Влияние аморфизации на электронную и колебательную теплоемкость сплава Ni₂B

© Г.Х. Панова, М.Н. Хлопкин, Н.А. Черноплеков, А.А. Шиков

Российский научный центр "Курчатовский институт", 123182 Москва, Россия

E-mail: khlopkin@isssph.kiae.ru

(Поступила в Редакцию 1 августа 2001 г. В окончательной редакции 19 ноября 2001 г.)

> Исследована теплоемкость аморфной системы Ni₂B и ее кристаллического аналога в интервале температур 3–270 К. Полученные данные позволили выделить из экспериментально измеренной теплоемкости вклад, обусловленный колебаниями атомов, определить величину плотности электронных состояний на уровне Ферми и температурную зависимость характеристического дебаевского параметра Θ , а также вычислить значения некоторых средних частот (моментов) колебательного спектра.

> Плотность электронных состояний на уровне Ферми при аморфизации увеличивается. Анализ температурной зависимости колебательной теплоемкости показал, что при аморфизации существенно возрастает плотность колебательных состояний в области низких частот, в то время как средняя и среднеквадратичная по спектру частоты меняются незначительно, что хорошо согласуется с результатами нейтронных исследований.

> Работа поддерживается Российским фондом фундаментальных исследований и выполнена в рамках проекта №-00-02-16181.

Для понимания многих физических свойств, характеризующих аморфное состояние, большое значение имеют исследования динамики решетки, термодинамических, кинетических и других свойств систем, которые могут существовать как в кристаллической, так и в аморфной фазе [1]. Наиболее удобными объектами для таких исследований являются металлические стекла типа металл-металл и металл-металлоид, которые, как показали исследования, могут в результате отжига переходить в метастабильные и стабильные кристаллические состояния [2,3]. Среди последних значительный интерес представляют системы, состоящие из атомов с большой разницей масс, поскольку на микроскопическом уровне они характеризуются различной динамикой. Например, для двухатомной системы с резко отличающимися массами атомов в энергетическом спектре колебаний атомов, как правило, наблюдаются два максимума, сильно различающиеся по энергетическому положению.

Наиболее полная и достоверная информация о структуре и динамике таких систем может быть получена с помощью экспериментов по упругому и неупругому рассеянию нейтронов и в определенной мере из измерений теплоемкости.

По результатам измерений теплоемкости в широком интервале температур можно судить об изменениях колебательных и электронных возбуждений в области низких и высоких энергий при аморфизации. При этом следует особо отметить, что экспериментальные данные по низкотемпературной теплоемкости дают возможность проанализировать низкочастотный участок колебательного спектра ($\hbar \omega < 2 \text{ meV}$), труднодоступный для метода неупругого рассеяния холодных нейтронов.

Целью работы было изучение влияния аморфизации на колебательный и электронный спектры системы Ni₂B и сопоставление этих данных с результатами по неупругому рассеянию нейтронов, полученными на тех же образцах.

Выбор системы Ni₂B обусловлен наличием у аморфной фазы кристаллического аналога и большой разницей масс входящих в нее атомов ($M_{\rm Ni}/M_{\rm B} \sim 5.4$). Кроме того, для этой системы проведены нейтронные исследования колебательных спектров возбуждений в аморфном и кристаллическом состояниях [4], а также исследована структура этой системы в аморфном состоянии.

1. Экспериментальные методики

Измерения теплоемкости выполнялись на тех же образцах, что и нейтронные исследования [4]. Образцы в аморфном состоянии были получены быстрой закалкой на поверхности вращающегося медного диска в инертной атмосфере. Состав образцов проверялся с помощью химического анализа, при этом точное содержание компонент (в аt.%) соответствует в кристаллическом образце Ni¹¹_{66.0}B_{34.0}, а в аморфном — Ni¹¹_{63.9}B_{36.1}. Структура исследуемых систем проверялась методами рентгеновской и нейтронной дифракции. Общий вид кривых рентгеновской дифракции типичен для аморфных систем и демонстрирует отсутствие дальнего порядка.

В настоящей работе представлены результаты измерений температурной зависимости теплоемкости аморфной системы Ni₂B и ее кристаллического аналога в широком интервале температур (3–270 K).

Теплоемкость образца измерялась адиабатическим методом с импульсным нагревом на двух эксперимен-

тальных установках. Экспериментальная ошибка была около 2% в температурной области 3–5 К, 1% в области 5–10 К и 0.2–0.5% в области 10–270 К. Данные по теплоемкости приведены в единицах J/g-atom · К, при этом для кристаллического образца 1 g-atom = 42.48 g, для аморфного 1 g-atom = 41.48 g.

2. Экспериментальные результаты

Результаты измерений теплоемкости при постоянном давлении для аморфной металлической системы Ni₂B и ее кристаллического аналога представлены на рис. 1–5

Рис. 1. Разность теплоемкостей аморфного и кристаллического Ni₂B в области температур 3–270 К.

Рис. 2. Температурная зависимость теплоемкости Ni_2B в аморфном (1) и кристаллическом (2) состояниях в области низких температур.

Рис. 3. Температурная зависимость колебательной теплоемкости Ni₂B в аморфном (1) и кристаллическом (2) состояниях.

Рис. 4. Температурная зависимость дебаевского параметра Θ в аморфном (1, 3) и кристаллическом (2, 4) Ni₂B. 1, 2 — определенная из теплоемкости, 3, 4 — рассчитанная по колебательному спектру, полученному неупругим рассеянием нейтронов [4].

