Влияние ионного облучения на верхнее критическое магнитное поле электронных и дырочных *d*-волновых сверхпроводников

© Н.П. Шабанова, С.И. Красносвободцев, А.В. Варлашкин, А.И. Головашкин

Физический институт им. П.Н. Лебедева Российской академии наук, 119991 Москва, Россия E-mail: varlash@sci.lebedev.ru

(Поступила в Редакцию 13 ноября 2001 г.)

Исследовано влияние ионного облучения на верхнее критическое магнитное поле H_{c2} электронных и дырочных высокотемпературных сверхпроводников. Показано, что изменение H_{c2} может быть связано с *d*-волновой симметрией параметра порядка.

Работа выполнена при поддержке Научного совета РНТП "Актуальные направления физики конденсированных сред" (направление "Сверхпроводимость", грант № 98027).

Исследования высокотемпературных сверхпроводников (ВТСП) различных групп, подвергнутых ионному облучению, обнаружили аномальный характер изменения верхнего критического магнитного поля с повышением концентрации радиационых дефектов [1,2]. Не наблюдалось классического роста H_{c2} , обычно вызванного рассеянием электронов на радиационных дефектах. Даже при облучении высококачественных эпитаксиальных пленок дозами, не приводящими к изменению критической температуры при возрастании удельного сопротивления, не удавалось заметно повысить H_{c2} .

Исследования обычных сверхпроводников с фононным механизмом показали, что в тех случаях, когда облучение не приводит к значительным изменениям электронной структуры, доминирующую роль в изменении верхнего критического поля играет рассеяние на дефектах. Примером может служить сверхпроводящее соединение NbC [3,4]. В других случаях, например для Nb₃Sn, при сильном изменении электронных характеристик именно это изменение определяет поведение H_{c2} при облучении [5].

В настоящей работе изучается влияние радиационных дефектов на изменение электронных характеристик и рассеяние электронов проводимости электронных и дырочных ВТСП-купратов, а также роль этих изменений при аномальном поведении H_{c2} .

1. Эксперимент

Исследовались эпитаксиальные *с*-ориентированные пленки YBa₂Cu₃O_{7- δ} (YBCO), HoBa₂Cu₃O_{7- δ} (HBCO) и Nd_{2-x}Ce_xCuO_{4- δ} (NCCO), синтезированные in situ двухлучевым лазерным испарением [6,7]. Облучение пленок ионами гелия с высокой энергией проводилось при комнатной температуре и при T = 77 K [8]. Измерялись температурные зависимости удельного сопротивления в нормальном состоянии и резистивные сверхпроводящие переходы в постоянном магнитном поле, перпендикулярном поверхности пленки. Температурная зависимость верхнего критического магнитного поля $H_{c2}(T)$ определялась по сдвигу резистивного перехода.

2. Результаты и обсуждение

На рис. 1 представлены сверхпроводящие резистивные переходы в магнитном поле эпитаксиальной пленки NCCO до и после облучения ее небольшой дозой ионов гелия. Видно, что, хотя в результате облучения удельное сопротивление ρ материала возросло почти вдвое, температурная зависимость H_{c2} практически не изменилась. Более высокие дозы облучения приводили к слабому изменению наклона $-dH_{c2}/dT$ температурной зависимости верхнего критического магнитного поля даже при значительном понижении критической температуры T_c .

Для пленок YBCO и HCCO наблюдалось более сильное уширение сверхпроводящих переходов в магнитном поле [5]. Облучение приводило к понижению наклона $-dH_{c2}/dT$ примерно пропорционально критической температуре.

Рис. 1. Сверхпроводящие переходы в магнитном поле эпитаксиальной пленки NCCO до и после облучения ионами He⁺ с высокой энергией дозой $1 \cdot 10^{13}$ cm⁻². Кривые *1–5* соответствуют значениям магнитного поля 0, 5, 10, 20 и 30 kOe. Показано определение удельного сопротивления в нормальном состоянии вблизи *T_c* исходного (ρ_0) и облученного (ρ_{irr}) образцов.

Рис. 2. Зависимость приведенного наклона $(-dH_{c2}/dT)_{irr}/(-dH_{c2}/dT)_0$ от приведенного удельного сопротивления ρ_{irr}/ρ_0 пленок NbC, НВСО и NCCO, облученных ионами He⁺. $(-dH_{c2}/dT)_0$ и ρ_0 — характеристики исходного образца. Штриховой линией показано изменение "чистого слагаемого" для NbC.

Наблюдаемое изменение H_{c2} ВТСП-купратов при облучении оказалось очень похожим на изменение той части H_{c2} обычных сверхпроводников, которую называют "чистым слагаемым" (рис. 2).

