Промежуточная моноклинная фаза и электромеханические взаимодействия в кристаллах $x PbTiO_3 - (1 - x)Pb(Zn_{1/3}Nb_{2/3})O_3$

© В.Ю. Тополов, А.В. Турик

Ростовский государственный университет, 344090 Ростов-на-Дону, Россия E-mail: topolov@phys.rnd.runnet.ru

(Поступила в Редакцию 1 октября 2001 г.)

Исследовано упругое согласование фаз вблизи морфотропной границы кристаллах в *x*PbTiO₃−(1 − *x*)Pb(Zn_{1/3}Nb_{2/3})O₃, помещенных во внешнее электрическое поле с напряженностью **E** || [001]. На основе экспериментальных полевых зависимостей параметров ячейки моноклинной фазы при $0 \le E \le 2 \,\mathrm{MV/m}$ проанализированы особенности электромеханического поведения кристаллов с $0.08 \le x \le 0.09$, в которых данная фаза расположена между ромбоэдрической и тетрагональной фазами и может сосуществовать с ними. Впервые установлена и интерпретирована связь между оптимальными объемными концентрациями доменов или двойников в различных двухфазных состояниях.

В последнее десятилетие интенсивно исследуются сегнетоэлектрики и родственные материалы, в которых обнаружены промежуточные фазы. Например, промежуточная сегнетоэлектрическая фаза 3т в кристаллах $PbZrO_3$ [1,2] и твердых растворах ($Pb_{1-x}Sr_x$) ZrO_3 [3] термодинамически устойчива в узком интервале температур T при молярной концентрации $x \to 0$ и сосуществует с одной из соседствующих фаз — параэлектрической т3т или антисегнетоэлектрической ттт. Промежуточная сегнетоэластическая фаза 2/т индуцируется гидростатическим сжатием или при термоциклировании [4] в кристаллах КСМ, испытывающих фазовый переход первого рода m3m-mmm. Фаза $\bar{4}2m$ в Cr₃B₇O₁₃Cl единственная антисегнетоэлектрическая фаза в кристаллах со структурой типа борацита [5] — индуцируется электрическим полем или механическими напряжениями в двухфазном состоянии 42*m*-*mm*2. Благодаря уникальным пьезо- и диэлектрическим свойствам и в связи с недавним обнаружением промежуточных фаз вблизи морфотропной границы большое внимание привлекают системы сегнетоэлектрических твердых растворов со структурой типа перовскита $Pb(Zr_{1-x}Ti_x)O_3$ [6–13], $x PbTiO_3 - (1 - x)Pb(Zn_{1/3}Nb_{2/3})O_3$ (PT-PZN) [7,8,14–19] и *x*PbTiO₃–(1-x)Pb(Mg_{1/3}Nb_{2/3})O₃ [20,21]. Экспериментально установлено, что промежуточные фазы в данных системах твердых растворов являются моноклинными сегнетоэлектрическими [10,11,17,20,21] и могут сосуществовать с одной из сегнетоэлектрических фаз (тетрагональной 4mm или ромбоэдрической 3m) в определенных интервалах температур Т и молярных концентраций х (двухфазные состояния 3*m*-*m* и 4*mm*-*m* в кристаллитах керамики $Pb(Zr_{1-x}Ti_x)O_3$ [12]) или напряженности электрического поля E (что следует из данных [17,18] по кристаллам PT-PZN). Теоретическое исследование особенностей упругого согласования фаз в $Pb(Zr_{1-x}Ti_x)O_3$ [13] позволило установить связь между фазовыми границами на уточненной х, Т-диаграмме [12] и межфазными границами в кристаллитах. Показано, что межфазные границы 3*m*-4*mm*, 3*m*-*m* и 4*mm*-*m* ориентируются вдоль плоскостей нулевых средних деформаций (ПНСД), обеспечивая снижение до нуля упругой и электрострикционной энергий взаимодействующих фаз. Линия ПНСД, рассчитанная для сосуществующих фаз 4mm и m [13], практически параллельна экспериментальной фазовой границе 4*mm*-*m* на *x*, *T*-диаграмме [12]. Такое проявление упругого взаимодействия фаз в $Pb(Zr_{1-x}Ti_x)O_3$ и экспериментальные данные [17,18] по кристаллам РТ-РZN побудили нас проанализировать особенности гетерофазных состояний этих кристаллов вблизи морфотропной границы во внешнем электрическом поле Е. Цель данной работы — исследование влияния промежуточной моноклинной фазы на упругое согласование фаз и электромеханические взаимодействия в кристаллах PT–PZN c $0.08 \lesssim x \lesssim 0.09$.

