Магнитные и электрические свойства кристаллов $Eu_{0.62}Bi_{0.38}MnO_3$ и $Eu_{0.53}Bi_{0.32}Sr_{0.15}MnO_3$

© Е.И. Головенчиц, В.А. Санина

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: e.golovenchits@mail.ioffe.ru

(Поступила в Редакцию 1 декабря 2004 г.)

Получены монокристаллы твердых растворов Eu_{0.62}Bi_{0.38}MnO₃ и Eu_{0.53}Bi_{0.32}Sr_{0.15}MnO₃, обладающие структурой ромбически искаженного перовскита. Соединение Eu_{0.62}Bi_{0.38}MnO₃ при температурах выше 120 K проявляет свойства структурного стекла, оставаясь диэлектриком при всех температурах. Дальний магнитный порядок при этом отсутствует. Соединение Eu_{0.53}Bi_{0.32}Sr_{0.15}MnO₃ при температурах выше 120 K обладает полупроводниковой проводимостью и обнаруживает скачок проводимости при T = 175 K, обусловленный переходом металл–диэлектрик в ограниченных областях кристалла. В этих областях возникают ферромагнитный момент, обусловленный двойным обменом через носители заряда, и локальная электрическая поляризация.

Работа поддержана грантом Российского фонда фундаментальных исследований № 02-02-16140а, частично грантами фонда "Фундаментальные исследования" Президиума РАН (проект "Квантовая макрофизика") и Отделения физических наук РАН (проект "Фазовые переходы в конденсированных средах").

В соединениях $La_{(1-x)}A_xMnO_3$ (A = Sr, Ba, Ca) при оптимальной концентрации легирования наблюдаются переход металл-диэлектрик вблизи комнатной температуры и колоссальное магнитосопротивление вблизи этого перехода. При этом в кристалле возникает фазовое расслоение на металлическую (ферромагнитную) и диэлектрическую (антиферромагнитную или парамагнитную) фазы. Ферромагнитное упорядочение обусловлено двойным обменом через свободные носители заряда между ионами Mn³⁺ и Mn⁴⁺ в легированном составе [1-4]. Отметим, что исходный кристалл RMnO₃ (R = La или редкоземельный ион) является однородным в структурном и магнитном отношении. Такие кристаллы имеют структуру перовскита (пространственная группа *Pbnm*). В нелегированных кристаллах RMnO₃ содержатся только ян-теллеровские ионы Mn³⁺, и кристаллы являются диэлектрическими во всем температурном диапазоне (5-300 К). При этом для ионов Mn^{3+} имеется упорядочение орбиталей $d_{3x^2-r^2}/d_{3y^2-r^2}$ в слоях *ab*. Такое орбитальное упорядочение вызывает ферромагнитное упорядочение спинов в этих же слоях. Между слоями существует антиферромагнитный обмен, приводящий к антиферромагнитному состоянию типа А с температурой Нееля $T_N \sim 140 \text{ K}$ для случая R = La [1]. При замене иона La на другие редкоземельные ионы структурное и магнитное состояния аналогичны, но температура Нееля оказывается ниже $(T_N \sim 35-55 \text{ K})$ [5]. Имеется большое число работ, посвященных исследованию легированных манганитов RMnO₃ со структурой перовскита, обладающих колоссальным отрицательным магнитосопротивлением.

Задачей настоящей работы является исследование влияния легирования ионами Sr^{2+} кристалла манганита $\mathrm{Eu}_{0.62}\mathrm{Bi}_{0.38}\mathrm{MnO}_3$ с той же пространственной группой симметрии *Pbnm*, что и у чистого $\mathrm{Eu}\mathrm{MnO}_3$, но

который уже до легирования ионами стронция был структурно и магнитно-разупорядоченным, оставаясь при этом диэлектрическим вплоть до 300 К. В соответствии с данными настоящей работы в кристалле Eu_{0.62}Bi_{0.38}MnO₃ при температурах ниже 120 K, по-видимому, реализуется антисегнетоэлектрическое состояние. При $T > 120 \, \text{K}$ в нем возникает стеклоподобное структурное состояние, при котором сосуществуют области с локальными структурными корреляциями с широким набором времен релаксации. Однородный дальний магнитный порядок в Eu_{0.62}Bi_{0.38}MnO₃ отсутствует. При легировании этого кристалла небольшим количеством ионов Sr²⁺ (при сохранении случайного потенциала в решетке) появляются ионы Mn⁴⁺ и носители заряда. При этом могут возникать области ограниченных размеров с проводимостью, в которых имеются ферромагнитный момент и электрическая поляризация. Можно надеяться на то, что магнитные и диэлектрические свойства при этом будут управляться меньшими внешними полями и в более широкой области температур, чем в легированных соединениях кристаллов RMnO₃. В данной работе продемонстрирована возможность существования подобных областей в кристалле Eu_{0.53}Bi_{0.32}Sr_{0.15}MnO₃.