В отсутствие рассеяния величина наклона $-dH_{c2}/dT$ соответсвует "чистому слагаемому", которое определяется величиной $T_c/\langle v^2 \rangle$, где $\langle v^2 \rangle$ — средний по поверхности Ферми Квадрат скорости Ферми [9,10]. Рассеяние на дефектах повышает верхнее критическое магнитное поле [11,12]. Наклон температурной зависимости $-dH_{c2}/dT$ вблизи T_c с учетом рассеяния определяется выражением

$$-dH_{c2}/dT \sim \frac{T_c}{\langle v^{*2} \rangle} (1 + \lambda_{\rm tr}).$$
 (1)

Величина λ_{tr} растет при сокращении длины свободного пробега электронов l или времени релаксации $\tau = l/v^*$

$$\lambda_{\rm tr} = \frac{\hbar}{2\pi k T_c \tau^*} = 0.882 \, \frac{\xi_0}{l}.$$
 (2)

Здесь \hbar — постоянная Планка, k — постоянная Больцмана, $\xi_0 = 0.18\hbar v^*/kT_c$. Выражения записаны для сверх-проводника с сильной связью, где $\tau^* = \tau (1 + \lambda)$ и $v^* = v/(1 + \lambda)$, λ — константа электрон-фононного взаимодействия.

На примере обычных сверхпроводников NbC, Nb₃Sn было продемонстрировано влияние рассеяния электронов на радиационных дефектах на величину H_{c2} [3,5]. В том случае, когда дефекты несущественно изменяют электронную структуру и T_c , изменение множителя $T_c/\langle v^{*2} \rangle$, или "чистого слагаемого", в выражении (1) относительно невелико. Повышение H_{c2} вызвано ростом λ_{tr} из-за сокращения длины свободного пробега. Следует отметить, что в обычных сверхпроводниках рассеяние на нормальных примесях и дефектах не влияет на критическую температуру (теорема Андерсона) [13]. Изменение T_c в этом случае связано с изменением электронных характеристик.

В отличие от T_c обычных свехпроводников критическая температура высокотемпературных купратов чувствительна к рассеянию. Это связано с нечетной *d*-волновой симметрией параметра порядка [14], обнаруженной как для дырочных, так и для электронных ВТСП [15,16]. По оценке [17] для достаточно чистого сверхпроводника с нечетным параметром порядка поведение критической температуры при рассеянии на дефектах может быть определено соотношением $T_c = T_{c0}(1 - \pi \hbar/(2kT_{c0}\tau))$. Здесь T_{c0} — значение критической температуры в отсутствие рассеяния, $\hbar/(\pi kT_{c0}\tau) \ll 1$. С учетом (2) можно записать $T_c = T_{c0}/(1 + \pi^2 \lambda_{tr})$.

Таким образом, деградация критической температуры *d*-волнового сверхпроводника из-за рассеяния быстро снижает верхнее критическое магнитное поле, так что множителем $(1+\lambda_{\rm tr})$ в выражении (1) можно пренебречь. В результате для *d*-волнового сверхпроводника изменение наклона $-dH_{c2}/dT$ из-за рассеяния качественно будет описываться выражением

$$-dH_{c2}/dT \sim \frac{T_c}{\langle v^{*2} \rangle} \sim \frac{T_{c0}}{\langle v^{*2} \rangle (1 + \pi^2 \lambda_{\rm tr})}.$$
 (3)

Выражение (3) показывает, что для *d*-волнового сверхпроводника изменение наклона $-dH_{c2}/dT$ определяется отношением $T_c/\langle v^{*2} \rangle$ как при изменении электронных характеристик, так и при изменении рассеяния.

Это качественно объясняет обнаруженный характер изменения верхнего критического магнитного поля ВТСП-купратов при снижении длины свободного пробега электронов.

Облучение ВТСП приводит не только к изменению длины свободного пробега, но и к изменению концентрации электронов проводимости *N*. Выражение

$$\rho = \frac{mv}{Ne^2l} \tag{4}$$

(m и e — эффективная масса и заряд электрона) показывает, что удельное сопротивление ρ может возрастать как в результате снижения длины свободного пробега изза радиационных дефектов, так и в результате изменения электронных характеристик.

