порошка $C_{60}Cl_{24}$ (рис. 4). Наблюдается лишь небольшое сужение линий и некоторое перераспределение интенсивности между ними. Все это указывает на ярко выраженный молекулярный характер кристалла $C_{60}Cl_{24}$. Рис. 4 и 5 иллюстрируют более подробно детали спектров группы A и B. Заметим, что интенсивность длинноволновой группы линий A приблизительно в 5 раз меньше, чем более коротковолновых линий B и C. Это указывает на меньшую вероятность переходов типа A.

Теоретические расчеты электронных энергетических уровней молекулы C₆₀Cl₂₄ в литературе отсутствуют.

Рис. 4. Спектры поглощения (1, 2) и люминесценции (3) кристаллического порошка C₆₀Cl₂₄ (2) и матрично-изолированных молекул C₆₀Cl₂₄ (1, 3) в матрице 1,2,4-хлорбензола. "Провалы" в спектре люминесценции в диапазоне 1.69–1.76 eV обусловлены эффектом реабсорбции излучения. T = 80 K.

Рис. 5. Фрагмент спектров поглощения кристаллического порошка (1) и матрично-изолированных молекул (2) $C_{60}Cl_{24}$ в матрице бромбензола. T = 80 К.

Переходы А			Переходы В				
N⁰	E, eV	Интерпретация	$\hbar\omega_i$, meV	N⁰	E, eV	Интерпретация	$\hbar\omega_i$, meV
1	1.522	E_{0-0}		1	2.313	E_{0-0}	
2	1.538			2	2.340	E_{0-0}^{*}	
3	1.549			3	2.357	E_{0-0}	
4	1.566			4	2.377	$E_{0-0}^* + \hbar \omega_1$	37
5	1.579			5	2.392	$E_{0-0}^* + \hbar\omega_2$	52
6	1.614			6	2.409	$E_{0-0}^* + \hbar\omega_3$	69
7	1.632			7	2.422	$E_{0-0}^* + \hbar \omega_4$	82
8	1.650	E_{0-0}		8	2.444	$E^*_{0-0} + \hbar\omega_5$	104
9	1.669			9	2.456	$E_{0-0}^* + \hbar \omega_6$	116
10	1.693	E_{0-0}		10	2.471	$E_{0-0}^* + \hbar\omega_7$	131
11	1.734			11	2.485	$E^*_{0-0} + \hbar \omega_8$	145
12	1.753	E_{0-0}^{*}		12	2.514	$E_{0-0}^* + \hbar \omega_9$	174
13	1.761	E_{0-0}					
14	1.784	$E^*_{0-0} + \hbar \omega_1$	31	Параходи С			
15	1.817	$E^*_{0-0} + \hbar \omega_2$	64	переходы С			
16	1.846	$E^*_{0-0} + \hbar\omega_3$	93	1	2.67	E_{0-0}^{*}	
17	1.861	$E^*_{0-0}+\hbar\omega_4$	108	2	2.77	$E_{0-0}^* + \hbar \omega_1$	100
18	1.873	$E^*_{0-0}+\hbar\omega_5$	120				
19	1.939	$E^*_{0-0}+\hbar\omega_6$	186				
20	1.979						

Таблица 2. Энергетические положения линий, наблюдаемых в спектрах поглощения $C_{60}Cl_{24}$ при T = 80 K

Поэтому мы предлагаем вариант энергетической схемы электронных уровней молекулы в области переходов HOMO–LUMO, основанный лишь на анализе наших экспериментальных данных (рис. 6). В соответствии с этой схемой группа линий A соответствует переходам между уровнями 2 и 3, группа линий B — переходам $1 \rightarrow 3$, $C - 1 \rightarrow 4$. Переходы $2 \rightarrow 4$ проявляются в спектре чрезвычайно слабо, лишь в виде малозаметных особенностей в спектре поглощения в области 1.8–1.9 eV. Большая ширина линий в переходах $1 \rightarrow 4$, возможно, связана с малыми временами

Рис. 6. Схема электронных уровней молекулы C₆₀Cl₂₄, объясняющая экспериментальные спектры.