1. Полидоменные (сдвойникованные) фазы и их упругое согласование

Предполагается, что механически свободный кристалл PT-PZN может испытывать фазовый переход первого рода в некоторых интервалах х и Е. Ориентации доменов — компонентов механических двойников задаются базисными векторами $(\mathbf{a}_i; \mathbf{b}_i; \mathbf{c}_i)$ элементарных ячеек в прямоугольной системе координат $(x_1x_2x_3)$, оси ОХ; которой параллельны осям перовскитовой ячейки в параэлектрической фазе *Рт3т*. Четыре типа 71°(109°) доменов ромбоэдрической фазы описываются базисными векторами ячеек (\mathbf{a}_{ri} ; \mathbf{b}_{ri} ; \mathbf{c}_{ri}) и объемными концентрациями n_{ri} (i = 1-4). Векторы $(\mathbf{a}_{ri}; \mathbf{b}_{ri}; \mathbf{c}_{ri})$ ориентируются с учетом углов сдвига ω_r [12,22] перовскитовой ячейки вдоль следующих направлений [23]: ([100]; [010]; [001]) $(i = 1), ([\overline{1}00]; [010]; [00\overline{1}])$ $(i = 2), ([0\overline{1}0];$ $[\bar{1}00]; [00\bar{1}])$ $(i = 3), ([010]; [\bar{1}00]; [00\bar{1}])$ (i = 4). Объемные концентрации n_{ri} определяются через параметры $0 \le u_r \le 1$ и $0 \le g_r \le 1$ как $n_{r1} = (1 - u_r)(1 - g_r)$, $n_{r2} = (1 - u_r)g_r$, $n_{r3} = u_r(1 - g_r)$ и $n_{r4} = u_rg_r$. Тетра-

Рис. 1. Схематическое изображение доменной структуры индуцированной электрическим полем **E** || [001] моноклинной фазы кристаллов xPbTiO₃-(1 - x)Pb(Zn_{1/3}Nb_{2/3})O₃ вблизи морфотропной границы. $f_m = |OK|/|OL|$ и $v_m = |LS|/|LV|$ — объемные концентрации двойников, сформированных из доменов типов (1;3) и (1;2) соответственно. Заштрихованная область — доменная стенка, параллельная плоскости (010) перовскитовой ячейки.

гональная фаза содержит 90° домены двух типов. Их базисные векторы (\mathbf{a}_{tj} ; \mathbf{b}_{tj} ; \mathbf{c}_{tj}) ориентируются вдоль ([100]; [010]; [001]) (j = 1) и ([010]; [001]; [100]) (j = 2), а объемные концентрации равны n_t и $1 - n_t$ соответственно. Моноклинная фаза предполагается разбитой на домены четырех типов [17] с базисными векторами (\mathbf{a}_{mk} ; \mathbf{b}_{mk} ; \mathbf{c}_{mk}) (рис. 1) и объемные концентрациями $n_{m1} = f_m v_m$, $n_{m2} = (1 - f_m)v_m$, $n_{m3} = f_m(1 - v_m)$ и $n_{m4} = (1 - f_m)(1 - v_m)$ выражаются через параметры (объемные концентрации механических двойников) f_m и v_m , изменяющиеся в интервале [0;1].

Матрицы дисторсий ромбоэдрической, тетрагональной [13] и моноклинной фаз соответственно имеют вид

$$\|N_r\| = \begin{pmatrix} \mu_a & \mu(2g_r - 1) & \mu(2u_r - 1)(2g_r - 1) \\ \mu(2g_r - 1) & \mu_a & \mu(2u_r - 1) \\ \mu(2u_r - 1)(2g_r - 1) & \mu(2u_r - 1) & \mu_a \end{pmatrix},$$
(1)

$$\begin{split} \|N_t\| &= n_t \begin{pmatrix} \varepsilon_a & 0 & 0\\ 0 & \varepsilon_a & 0\\ 0 & 0 & \varepsilon_c \end{pmatrix} \\ &+ (1 - n_t) \begin{pmatrix} \cos \varphi_t & 0 & -\sin \varphi_t\\ 0 & 1 & 0\\ \sin \varphi_t & 0 & \cos \varphi_t \end{pmatrix} \begin{pmatrix} \varepsilon_c & 0 & 0\\ 0 & \varepsilon_a & 0\\ 0 & 0 & \varepsilon_a \end{pmatrix}, \quad (2) \\ \|N_m\| &= \upsilon_m \begin{pmatrix} \eta_a & 0 & \eta(2f_m - 1)\\ 0 & \eta_b & 0\\ 0 & 0 & \eta_c \end{pmatrix} \end{split}$$

$$+ (1-v_m) \begin{pmatrix} \cos \varphi_{ab} & -\sin \varphi_{ab} & 0\\ \sin \varphi_{ab} & \cos \varphi_{ab} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \eta_b & 0 & 0\\ 0 & \eta_a & \eta(2f_m-1)\\ 0 & 0 & \eta_c \end{pmatrix}.$$
(3)

Дисторсии отдельных доменов выражаются через параметры ячеек a_r , ω_r ромбоэдрической фазы, a_i , c_t тетрагональной фазы, a_m , b_m , c_m , ω_m моноклинной фазы и a_0 кубической фазы следующим образом: $\mu_a = a_r \cos \omega_r/a_0$, $\mu = a_r \sin \omega_r/a_0$, $\varepsilon_a = a_t/a_0$, $\varepsilon_c = c_t/a_0$, $\eta_a = a_m \cos \omega_m/a_0$, $\eta_b = b_m/a_0$, $\eta_c = c_m/a_0$ и $\eta = a_m \sin \omega_m/a_0$. Углы $\varphi_t = \arccos[2\varepsilon_a\varepsilon_c/(\varepsilon_a^2 + \varepsilon_c^2)]$ и $\varphi_{ab} = \arccos[2\eta_a\eta_b/(\eta_a^2 + \eta_b^2)]$ из формул (2), (3) характеризуют вращение кристаллографических осей [13,24] сопряженных доменов тетрагональной и моноклинной фаз с $\varepsilon_a \neq \varepsilon_c$ и $\eta_a \neq \eta_b$ соответственно. Дальнейший анализ матриц (1)–(3) проводится по формулам [1,24] с целью определения возможностей упругого согласования фаз вдоль ПНСД и соответствующих оптимальных объемных концентраций доменов (например, $n_{t,opt}$ или $n'_{t,opt}$ в тетрагональной фазе).