а) $Eu_{0.62}Bi_{0.38}MnO_3$. Изучены магнитные и диэлектрические свойства монокристаллов твердых растворов $Eu_{0.62}Bi_{0.38}MnO_3$, обладающих структурой перовскита с орторомбическими искажениями (пространственная группа *Pbnm*, параметры ячейки a = 5.342(2) Å, b = 5.857(2) Å, c = 7.470(1) Å).

Исходные соединения, на основе которых сформирован твердый раствор (EuMnO₃ и BiMnO₃), имеют различную симметрию и проявляют разные магнитные свойства. Оба эти кристалла обладают перовскитоподобной структурой, но с различными типа-

Рис. 1. Температурная зависимость вещественной части диэлектрической проницаемости (*a*) и тангенса угла диэлектрических потерь (*b*) в кристалле $Eu_{0.62}Bi_{0.38}MnO_3$ для частот, равных 0.13 (*I*), 0.56 (*2*), 1 (*3*), 3 (*4*), 10 (*5*) и 20 kHz (*6*).

ми искажений. Для EuMnO₃ характерны орторомбические искажения (центросимметричная пространственная группа *Pbnm* с параметрами ячейки a = 5.3522(5) Å, b = 5.8265(5) Å, c = 7.4720(7) Å). Этот кристалл имеет антиферромагнитное упорядочение типа А с температурой Нееля $T_N \sim 40 \,\mathrm{K}$ [5]. BiMnO₃ обладает моноклинной нецентросимметричной пространственной группой С2. Параметры ячейки a = 9.5317(7) Å, b = 5.6047(4) Å, c = 9.8492(7) Å. Этот кристалл является биферроиком, т.е. обладает одновременно ферроэлектрическим (с температурой Кюри $T_C \sim 750 \,\mathrm{K}$) и ферромагнитным $(T_C \approx 105 \, \mathrm{K})$ упорядочением. Магнитный момент $\sim 3.2 \mu_{\rm B}$ направлен вдоль оси [010] [6]. Отметим, что соединение BiMnO₃ (не только монокристалл, но и поликристалл) можно синтезировать лишь при высоком давлении. Монокристаллы Eu_(1-x)Bi_xMnO₃ нам удалось получить при атмосферном давлении, при этом величина х зависела от температуры кристаллизации [7]. Проводился рентгеновский фазовый анализ кристаллов. Состав определялся методом флуоресцентного рентгеновского анализа.

Твердый раствор Eu_{0.62}Bi_{0.38}MnO₃ не обладал ферроэлектрическими свойствами. В этом кристалле было обнаружено стеклоподобное структурное состояние с температурой перехода T_f (при $\omega \to 0$) ≈ 120 К. Однородный магнитный дальний порядок и магнитные фазовые переходы при температурах $T > T_f$ не были обнаружены.

Рис. 1 демонстрирует особенности вещественной части диэлектрической проницаемости Reɛ и тангенса угла потерь tg δ вблизи перехода в стеклоподобное состояние, которое реализуется при температурах $T > T_f$. Видна частотная дисперсия аномалий диэлектрической проницаемости и потерь. В области низких температур $(T < T_f)$ вещественная часть диэлектрической проницаемости является минимальной и практически не зависит от температуры и частоты. Аномалия Reɛ имеет вид скачка с выходом при температурах $T > T_f$ на большее и также постоянное по температуре значение. Скачок Re ε сопровождается максимумом tg δ . Аномалия Re ε в виде скачка обычно характерна для антисегнетоэлектриков [8]. Поэтому можно предполагать, что низкотемпературная фаза Eu_{0.62}Bi_{0.38}MnO₃ является антисегнетоэлектрической, а при $T > T_f$ реализуется стеклоподобное структурное состояние, в котором имеется широкий набор структурно-коррелированных областей различного размера. При этом результирующая поляризация равна нулю. Низкочастотная дисперсия обусловлена, как и обычно в стеклах, наличием релаксаторов с широким набором времен релаксации ($\tau_{\min} \ll \tau \ll \tau_{\max}$).