жизни электрона на уровне 4 из-за быстрой конверсии возбуждения на уровень 3 с рождением колебательного кванта молекулы $\hbar \omega \approx 0.33 \text{ eV} (264 \text{ cm}^{-1})$. Приблизительно такие колебательные кванты ($\hbar \omega = 31$ и 37 meV) наблюдались нами в вибронном спектре поглощения, а также в спектре комбинационного рассеяния света ($\hbar \omega = 34 \text{ meV}$). Характерное время конверсии должно составлять порядка 0.1 ps, что находится в разумном согласии с существующими представлениями о релаксационных процессах в молекулах и кристаллах. Предполагаем, что каждый из уровней на этой схеме имеет сложную структуру, что может объяснить наличие нескольких линий E_{0-0} в переходах типа A и B при T = 80 K.

Ширина линий группы A (10 meV) и группы B(20 meV) обусловлена неоднородным уширением, а также взаимодействием с акустическими колебаниями кристаллической решетки $C_{60}Cl_{24}$ или матрицы. В определенных случаях уширение, связанное со вторым эффектом, можно устранить, подобрав соответствующую матрицу, дающую оптический аналог эффекта Мессбауэра [8,9]. В этом случае в спектрах ряда молекул фуллеренов (C_{70} , C_{60} и ряда производных) наблюдается тонкая структура линий, соответствующая чисто электронным переходам [10]. Этот эффект аналогичен эффекту Шпольского, наблюдавшемуся им на ароматических молекулах в замороженных растворах органических растворителей (n-парафинов) [11].

В системе C₆₀Cl₂₄-кристаллическая матрица толуола при охлаждении образцов до температуры 2 К нам

Рис. 7. Тонкая структура линий поглощения A и B молекулы $C_{60}Cl_{24}$ в кристаллической матрице толуола (1, 2). В стеклообразной матрице толуола (3, 4) тонкая структура спектра отсутствует. T = 80 K.

удалось наблюдать возникновение тонкой структуры линий A_{0-0}^* (E = 1.753 eV) и B_{0-0}^* (E = 2.340 eV), а также структуру колебательных спутников линии B_{0-0}^* (рис. 7). Ширина линий тонкой структуры A составляет 1 meV, линий B - 2 meV. При повышении температуры до ≈ 30 К эта структура исчезает. В системе $C_{60}Cl_{24}$ - стеклообразная матрица тонкая структура отсутствует. Полагаем, что обсуждаемая структура спектра $C_{60}Cl_{24}$ обусловлена эффектом Шпольского.

Логично предположить, что тонкая структура линий A_{0-0}^* и B_{0-0}^* связана с наличием нескольких неэквивалентных положений молекулы в матрице. В связи с этим были проведены теоретические исследования структуры центров C₆₀Cl₂₄ в матрице толуола.

Геометрия самой молекулы C₆₀Cl₂₄ выбрана в соответствии с симметрией Т_h и параметрами, определенными в настоящей работе и работе [12]. Для моделирования невалентных взаимодействий между молекулой C₆₀Cl₂₄ и молекулами кристаллического толуола использованы атом-атомные потенциалы [13]. Использовался атом-атомный потенциал из [13] в форме потенциала Леннарда-Джонса, параметры которого были подобраны в [13] так, чтобы для нескольких модельных веществ получилось хорошее согласие рассчитанных и экспериментально определенных величин. Сама же кристаллическая матрица толуола моделировалась ее фрагментом из 60 молекул. Матрица представляет собой высокотемпературную модификацию кристаллической решетки толуола, имеющую моноклинную симметрию $P2_1/C(C_{2h}^5)$, в соответствии с данными работы [14].