2. Результаты расчетов и обсуждение

2.1. Плоскости нулевых средних деформаций в двухфазных состояниях. В табл. 1 приведены результаты расчетов оптимальных объемных концентраций различных типов доменов или двойников в двухфазных кристаллах РТ–РZN вблизи морфотропной границы. Для численных оценок использованы данные по параметрам перовскитовой ячейки, измеренным при комнатной температуре авторами [17] (ромбоэдрическая и моноклинная фазы, x = 0.08) и [22] (тетрагональная фаза, $x \approx 0.09$). Анализ экспериментальных данных показывает, что параметры ячейки тетрагональной фазы $a_t = 0.4037$ nm и $c_t = 0.4080$ nm при E = 0 [22] хорошо согласуются с параметрами перовскитовой ячейки, оцениваемыми при экстраполяции кривых $a_m(E)$ и $b_m(E)$ из работы [17] к значе-

Сосуществующие фазы и фикси- рованные объемные концентра- ции отдельных типов доменов	x	E, MV/m	Оптимальные объемные концентрации доменов или двойников, соответствующие упругому согласованию фаз вдоль ПНСД
Ромбоэдрическая $(u_r = g_r = 0),$	0.09	0	$n_{t, { m opt}} = 0.620$ или $n_{t, { m opt}}' = 0.380$
тетрагональная Ромбоэдрическая $(u_r = g_r = 1/2),$ моноклинная $(f_m - 1/2)$	0.08	0 5 10 15 20	$v_{m, \text{opt}} = 0.775$ или $v'_{m, \text{opt}} = 0.225$ $v_{m, \text{opt}} = 0.801$ или $v'_{m, \text{opt}} = 0.199$ $v_{m, \text{opt}} = 0.873$ или $v'_{m, \text{opt}} = 0.127$ $v_{m, \text{opt}} = 0.980$ или $v'_{m, \text{opt}} = 0.020$ $v_{m, \text{opt}} > 1$ или $v'_{t, \text{opt}} < 0$ (отсутствие ПНСД)
Моноклинная, тетрагональная $(v_m = 1, f_m = 1/2$ при увеличении E ; $n_t = 1, f_m = 1/2$ при уменьшении E)	0.08–0.09	$ \begin{array}{c} 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 30-35 \\ \begin{array}{c} 20 \\ 15 \\ 10 \\ 5 \\ 0 \\ \end{array} $	Фазовый переход при увеличении E $n_{t,opt} = 0.438$ или $n'_{t,opt} = 0.562$ $n_{t,opt} = 0.461$ или $n'_{t,opt} = 0.539$ $n_{t,opt} = 0.519$ или $n'_{t,opt} = 0.481$ $n_{t,opt} = 0.588$ или $n'_{t,opt} = 0.412$ $n_{t,opt} = 0.762$ или $n'_{t,opt} = 0.238$ $n_{t,opt} \approx 1$ или $n'_{t,opt} \approx 0$ Фазовый переход при уменьшении E $v_{m,opt} = 0.274$ или $v'_{m,opt} = 0.726$ $v_{m,opt} = 0.224$ или $v'_{m,opt} = 0.776$ $v_{m,opt} = 0.217$ или $v'_{m,opt} = 0.783$

Примечание. Расчетные значения $n_{t,opt}$ и $n'_{t,opt}$ для ромбоэдрическо-тетрагонального фазового перехода определялись [25] до обнаружения промежуточной моноклинной фазы в PT–PZN. Сосуществование ромбоэдрической и тетрагональной фаз в кристаллах PT–PZN с x = 0.08 в некотором интервале E недавно наблюдалось авторами [19], однако из-за отсутствия в литературе экспериментальных зависимостей $a_r(E)$, $\omega_r(E)$, $a_t(E)$ и $c_t(E)$ расчеты $n_{t,opt}(E)$ и $n'_{t,opt}(E)$ не проводились.

ниям $a_m(E') = b_m(E') \neq c_m(E')$, которые соответствуют возможности протекания индуцированного моноклиннотетрагонального фазового перехода. Наши численные оценки, полученные с помощью полиномиальной экстраполяции зависимостей $a_m(E)$ и $b_m(E)$ для кристаллов PT–PZN с x = 0.08, дают $a_m(E') = b_m(E') \approx 0.4030$ nm, $c_m(E') \approx 0.4090$ nm и $E' \approx 3.0-3.5$ MV/m. Примечательно, что значения E' практически совпадают с экспериментальными значениями [14] напряженности поля $E'' \approx 2.5-4.0$ MV/m, при которых индуцируется тетрагональная фаза.