Если принять, что $T = T_f$ — температура максимума производной Re ε и максимума tg δ при фиксированной частоте ω , то анализ зависимостей Re ε и tg δ от T (рис. 1 и 2) показывает, что выполняется закон Аррениуса и $\tau = 1/\omega = \tau_0 \exp(E_A/kT_f)$. При этом на зависимости $1/T_f$ от ln ω имеются два линейных участка с изломом

Рис. 2. Зависимость обратной температуры максимума тангенса угла диэлектрических потерь (и одновременно максимума производной скачка вещественной части диэлектрической проницаемости) от логарифма частоты (закон Аррениуса) для кристалла Eu_{0.62}Bi_{0.38}MnO₃.

Рис. 3. Температурная зависимость плотности состояний локальных областей структурных корреляций для кристалла $Eu_{0.62}Bi_{0.38}MnO_3$. Темные и светлые символы на кривых G_1 и G_2 относятся к кривым 1 и 2 на рис. 2 соответственно.

при значениях $T_f = 140 \,\mathrm{K}$ и $\tau = 1 \cdot 10^{-4} \,\mathrm{s}$. Величины параметров *E*_A и *т*₀ следующие:

 $E_A = 0.377 \text{ meV}, \ \tau_0 = 1.9 \cdot 10^{-12} \text{ s} \ (T_f > 140 \text{ K}), \ E_A = 0.337 \text{ meV}, \ \tau_0 = 3.5 \cdot 10^{-12} \text{ s} \ (T_f < 140 \text{ K}).$

Видно, что характерные энергии взаимодействия в двух наборах релаксаторов и времена их жизни близки. По-видимому, они сопряжены с областями локальных структурных корреляций вблизи ионов Ві и Еи. В Eu_{0.62}Bi_{0.38}MnO₃ имеются два типа фрустрирующих ионов в позициях редкоземельных ионов Eu³⁺ (в основном состоянии ${}^{7}F_{0}$): хорошо поляризуемые ионы Bi³⁺ и ян-теллеровские ионы Eu³⁺ (термоактивированные в возбужденное состояние ${}^{7}F_{1}$, удаленное от основного приблизительно на 300 cm⁻¹). На рис. 3 представлены температурные зависимости плотности состояний G(T)для двух наборов релаксаторов, полученных из наклонов линейных зависимостй $\operatorname{Re}\varepsilon$ от $\ln\omega$, характерных для стекольных состояний (см. [9,10]). Видно, что максимум плотности состояний более крупномасштабных областей структурных корреляций (G1) расположен при более низкой температуре (~ 120 К), а максимум для более мелких областей (G2) — при $T \sim 160$ К.

Таким образом, в твердом растворе Eu_{0.62}Bi_{0.38}MnO₃ при температурах выше 120 К существует структурное стеклоподобное состояние и в решетке имеется случайный потенциал.

Наличие случайного потенциала в решетке приводит к случайной анизотропии для магнитной подсистемы ионов Mn³⁺. Согласно теореме Имре и Ма [11], дальний магнитный порядок при этом невозможен, но могут существовать ограниченные области магнитных корреляций.

b) Eu_{0.53}Bi_{0.32}Sr_{0.15}MnO₃. Легирование кристаллов $Eu_{0.62}Bi_{0.38}MnO_3$ ионами Sr²⁺, которые обычно замещают позиции трехвалентных редкоземельных ионов (в нашем случае Eu или Bi), приводит к следующим изменениям в свойствах кристаллов.

1) Для зарядовой компенсации некоторые ионы марганца становятся четырехвалентными, и в кристалле теперь одновременно сосуществуют ионы Mn³⁺ и Mn⁴⁺.

2) Появляются носители заряда, через которые может осуществляться ферромагнитный двойной обмен между ионами Mn^{3+} и Mn^{4+} .

3) Возникают добавочные локальные искажения в решетке, которые при небольшой концентрации ионов Sr²⁺ несколько изменяют распределение локального потенциала, но при этом сохраняются стеклоподобное состояние и случайный потенциал в решетке. Таким образом, в кристалле сохраняется случайная магнитная анизотропия и носители заряда при температуре T > 120 К оказываются в случайном потенциале.