Для определения положения, размеров и формы полости для молекулы $C_{60}Cl_{24}$ в кристаллической матрице использовался следующий прием. Линейные размеры полости (для молекулы $C_{60}Cl_{24}$ в толуоле) не могут быть менее ~ 14.6 Å, так как в противном случае от-

талкивательная (положительная) часть энергии взаимодействия атомов фуллерена с атомами кристаллической матрицы становится слишком большой, чтобы было энергетически выгодным внедрение молекулы фуллерена в полость кристаллической матрицы. С другой стороны, чем меньше следует удалить молекул толуола для создания полости, тем энергетически выгоднее ее образование. Поэтому для определения положения, размеров и формы полости произведено сканирование неприводимой части примитивной ячейки кристалла толуола сферой радиуса 7.3 Å; определено для каждого положения центра сферы количество молекул кристалла, которые имеют внутри сферы хотя бы один атом (их удаление и приводит к образованию полости для молекулы C₆₀Cl₂₄), и выбраны те варианты полости, которые требуют удаления наименьшего количества молекул толуола из кристалла. В результате установлено, что наиболее энергетически выгодными являются полости в точке общего положения с координатами $\mathbf{r}_c = 0.636 \,\mathbf{a} + 0.227 \,\mathbf{b} + 0,477 \,\mathbf{c}$ и эквивалентных точках, получающиеся при удалении 17 молекул толуола (в примитивной ячейке кристалла содержится восемь молекул). В этой полости найдено несколько глубоких энергетических минимумов (отвечающих различным положениям молекулы C₆₀Cl₂₄ в матрице), с которыми, по-видимому, и следует соотносить экспериментальные линии оптических спектров.

Тот факт, что существует сравнительно небольшое число возможных энергетически выгодных встраиваний молекулы в кристаллическую матрицу толуола, коррелирует с небольшим числом линий чисто электронных переходов, наблюдаемых в спектре этой системы. Учет релаксации молекул кристаллической матрицы вокруг внедренной молекулы $C_{60}Cl_{24}$ позволит провести более детальное сравнение теоретических и экспериментальных результатов.

Авторы глубоко признательны J. Cornil за проведение некоторых вычислений.

Список литературы

- F.N. Tebbe, R.L. Harlow, D.B. Chase, D.L. Thorn, G.C. Campbell, J. C. Calabrese, N. Herron, R.J. Young, E. Wasserman. Science 256, 822 (1992).
- [2] P.R. Birkett, H.W. Kroto, R. Taylor, D.R.M. Walton, R.I. Grose, P.J. Hendra, P.W. Fowler. Chem. Phys. Lett. 205, 399 (1993).
- [3] А.В. Елецкий, Б.М. Смирнов. УФН 165, 977 (1995).
- [4] W. Kraetschmer, K. Fostiropoulos, D.R. Huffman. Chem. Phys. Lett. 170, 167 (1990).
- [5] M.F. Limonov, Yu.E. Kitaev, A.V. Chugreev, V.P. Smirnov, Yu.S. Grushko, S.N. Kolesnik. Phys. Rev. B57, 13, 7586 (1998).
- [6] A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).
- [7] Gaussian 98 (Revision A.1) by M.J. Frisch, G.W. Trucks, H.B. Schlegel et al. Gaussuan, Inc., Pittsburgh, PA (1998).
- [8] Е.Д. Трифонов. Докл. АН СССР 147, 826 (1962).

- [9] Е.Ф. Гросс, С.А. Пермогоров. Б.С. Разбирин. Докл. АН СССР 147, 338 (1962); 154, 1306 (1964).
- [10] Б.С. Разбирин, А.Н. Старухин, А.В. Чугреев, Ю.С. Грушко, С.Н. Колесник. Письма в ЖЭТФ 60, 435 (1994); Б.С. Разбирин, А.Н. Старухин, А.В. Чугреев, Д.К. Нельсон, Ю.С. Грушко, С.Н. Колесник, В.Н. Згонник, Л.В. Виноградова, Л.А. Федорова. ФТТ 38, 943 (1996).
- [11] Э.В. Шпольский. УФН LXXVII, 321 (1962).
- [12] О.Е. Квятковский, М.Г. Шеляпина, Б.Ф. Щеголев, Л.С. Воротилова, И.Б. Захарова. ФТТ 44, 557 (2002).
- [13] Т.В. Тимофеева, Н.Ю. Черникова, П.М. Зоркий. Успехи химии XLIX, 966 (1980).
- [14] M. Anderson, L. Bosto, J. Bruneaux-Poulle, R. Fourme. Journal de Chimie Physique 74, 68 (1977).