Из расчетов оптимальных объемных концентраций доменов или двойников следует, что значения $n_{t,opt}$, $n'_{t,opt}$, $v_{m,opt}$ и $v'_{m,opt}$ изменяются менее чем на 1% даже при значительных изменениях параметров концентрации u_r , g_r и f_m в интервале [0;1]. Практическое постоянство упомянутых оптимальных концентраций связано со слабым влиянием сдвиговых дисторсий перовскитовых ячеек ромбоэдрической и моноклинной фаз на формирование плоских недеформированных межфазных границ. Слабость этого влияния обусловлена недиагональными элементами матриц $||N_r||$ и $||N_m||$, зависящими от u_r , g_r и f_m (см. (1), (3)) и малыми по модулю по сравнению с диагональными элементами тех же матриц. Как видно из табл. 1, упругое согласование фаз вдоль ПНСД реализуется при двух значениях оптимальных объемных концентраций, например $n_{t,opt}$ и $n'_{t,opt}$. Эти значения определяются в интервале [0;1] из уравнения [1,24] вида

$$\sum_{q=0}^{6} a_{q} n_{t}^{q} = 0, \tag{4}$$

где a_q — коэффициенты, выражающиеся через элементы матриц дисторсий (1)–(3). С учетом того, что при индуцированном моноклинно-тетрагональном фазовом переходе с ростом E следует ожидать увеличения объемной концентрации доменов с $\mathbf{P}_{s1} \uparrow \uparrow \mathbf{E} \parallel OX_3$ (при этом объемная плотность энергии электростатического взаимодействия $w_{es,1} = -(\mathbf{P}_{s1}\mathbf{E})$ [26] становится наименьшей), из приведенных в табл. 1 полевых зависимостей следует, что $n_{t,opt}(E)$ имеет физический смысл и обеспечивает в предельном случае $n_{t,opt}(E') \rightarrow 1$. В отличие от $n_{t,opt}(E)$ расчетная зависимость $n'_{t,opt}(E)$ приводит к лишенному физического смысла результату $n'_{t,opt}(E') \rightarrow 0$ и не рассматривается в дальнейшем.

2.2. Влияние моноклинной фазы на электромеханические свойства кристаллов xPbTiO₃-(1 - x)Pb(Zn_{1/3}Nb_{2/3})O₃. Далее показано, что результаты анализа упругого согласования ромбоэдри-

ческой и моноклинной фаз позволяют объяснить обнаруженные экспериментально особенности [15,17,18,27] электромеханического поведения кристаллов PT-PZN с x = 0.08 в окрестности $E = E_0 = 1.5 \,\text{MV/m}$. Рассчитанные оптимальные концентрации двойников моноклинной фазы $v_{m,\text{opt}} \approx 1$ и $v'_{m,\text{opt}} \approx 0$ (табл. 1) свидетельствуют о значительном упрощении доменной структуры, в результате которого базисные векторы \mathbf{b}_{mk} во всем кристалле ориентируются параллельно одной из осей: OX_1 (k = 3, 4) или OX_2 (k = 1, 2). Смещения под действием электрического поля $E \ge E_0$ доменных (двойниковых) стенок, параллельных плоскости (010) (рис. 1) и разделяющих двойники с $\mathbf{b}_{mk} \parallel OX_1$ и $\mathbf{b}_{mk} \parallel OX_2$, сопровождаются деформациями, индуцируемыми вследствие реализации неравенства $a_m \neq b_m$ и способными влиять на электромеханические свойства кристаллов. Простейшие оценки, основанные на представлениях [28] об упругих смещениях 90° доменных стенок в кристаллитах сегнетопьезокерамики ВаТіО3, показывают, что индуцированные при $E \approx E_0$ деформации составляют $\xi^{\prime}_{ik} pprox (a_m - b_m)/b_m pprox 0.6\%$ и соизмеримы с экспериментально определенной [27] пьезодеформацией кристалла PT–PZN $\xi_{33}(E_0) \approx 0.5\%$. По нашему мнению, вследствие смещений доменных стенок типа {100} и последующего упрощения доменной структуры характерные скачки пьезомодуля $d_{31}(E)$ и упругой податливости $s_{11}^{E}(E)$ кристалла, измеренных резонансным методом [15], наблюдаются именно вблизи $E = E_0$. Вместе с тем при $E \approx E_0$ не наблюдается скачка диэлектрической проницаемости $\varepsilon_{33}^{\sigma}(E)$ [15], что также связывается с упрощением доменной структуры моноклинной фазы.

Смещения межфазных границ также влияют на пьезоэлектрические свойства кристалла РТ–РZN. Следуя [16], представим деформацию кристалла вдоль OX_3 , обусловленную смещением (001)-границ вдоль этой же оси, как $\xi_{33,rm}^{\Delta} = z_m \delta_{rm}$, где z_m — объемная концентрация индуцируемой моноклинной фазы, $\delta_{rm} = (c_m - a_r)/a_r$ коэффициент, зависящий от параметров ячеек сосуществующих фаз, причем во всех доменах базисные векторы $\mathbf{c}_{mk} \parallel OX_3$, а \mathbf{c}_{ri} практически параллельны оси OX_3 . Вклад рассматриваемых смещений в пьезомодуль d_{33} в поле $\mathbf{E} \parallel OX_3$ оценивается по формуле

$$\Delta d_{33,rm} = d\xi^{\Delta}_{33,rm}/dE = (dz_m/dE)\delta_{rm} + z_m(d\delta_{rm}/dE).$$
(5)