Рассмотрим особенности проводимости кристалла Eu_{0.53}Bi_{0.32}Sr_{0.15}MnO₃ (рис. 4). Как уже отмечалось, исходный кристалл Eu_{0 62}Bi_{0 38}MnO₃ вплоть до комнатной температуры сохранял высокое удельное сопротивление $\rho \geq 10^6 \,\Omega \cdot \mathrm{cm}$. Легированный состав имел такое же по величине сопротивление до температур возникновения стекольного состояния. При температурах выше 150 К проводимость нарастала, обнаруживая скачки при 175 К при нагревании кристалла и 183 К при его охлаждении. Величина скачка проводимости относительно невелика на фоне общего роста проводимости с температурой, обусловленного термоактивированными прыжками носителей между ямами случайного потенциала решетки. При этом в наиболее крупномасштабных областях, в которых уровень протекания совпадает с уровнем Ферми или располагается ниже этого уровня, возникает металлическая проводимость (капли) [12]. Наблюдаемые скачки проводимости мы связываем с влиянием на общую проводимость перехода металл-диэлектрик в областях, в которых образовались металлические капли. Однако при малой концентрации ионов Sr²⁺ в исследуемом нами составе сквозной металлической проводимости не возникает и кристалл в целом остается диэлектрическим.

Обсудим магнитное состояние легированного кристалла Eu_{0.53}Bi_{0.32}Sr_{0.15}MnO₃. Как уже отмечалось, в исходном кристалле Eu_{0.62}Bi_{0.38}MnO₃ дальний магнитный порядок отсутствует. В легированном составе при наличии носителей заряда могут возникать ферромагнитнокоррелированные состояния в ограниченных областях (ферромагнитные кластеры) за счет двойного обмена. На рис. 5 представлена температурная зависимость магнитного момента в поле 13 kOe. Видно, что магнитное поле ориентирует ферромагнитные кластеры, изначально разупорядоченные полем случайной магнитной анизотропии (остаточный момент в поле, равном нулю, отсутствует). При этом максимальное значение ферромагнитного момента наблюдается вблизи температуры $T \sim 120 \, \text{K}$. При нарастании температуры момент сначала довольно резко уменьшается, а затем падает линейно с ростом температуры вплоть до комнатной. Магнитный момент в поле до 15 kOe не насыщается при всех температурах от 120 до 300 К.

Рис. 4. Температурная зависимость проводимости кристалла $Eu_{0.53}Bi_{0.32}Sr_{0.15}MnO_3$. Кривые получены при токе 5 μ A. Направление изменения температуры показано стрелками.

Рис. 5. Температурная зависимость магнитного момента кристалла Eu_{0.53}Bi_{0.32}Sr_{0.15}MnO₃ в магнитном поле 13 kOe, перпендикулярном оси *с* кристалла. Кривая получена при нагревании кристалла.

Таким образом, магнитное состояние кристалла характеризуется наличием ферромагнитных кластеров различного размера. При этом видна корреляция величины и температурной зависимости магнитного момента с температурной зависимостью плотности состояний областей локальных структурных корреляций. Наиболее резкое уменьшение магнитного момента наблюдается в области температур резкого падения плотности состояний наиболее крупномасштабных областей (ср. с рис. 3). Как отмечалось выше, именно в таких областях могут образовываться металлические капли. В области температур относительно более медленного линейного уменьшения намагниченности преобладают более мелкомасштабные области структурных корреляций. При этом концентрация термоактивированных носителей нарастает, а плотность состояний локально коррелированных областей падает. Основной вклад в величину магнитного момента в этом температурном интервале вносят все более мелкие области локальных корреляций.

Обсудим в заключение вопрос о возможности возникновения локальных областей с электрической поляризацией в $Eu_{0.53}Bi_{0.32}Sr_{0.15}MnO_3$. Дело в том, что исходные соединения $EuMnO_3$ и $BiMnO_3$ являются антисегнето- и сегнетоэлектрически упорядоченными соответственно. В твердом растворе $Eu_{0.62}Bi_{0.38}MnO_3$, как отмечалось выше, при температурах T > 120 К возникает стеклоподобное структурное состояние. При этом суммарная поляризация кристалла отсутствует, но

Рис. 6. Температурная зависимость третьей гармоники A3 кристалла $Eu_{0.53}Bi_{0.32}Sr_{0.15}MnO_3$ (частота и амплитуда первой гармоники составляли 20 kHz и $10 V \cdot mm^{-1}$ соответственно). На вставке — та же зависимость для ряда частот первой гармоники.