При облучении купратов происходит не только рост остаточного сопротивления, связанного с дефектами, но и повышение наклона $d\rho/dT$ температурной зависимости удельного сопротивления $\rho(T)$ (рис. 3). Температурная зависимость ρ определяется температурной зависимостью длины свободного пробега. В случае линейной зависимости $\rho(T)$ наклон $d\rho/dT$ можно рассматривать как показатель изменения величины mv/N при облучении. Отношение $d\rho/dT$ к величине удельного сопротивления ρ_n вблизи T_c должно меняться при облучении

Рис. 3. Температурные зависимости удельного сопротивления эпитаксиальных пленок высокотемпературных сверхпроводников, облученных различными дозами *F* ионов He⁺: YBCO (*F*, cm⁻²: I - 0, $2 - 6 \cdot 10^{14}$, $3 - 1.6 \cdot 10^{15}$, $4 - 2.6 \cdot 10^{15}$); NCCO (*F*, cm⁻²: I - 0, $2 - 1 \cdot 10^{13}$, $3 - 1 \cdot 10^{14}$).

пропорционально длине свободного пробега электронов

$$\frac{1}{\rho_n} \frac{d\rho}{dT} \sim l. \tag{5}$$

Это позволяет оценить изменения l и mv/N при облучении на основании данных о температурной зависимости $\rho(T)$.

Для YBCO (рис. 3) и HBCO [5], а также для NbC, имеющих близкую к линейной зависимость удельного сопротивления от температуры, были непосредственно произведены оценки изменения величины mv/N и длины свободного пробега электронов l вблизи T_c при облучении. В случае NCCO, для которого зависимость $\rho(T)$ является нелинейной, подобные оценки были проведены на качественном уровне. Результаты показывают, что облучение YBCO, HBCO и NCCO приводит к заметному понижению длины свободного пробега электронов в этих ВТСП. При этом не обнаруживается увеличения наклона $-dH_{c2}/dT$ в отличие от обычных сверхпроводников (рис. 4).

Наблюдаемое снижение верхнего критического магнитного поля для HBCO может объясняться сильным влиянием рассеяния на критическую температуру *d*-волнового сверхпроводника. Небольшая длина когерентности дырочных ВТСП $\xi(0) \sim 20$ Å делает возмож-

Рис. 4. Изменение приведенного наклона $(-dH_{c2}/dT)_{irr}/(-dH_{c2}/dT)_0$ при повышении приведенной обратной длины свободного пробега электронов l_0/l_{irr} для эпитаксиальных пленок высокотемпературных купратов HBCO, YBCO и NCCO, облученных ионами He⁺. $(-dH_{c2}/dT)_0$ и l_0 — характеристики исходного образца. Для сравнения показаны данные для обычного сверхпроводника NbC, штриховая линия — "чистое слагаемое".

Рис. 5. Зависимость наклона $-dH_{c2}/dT$ от критической температуры T_c для эпитаксиальных пленок дырочных высокотемпературных сверхпроводников НВСО и УВСО, облученных ионами гелия, и допированного цинком УВСО [18].

Физика твердого тела, 2002, том 44, вып. 10

Рис. 6. Зависимость наклона $-dH_{c2}/dT$ от критической температуры T_c для электронных высокотемпературных сверхпроводников: в эпитаксиальных пленках NCCO, облученных ионами гелия, с различным соотношением Nd/Ce и с различным кислородным составом [19], а также в SmCeCuO [20,21].

ной реализацию приближения чистого сверхпроводника $\lambda_{\rm tr} \ll 1$, когда справедливо выражение (3).

Вместе с тем для YBCO и HBCO при небольших дозах облучения и при замещении меди цинком [18] оценки показали, что относительное изменение mv/N сравнимо с относительным изменением 1/l или превышает его. Зависимость H_{c2} от электронных характеристик в этом случае может оказаться существенной. В частности, понижение концентрации электронов проводимости может приводить к быстрому снижению T_{c0} в выражении (3) при прохождении уровнем Ферми сингулярности в плотности состояний [17]. Во всех случаях для дырочных ВТСП наблюдается универсальный характер изменения H_{c2} : наклон $-dH_{c2}/dT$ снижается примерно пропорционально критической температуре (рис. 5). По-видимому, изменение величины $T_c/\langle v^{*2} \rangle$ для них определяется изменением T_c .

Для электронных ВТСП NCCO и SmCeCuO (SCCO) прослеживается слабая тенденция к уменьшению наклона $-dH_{c2}/dT$ при снижении критической температуры в результате облучения, изменения кислородного состава [19] и соотношения редкоземельных элементов (рис. 6). Значения критического поля вблизи Т_с (и наклона $-dH_{c2}/dT$) для этих соединений практически совпадают [20,21]. С помощью облучения не удается значительно повысить рассеяние в указанных купратах (рис. 4). Даже очень малые дозы облучения вызывают снижение критической температуры, поскольку эти соединения являются сверхпроводящими в очень узкой области содержания кислорода. При этом обнаруживается значительное изменение величины mv/N. Понижение концентрации электронов проводимости (изменение уровня Ферми) может вызывать уменьшение не только T_c , но и v^* . Поэтому наблюдение слабого снижения наклона $-dH_{c2}/dT$ электронных сверхпроводников при облучении можно объяснить особенностями электронной структуры, определяющими изменение величины $T_c/\langle v^{*2}\rangle$.