Отсутствие в литературе экспериментальных данных по кинетике индуцированного ромбоэдрическомоноклинного фазового перехода, а также электромеханических констант монодоменных моноклинных кристаллов PT-PZN затрудняет проведение расчетов по формуле (5). Однако если предположить, что $z_m = 0$ при E = 0 и $z_m = 1$ при E = 2.0 MV/m (оба условия коррелируют с экспериментальными данными [17,18]), $z_m(E)$ — линейная функция и $a_r(E) = \text{const, то удается}$ получить расчетную полевую зависимость $\Delta d_{33,rm}(E)$ (кривая I на рис. 2). Для сравнения приводятся экспериментальные $d_{33,D}(E)$ и $d_{33,P}(E)$ (кривые 2 и 4 на рис. 2)

Рис. 2. Расчетные (1,3) и экспериментальные (2,4) полевые зависимости пьезомодуля $d_{33}(E)$ и вклада смещений межфазных границ $\Delta d_{33}(E)$ кристалла 0.08PbTiO₃–0.92Pb(Zn_{1/3}Nb_{2/3})O₃: $I - \Delta d_{33,rm}(E)$, $2 - d_{33,D}(E)$ при индуцированном ромбоэдрическо-моноклинном фазовом переходе, $3 - \Delta d_{33,rr}(E)$, $4 - d_{33,P}(E)$ в ромбоэдрической фазе. I — расчет по формуле (5); 2, 4 — на основе данных [27] и [14] по деформации $\xi_{33}(E)$, измеренной при возрастании напряженности электрического поля; 3 — расчет на основе модельных представлений [16] о смещении доменных стенок (001) в ромбоэдрической фазе, отдельные домены которой характеризуются молярной концентрацией $x_d \neq 0.08$ [25] вследствие флуктуаций состава и других факторов.

и расчетная $\Delta d_{33,rr}(E)$ (кривая 3 на рис. 2) зависимости. Приведенные результаты свидетельствуют о корреляции полевых зависимостей $\Delta d_{33,rm}(E)$ и $d_{33,D}(E)$, а также $\Delta d_{33,rr}(E)$ и $d_{33,P}(E)$. Независимо от симметрии фаз и особенностей доменной структуры вклады $\Delta d_{33,rm}$ и $\Delta d_{33,rr}$ в сильных электрических полях могут достигать 50-90% от измеренных значений пьезомодуля $d_{33,D}(E)$ и $d_{33,P}(E)$ соответственно. Сходство кривых $d_{33,D}(E)$ и $\Delta d_{33,rm}(E)$, (см. кривые 1, 2 на рис. 2) объясняется аналогичной конфигурацией кривых $\xi_{33}(E)$ [27] и $c_m(E)$ [17] или $\delta_{rm}(E)$. Пики рассматриваемых кривых $d_{33,D}(E)$ и $\Delta d_{33,rm}(E)$ вблизи $E = E_0$ обусловлены наибольшим углом наклона кривых $\xi_{33}(E)$ и $c_m(E)$ соответственно. Отметим, что ранее авторами [17] подчеркивалась аналогия полевых зависимостей $\xi_{33}(E)$ и $c_m(E)$, однако при этом не затрагивались пьезоэлектрические и другие свойства кристаллов PT-PZN.

Зависимость $\Delta d_{33,rm}(E)$, рассчитанная по формуле (5), становится некорректной при $E > E_0$ из-за неучета вышеупомянутого упрощения доменной структуры в моноклинной фазе, нелинейного характера зависимости $z_m(E)$ и скачка $c_m(E)$. Упрощение доменной структуры

Условие для оптимальных	Условие для углов между векторами	Ограничения, налагаемые	Пределы применимости
объемных концентраций	спонтанной поляризации доменов	на индексы Миллера ПНСД	условий (6)–(9)
(6) (7) (8) (9)	$\begin{aligned} \alpha &\approx \left(\mathbf{P}_{Mc,a}, {}^{\wedge} \mathbf{P}_{Mc,b}\right) \\ \pi/2 - \alpha &\approx \left(\mathbf{P}_{Mc,a}, {}^{\wedge} \mathbf{P}_{Mc,c}\right) \end{aligned}$ $\begin{aligned} \alpha &\approx \left(\mathbf{P}_{Mc,d}, {}^{\wedge} \mathbf{P}_{Mc,e}\right) \\ \pi/2 - \alpha &\approx \left(\mathbf{P}_{Mc,d}, {}^{\wedge} \mathbf{P}_{Mc,f}\right) \end{aligned}$	$egin{aligned} h_a \lesssim 1; \ h_b \ll 1 \ h_a \lesssim 1; \ h_c pprox 1/4 \end{aligned}$ $egin{aligned} k_d \lesssim 1; \ h_e \ll 1 \ k_d pprox h_f \lesssim 1/4 \end{aligned}$	Для (6), (7): $300 \le T \le 550$ K, $0.45 \le x \le 0.46$ (по числен- ным оценкам [13]), $E = 0$ Для (8), (9): $T \approx 300$ K, $0.08 \le x \le 0.09$, $0 \le E \le 1.0$ MV/m

Таблица 2. Связь между оптимальными объемными концентрациями доменов (двойников) и взаимной ориентацией векторов спонтанной поляризации доменов сосуществующих фаз

Примечание. Векторы спонтанной поляризации отдельных доменов ромбоэдрической и тетрагональной фаз задаются согласно [7] в перовскитовых осях в виде $\mathbf{P}_{Rh} \parallel [111]$ и $\mathbf{P}_{Tg} \parallel [001]$ соответственно. В моноклинной фазе $Pb(Zr_{1-x}Ti_x)O_3$ аналогичный вектор $\mathbf{P}_{Mc,i} \parallel [h_ih_i1]$ совершает поворот от [111] к [001], где $0 < h_i < 1$. В моноклинной фазе PT–PZN поворот характеризуется следующей последовательностью векторов спонтанной поляризации: $\mathbf{P}_{Mc,d} \parallel [lk_g1] \rightarrow \mathbf{P}_{Mc,f} \parallel [h_f01] \rightarrow \mathbf{P}_{Mc,e} \parallel [h_e01]$, где $k_d \gg k_g$ и $h_f \gg h_e$.