могут существовать локальные полярные области. В легированном составе Eu_{0 53}Bi_{0 32}Sr_{0 15}MnO₃ в области температур $T > 120 \, \text{K}$ сохраняются области локальных структурных корреляций. На границах таких областей имеются скачки потенциала. Наличие носителей заряда в Eu_{0.53}Bi_{0.32}Sr_{0.15}MnO₃ вызывает некоторое изменение внутренних электрических полей и локальной поляризации, не приводя к отличной от нуля поляризации кристалла в целом. Таким образом, одни и те же носители заряда обеспечивают появление ферромагнитного момента (за счет двойного обмена) и влияют на величину электрической поляризации внутри ограниченных областей кристалла. При этом появляется возможность взаимного управления магнитными и электрическими свойствами с помощью внешних электрических и магнитных полей.

Для обнаружения локальной поляризации кристалла $Eu_{0.53}Bi_{0.32}Sr_{0.15}MnO_3$ мы исследовали нелинейную диэлектрическую восприимчивость аналогично тому, как это делалось в работе [13]. Как известно, при наличии динамических флуктуаций параметра порядка система становится нелинейной и должны существовать нечетные гармоники восприимчивости, характеризующей отклик системы, сопряженный с данным параметром порядка. Такая ситуация реализуется в критической области вблизи фазового перехода либо в стеклоподобных состояниях (типа спинового стекла) [14]. На рис. 6 представлены температурные зависимости третьей гармоники диэлектрического отклика для ряда частот (см. вставку). Видно, что амплитуда третьей гармоники начинает нарастать при температурах выше 120 К, т.е. в области температур стеклоподобного структурного состояния. Вторая гармоника в этой области температур на два порядка меньше третьей. В области низких частот видна дисперсия для третьей гармоники. При температурах вблизи 120 К существуют наиболее крупномасштабные области, обладающие одновременно поляризацией и магнитным моментом. С ростом температуры при нарастании термоактивированной прыжковой проводимости растет амплитуда третьей гармоники за счет поляризации более мелких центров в кристалле.

Таким образом, в Eu_{0.53}Bi_{0.32}Sr_{0.15}MnO₃ в области температур выше 120 К и вплоть до комнатной имеются ограниченные области, обладающие одновременно поляризацией и ферромагнитным моментом.

Список литературы

- J.M.D. Coey, M. Viret, S. Von Molnar. Adv. Phys. 48, 167 (1999).
- [2] E.L. Nagaev. Phys. Rep. 346, 387 (2001).
- [3] Л.П. Горьков. УФН **168**, 665 (1998).
- [4] М.Ю. Каган, К.И. Кугель. УФН 171, 577 (2001).
- [5] Y.M. Mukovskii, G. Hilscher, H. Michor, A.M. Ionov. J. Appl. Phys. 83, 7163 (1998).
- [6] T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura. Phys. Rev. B 67, R 180 401 (2003).
- [7] В.А. Санина, Л.М. Сапожникова, Е.И. Головенчиц, Н.В. Морозов. ФТТ **30**, *10*, 3015 (1988).
- [8] Б.А. Струков, А.П. Леванюк. Физические основы сегнетоэлектрических явлений в кристаллах. Наука, М. (1983). 240 с.
- [9] С.Л. Гинзбург. Необратимые явления в спиновых стеклах. Наука, М. (1989). 151 с.
- [10] А.В. Бабинский, С.Л. Гинзбург, Е.И. Головенчиц, В.А. Санина. Письма в ЖЭТФ 57, 5, 289 (1993).
- [11] Y. Imre, S-ka. Ma. Phys. Rev. Lett. 35, 1399 (1975).
- [12] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников. Наука, М. (1979). 396 с.
- [13] Е.И. Головенчиц, В.А. Санина, А.В. Бабинский. Письма в ЖЭТФ 63, 8, 634 (1996).
- [14] S.V. Maleev. Soc. Sci. Rev. A. Phys. 8, 323 (1987).