Таким образом, для дырочных и электронных ВТСП показано, что отсутствие роста верхнего критического магнитного поля при снижении длины свободного пробега электронов в результате облучения ионами с высокой энергией может определяться d-волновой симметрией параметра порядка. При этом существенную роль в характере изменения верхнего критического магнитного поля должно играть изменение концентрации электронов проводимости, вызванное радиационными дефектами. Величина H_{c2} качественно ведет себя аналогично "чистому слагаемому" в выражении для верхнего критического магнитного поля обычного сверхпроводника при изменении электронных характеристик.

Список литературы

- [1] С.И. Красносвободцев, Н.П. Шабанова, В.С. Ноздрин, А.И. Головашкин. ФТТ **41**, 1372 (1999).
- [2] J.Y. Lin, S.J. Chen, S.Y. Chen, C.F. Chang, H.D. Yang, S.K. Tolpygo, M. Gurvitch, Y.Y. Hsu, H.C. Ku. Phys. Rev. B59, 6047 (1999).
- [3] С.И. Красносвободцев, Н.П. Шабанова, Е.В. Екимов, В.С. Ноздрин, Е.В. Печень. ЖЭТФ 108, 970 (1995).
- [4] N.P. Shabanova, S.I. Krasnosvobodtsev, V.S. Nozdrin, E.V. Pechen, A.V. Varlashkin, S.V. Antonenko, G.I. Zhabrev, A.I. Golovashkin. Czech. J. Phys. 46, 853 (1996).
- [5] Н.П. Шабанова, С.И. Красносвободцев, В.С. Ноздрин, А.И. Головашкин. ФТТ 38, 1969 (1996).
- [6] A.I. Golovashkin, E.V. Ekimov, S.I. Krasnosvobodtsev, V.P. Martovitsky, E.V. Pechen. Physica C162–164, 715 (1989).
- [7] В.С. Ноздрин, С.И. Красносвободцев, О.М. Иваненко, П.В. Братухин, К.В. Мицен. Письма в ЖТФ 22, 24, 1 (1996).
- [8] Н.П. Шабанова, В.С. Ноздрин, С.И. Красносвободцев, В.А. Дравин, А.И. Головашкин. Крат. сообщ. по физике 12, 35 (1999).
- [9] Л.П. Горьков, Т.К. Мелик-Бархударов. ЖЭТФ 45, 1493 (1963).
- [10] B.J. Dalrymple, D.E. Prober. J. Low. Temp. Phys. 56, 545 (1984).
- [11] Л.П. Горьков. ЖЭТФ 37, 1407 (1959).
- [12] N.R. Werthamer. Superconductivity / Ed. R.D. Parks. Dekker Marcel. N.Y. (1969). Vol. 1. P. 321.
- [13] P.W. Anderson. J. Phys. Chem. Sol. 11, 26 (1959).
- [14] H. Won, K. Maki. Physica C282–287, 1837 (1997).
- [15] C.C. Tsuei, J.R. Kirtley, C.C. Chi, L.S. Yu-Jahnes, A. Gupta, T. Shaw, J.Z. Sun, M.B. Ketchen. Phys. Rev. Lett. **73**, 593 (1994).
- [16] C.C. Tsuei, J.R. Kirtley. Phys. Rev. Lett. 85, 182 (2000).
- [17] A.A. Abrikosov, Int. J. Mod. Phys. B13, 3405 (1999).
- [18] J. Schroeder, M. Ye, J.F. Marneffe, M. Mehbod, R. Deltour, A.G.M. Jansen, P. Wyder. Physica C278, 113 (1997).
- [19] J. Herrmann, M.C. Andrade, C.C. Almasan, R.P. Dickey, M.B. Maple, W. Jiang, S.N. Mao, R.L. Greene. Phys. Rev. B54, 3610 (1996).
- [20] M.C. Andrade, C.C. Almasan, Y. Dalichaouch, M.B. Maple. Physica C184, 378 (1991).
- [21] M.A. Crusellas, J. Fontcuberta, S. Pinol. Phys. Rev. B48, 4223 (1993).