влияет на упругие, пьезо- и диэлектричские свойства моноклинной фазы, а следовательно, изменяет внутренние механические и электрические поля и условия смещения межфазной границы. Скачок параметра ячейки c_m при $E \approx E_0$ приводит к изменению матричного элемента $N_{m,33}$ в (3) и перераспределению внутренних полей, что также влияет на смещение межфазной границы.

Предположение [18] о сосуществовании моноклинной и тетрагональной фаз в отсутствие электрического поля Е подтверждается расчетными данными из табл. 1. Кроме того, как при прямом, так и при обратном фазовом переходе в широком интервале *Е* межфазные границы могут ориентироваться вдоль ПНСД. При индуцированном переходе в тетрагональную фазу ее монодоменизация (т. е. $n_{t,opt} \rightarrow 1$) вблизи E = 3.0 MV/m также может повлиять на полевые зависимости $d_{33}(E)$ и других электромеханических констант кристалла РТ–РZN.

2.3. Сравнение с результатами для твердых растворов $Pb(Zr_{1-x}Ti_x)O_3$. Проводя сравнение представленных в табл. 1 расчетных данных по ПНСД в РТ–РZN с полученными ранее [13] для $Pb(Zr_{1-x}Ti_x)O_3$, отметим прежде всего малые (менее 10%) различия в значениях $n_{t,opt}$ или $n'_{t,opt}$ для ромбоэдрическотетрагонального фазового перехода при E = 0. Этот результат объясняется примерным равенством отношений спонтанных деформаций $\xi_{11,t}^s/\xi_{33,t}^s = (\varepsilon_a - 1)/(\varepsilon_c - 1)$ перовскитовых ячеек тетрагональных фаз PT-PZN и $Pb(Zr_{1-x}Ti_x)O_3$ вблизи морфотропной границы, а также слабым влиянием сдвиговых спонтанных деформаций $\xi_{ik}^{s} = \mu$ ячеек ромбоэдрических фаз на внутренние механические поля. Электрическое поле Е влияет на параметры ячейки *a_m* и *c_m* кристаллов PT-PZN [17] и, следовательно, изменяет анизотропию спонтанных деформаций $\xi_{11,m}^s = \eta_a - 1$, $\xi_{22,m}^s = \eta_b - 1$ и $\xi_{33,m}^s = \eta_c - 1$, что в итоге приводит к заметным изменениям значений $v_{m,opt}$ и $n_{t,opt}$ или $v'_{m,opt}$ и $n'_{t,opt}$ (табл. 1). Полученные по формулам [24] ориентации межфазных границ, являющихся ПНСД в кристаллитах $Pb(Zr_{1-x}Ti_x)O_3$ [13] и кристаллах PT–PZN, близки к плоскостям $\{0kl\}$ перовскитовой ячейки, а особенности температурных, концентрационных [10,12] и полевых [17] зависимостей параметров ячейки и доменных структур моноклинных фаз [12,13,17] определяются различными отношениями индексов Миллера k/l.

Соответствующие ПНСД оптимальные объемные концентрации доменов или двойников в окрестности трехфазных точек удовлетворяют условиям

$$n_{t,\text{opt}}(Rh - Tg) \approx n_{m,\text{opt}}(Rh - Mc) \cdot n_{m,\text{opt}}(Tg - Mc),$$
(6)

$$n'_{t,\text{opt}}(Rh - Tg) \approx n'_{m,\text{opt}}(Rh - Mc) \cdot n_{t,\text{opt}}(Mc - Tg) \quad (7)$$

для кристаллитов $Pb(Zr_{1-x}Ti_x)O_3$ и

$$n_{t,\text{opt}}(Rh - Tg) \approx v_{m,\text{opt}}(Rh - Mc) \cdot v'_{m,\text{opt}}(Tg - Mc),$$
(8)

$$n'_{t,\text{opt}}(Rh - Tg) \approx v_{m,\text{opt}}(Rh - Mc) \cdot n_{t,\text{opt}}(Mc - Tg)$$
 (9)

для кристаллов PT–PZN.¹ Если оптимальной концентрации $n_{t,opt}(Rh - Tg)$ поставить в соответствие угол $\alpha = (\mathbf{P}_{Rh}, \wedge \mathbf{P}_{Tg})$ между векторами спонтанной поляризации отдельных доменов ромбоэдрической и тетрагональной фаз, а правым частям равенств (6) и (8) — углы между векторами спонтанной поляризации $\mathbf{P}_{Mc,a}$, $\mathbf{P}_{Mc,b}, \ldots$ доменов моноклинной фазы, то можно обнаружить корреляцию между оптимальными концентрациями и взаимным расположением данных векторов (табл. 2). Аналогичная корреляция имеет место при одновременной замене $n_{t,opt}(Rh - Tg)$ на $n'_{t,opt}(Rh - Tg)$ из (7), (9) и угла α на $\pi/2 - \alpha$. Примечательно, что приведенные в табл. 2 равенства углов достигаются, несмотря на различные траектории [111] \rightarrow [001], описываемые [7] концами векторов типа $\mathbf{P}_{Mc,a}$ в Pb($Zr_{1-x}Ti_x$)O₃ и PT–PZN.

¹ Выражения (6)-(9) представлены в виде $A \approx BC$. В скобках (I–II) указаны двухфазные состояния, где I и II — сосуществующие монои полидоменная фазы соответственно, а оптимальные концентрации рассчитаны для определенного типа доменов или двойников фазы II (см. табл. 1 и работу [13]). Сосуществующие фазы для краткости обозначены следующим образом: Mc — моноклинная, Rh — ромбоэдрическая, Tg — тетрагональная.

При этом между термодинамическими параметрами T, x, E и индексами Миллера h_a , h_b , ..., h_f , k_d устанавливается некоторое соответствие: все перечисленные величины изменяются в достаточно узких интервалах. В целом, обнаруженная корреляция значительно расширяет представления о моноклинной фазе как о мосте [10] между тетрагональной и ромбоэдрической фазами. Однако отсутствие в литературе экспериментальных данных по элктрострикционным коэффициентам и спонтанной поляризации монодоменных фаз рассматриваемых твердых растворов при различных T, x и E не позволяет провести подробное исследование этой корреляции.

Наивысшее (пиковое) значение пьезомодуля $d_{33,sup} \approx$ $\approx 3000 \,\mathrm{pC/N}$, зафиксированное недавно при индуцированном ромбоэдрическо-моноклинном фазовом переходе в неупорядоченных кристаллах $Pb(Zr_{0.53}Ti_{0.47})O_3$ [9], примерно в 15 раз превышает экспериментальное значение $d^*_{33,PZT}$ сегнетопьезокерамики [6] и почти в 8 раз больше теоретического значения d_{33,PZT} монодоменного кристалла [29] того же состава в отсутствие поля. Однако d_{33,sup} приблизительно в 4 раза ниже максимального значения пьезомодуля $d_{33,max}$ кристалла PT-PZN с x = 0.08 (кривая 2 на рис. 2). Различия пьезомодулей $d_{33,sup}$, $d^*_{33,PZT}$ и $d_{33,PZT}$ обусловлены присутствием моноклинной фазы в образцах, исследованных в [9], и эффектами, связанными с движением межфазных и доменных (двойниковых) границ в поле Е || ОХ₃. Одна из причин различий d_{33,sup} и d_{33,max}, возможно, связана с различными упругими податливостями s_{33}^E данных кристаллов вблизи морфотропной границы: даже в слабом поле E податливость s_{33}^E кристалла РТ–РZN [14] примерно в 4 раза превышает s_{33}^E , оцениваемую [30] для монодоменного кристалла $Pb(Zr_{0.5}Ti_{0.5})O_3$. Уменьшение s_{33}^E и других компонент тензора упругих податливостей, означающее повышение жесткости кристалла, влияет на смещение межфазных границ [16] в поле Е и способствует снижению вкладов от этих смещений в пьезомодули d_{ij} и другие электромеханические константы. Другая причина различий пьезоэлектрических свойств индуцированных моноклинных фаз состоит в различных путях переориентации вектора спонтанной поляризации Р_{мс} доменов $Pb(Zr_{1-x}Ti_x)O_3$ и PT-PZN [7,17] и находит свое отражение в конфигурациях кривых $d_{33}(E)$ [9] и $d_{33,D}(E)$ (кривая 2 на рис. 2). Из-за недостатка экспериментальных данных по моноклинным фазам пока трудно определить, какая из двух вышеуказанных причин является более весомой. Экспериментальные исследования по этому вопросу, а также по проблеме влияния различных физических факторов на электромеханические свойства гетерофазных твердых растворов PT-PZN и $Pb(Zr_{1-x}Ti_x)O_3$ представляют самостоятельный интерес.

Таким образом, в настоящей работе были получены следующие результаты.

1) Полевые зависимости параметров ячейки моноклинной фазы кристаллов PT-PZN предопределяют формирование ромбоэдрическо-моноклинных и моноклинно-тетрагональных межфазных границ, ориентированных вдоль ПНСД в широком интервале напряженностей электрического поля Е. Соответствующие доменные структуры сосуществующих фаз характеризуются оптимальными объемными концентрациями определенных типов доменов или механических двойников, играющих решающую роль в осуществлении полной релаксации внутренних механических напряжений.

2) Обнаруженные в экспериментальных работах особенности поведения пьезомодуля $d_{31}(E)$, упругой податливости $s_{11}^E(E)$ и параметра ячейки $c_m(E)$ моноклинной фазы вблизи E = 1.5 MV/m связаны с упрощением доменной структуры кристаллов РТ–РZN при индуцированном ромбоэдрическо-моноклинном фазовом переходе. При этом смещения межфазных границ в поле **Е** || [001] могут вносить значительный вклад Δd_{33} в пьезомодуль d_{33} данных кристаллов, а корреляция между расчетной $\Delta d_{33,rm}(E)$ и экспериментальной $\Delta d_{33,D}(E)$ зависимостями тесно связана с аналогичной конфигурацией кривых деформации $\xi_{33}(E)$ и параметра ячейки $c_m(E)$ в широком интервале E.

3) Несмотря на симметрийные различия доменных структур и различные варианты поворота векторов спонтанной поляризации доменов моноклинных фаз PT–PZN и $Pb(Zr_{1-x}Ti_x)O_3$, для обеих систем установлена корреляция между оптимальными объемными концентрациями различных типов доменов (двойников) и взаимным расположением векторов спонтанной поляризации отдельных доменов ромбоэдрической, тетрагональной и моноклинной фаз.

Список литературы

- В.Ю. Тополов, Л.Е. Балюнис, А.В. Турик, И.С. Ба, О.Е. Фесенко. Изв. РАН. Сер. физ. 56, 10, 127 (1992).
- [2] L.E. Balyunis, V.Yu. Topolov, I.S. Bah, A.V. Turik. J. Phys.: Cond. Matter 5, 9, 1419 (1993).
- [3] А.С. Тарек, В.Г. Смотраков, А.Т. Козаков, В.А. Демьянченко, О.Е. Фесенко, Н.Г. Леонтьев, И.Г. Сидорцов. Изв. РАН. Сер. физ. 57, 3, 135 (1993).
- [4] F. Schmidt, L. Gruber, K. Knorr. Z. Phys. B87, 1, 127 (1992).
- [5] Z.-G. Ye, J.-P. Rivera, H. Schmid. Ferroelectrics 116, 1–4, 251 (1991).
- [6] А.В. Гориш, В.П. Дудкевич, М.Ф. Куприянов, А.Е. Панич, А.В. Турик. Пьезоэлектрическое приборостроение. Т. 1. Физика сегнетоэлектрической керамики. ИПРЖ "Радиотехника", М. (1999). 368 с.
- [7] H. Fu, R.E. Cohen. Nature (London) 403, 6767, 281 (2000).
- [8] D. Vanderbilt, M.H. Cohen. Phys. Rev. **B63**, *9*, 094108 (2001).
- [9] L. Bellaiche, A. Garcia, D. Vanderbilt. Phys. Rev. B64, 6, 060 103 (2001).
- [10] B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.-E. Park, D.E. Cox, G. Shirane. Phys. Rev. B61, 13, 8687 (2000).
- [11] R. Guo, L.E. Cross, S.-E. Park, B. Noheda, D.E. Cox, G. Shirane. Phys. Rev. Lett. 84, 23, 5423 (2000).

- [12] B. Noheda, D.E. Cox, G. Shirane, R. Guo, B. Jones, L.E. Cross. Phys. Rev. B63, 1, 014103 (2001).
- [13] В.Ю. Тополов, А.В. Турик. ФТТ **43**, *8*, 1525 (2001).
- [14] S.-E. Park, T.R. Shrout. J. Appl. Phys. 82, 4, 1804 (1997).
- [15] D.-S. Paik, S.-E. Park, S. Wada, S.-F. Liu, T.R. Shrout. J. Appl. Phys. 85, 2, 1080 (1999).
- [16] В.Ю. Тополов, А.В. Турик. ФТТ **43**, *6*, 1080 (2001).
- [17] B. Noheda, D.E. Cox, G. Shirane, S.-E. Park, L.E. Cross, Z. Zhong. Phys. Rev. Lett. 86, 17, 3891 (2001).
- [18] M.K. Durbin, J.C. Hicks, S.-E. Park, T.R. Shrout. J. Appl. Phys. 87, 11, 8159 (2000).
- [19] S. Kim, S.-I. Yang, J.-K. Lee, K. Sun. Phys. Rev. B64, 9, 094105 (2001).
- [20] G. Xu, H. Luo, H. Xu, Z. Yu. Phys. Rev. B64, 2, 020102 (2001).
- [21] Z.-G. Ye, B. Noheda, M. Dong, D. Cox, G. Shirane. Phys. Rev. B64, 184114 (2001).
- [22] J. Kuwata, K. Uchino, S. Nomura. Ferroelectrics 37, 1–4, 579 (1981).
- [23] S. Wada, S.-E. Park, L.E. Cross, T.R. Shrout. Ferroelectrics 221, 1-4, 71 (2001).
- [24] G. Metrat. Ferroelectrics 26, 1-4, 801 (1980).
- [25] V.Yu. Topolov, Z.-G. Ye. Ferroelectrics 253, 1-4, 71 (2001).
- [26] М. Лайнс, А. Гласс. Сегнетоэлектрики и родственные им материалы. Пер. с англ. Мир, М. (1981). 736 с.
- [27] M.K. Durbin, E.W. Jacobs, J.C. Hicks, S.-E. Park. Appl. Phys. Lett. 74, 19, 2848 (1999).
- [28] E.I. Bondarenko, V.Yu. Topolov, A.V. Turik. Ferroelectrics 110, Pt B, 53 (1990).
- [29] M.J. Haun, E. Furman, S.J. Jang, L.E. Cross. Ferroelectrics 99, 1–4, 63 (1989).
- [30] V.Yu. Topolov, D. Bolten, U. Böttger, R. Waser. J. Phys. D: Appl. Phys. 34, 5, 711 (2001).