Рис. 5. Температурная зависимость относительного изменения колебательной теплоемкости системы Ni₂B при аморфизации в области температур 3–30 К (см. (5)).

Таблица 1. Теплоемкость при постоянном давлении C_p аморфной системы Ni₂B и ее кристаллического аналога в зависимости от температуры T

ТК	C_p , J/g-atom·K		
1,1	Аморфный образец	Кристаллический образец	
3	0.00630	0.00530	
4	0.00800	0.00731	
5	0.01066	0.00971	
6	0.01437	0.01254	
7	0.01918	0.01591	
8	0.0256	0.0199	
9	0.0344	0.0248	
10	0.0463	0.0307	
12	0.0814	0.0465	
14	0.1323	0.0685	
16	0.1995	0.0984	
18	0.287	0.1402	
20	0.400	0.2001	
22	0.535	0.279	
25	0.773	0.458	
30	1.236	0.850	
35	1.767	1.296	
40	2.346	1.793	
45	2.921	2.339	
50	3.468	2.910	
55	4.035	3.498	
60	4.706	4.134	
65	5.494	4.865	
70	6.298	5.669	
75	7.019	6.424	
80	7.726	7.150	
90	9.128	8.578	
100	10.44	9.953	
110	11.68	11.26	
120	12.87	12.51	
130	14.00	13.70	
140	15.05	14.81	
1.0	16.01	15.85	
100	10.91	10.//	
170	17.74	17.05	
100	10.30	10.40	
200	19.20	19.20	
200	20 44	20 52	
220	21.07	20.52	
220	21.07	21.15	
230	21.70	22 30	
250	22.23	22.50	
260	22.00	23.09	
270	23.04	23.30	

затем проходит через нуль при 190 К, и в области температур выше 190 К $C_{\rm am} < C_{\rm cr}$.

Следует отметить, что относительное изменение теплоемкости при переходе от кристаллической системы к аморфной велико в области низких температур: при 18 К относительная разность теплоемкостей $(C_{\rm am}-C_{\rm cr})/C_{\rm cr}$ превышает 100%, в то время как при температурах выше 200 К изменение теплоемкости составляет менее 0.6%.

Температурные зависимости теплоемкостей при низких температурах (в интервале 3–13 K) приведены на рис. 2 в координатах (C/T, T^2). Из этого рисунка видно, что в области низких температур эксперименатльные данные по теплоемкости хорошо описываются зависимостью вида $C = \gamma T + \beta T^3$, что в координатах (C/T, T^2) соответствует прямым линиям. В интервале температур 4–8 K для аморфной системы и 3–10 K для кристаллической среднеквадратичное отклонение экспериментальных данных от зависимости вида $C = \gamma T + \beta T^3$ составляет величину порядка 1.5%.

Интервал температур, в котором выполняется эта зависимость, для аморфной системы заметно меньше, чем для кристаллической. В области температур выше 8 К для аморфного образца и выше 10 К для кристаллического наблюдается систематическое отклонение теплоемкости от закона $C = \gamma T + \beta T^3$: экспериментально измеренная теплоемкость растет с температурой быстрее, чем следует из экстраполяции по этому закону из

Таблица 2. Параметры, характеризующие образцы аморфной системы Ni₂B и ее кристаллического аналога

Параметр	Аморфный образец	Кристалли- ческий образец	Изменение параметра при аморфизации, %
γ , mJ/g-atom·K ²	1.71	1.61	6
β , mJ/g-atom·K ⁴	0.0200	0.0141	42
Θ_L, K	459	516	-11
Θ_H, K	613	605	-1
Ω_{\ln}, K	236	269	-12
Ω_{-2}, K	230	261	-11
Ω_{-1}, K	285	308	-8
Ω_1, K	379	383	-1
Ω_2, K	474	469	1 (-2)
Ω_4, K	582	578	0.7 (1)
Ω_*, K	620	620	0 (2)
A, mJ/g-atom·K ²	14	14	0

и в табл. 1, 2. Из рис. 1 и табл. 1 видно, что в области низких температур теплоемкость аморфной системы $C_{\rm am}$ больше теплоемкости ее кристаллического аналога $C_{\rm cr}$, а разность теплоемкостей $C_{\rm am}-C_{\rm cr}$ возрастает с ростом температуры и достигает максимума при 60 К. С дальнейшим ростом температуры $C_{\rm am}-C_{\rm cr}$ уменьшается,

Примечание. Коэффициенты γ и β аппроксимируют теплоемкость в области низких температур зависимостью вида $C = \gamma T + \beta T^3$. Θ_L и Θ_H — соответственно низкотемпературное и высокотемпературное значения характеристического дебаевского параметра. Величины Ω_{-2} , Ω_{-1} , Ω_1 , Ω_2 , Ω_4 и Ω_{\ln} характеризуют средние частоты (моменты) колебательного спектра в соответствии с соотношениями (4) и (6). В скобках приведены оценки изменения величин Ω_2 , Ω_4 и Ω_{\ln} при аморфизации, полученные аппроксимацией разности теплоемкостей в интервале температур 100–270 К (рис. 1).

области низких температур. В области температур от 10 до 20 К график зависимости C/T от T^2 имеет заметную кривизну выпуклостью вниз.

Оценки величин коэффициентов γ и β , полученные аппроксимацией экспериментальных данных по методу наименьших квадратов, а также предельное низкотемпературное значение характеристической температуры Дебая Θ_L , связанное с β соотношением $\beta = 12\pi^4 R/(5\Theta_L^3)$, приведены в табл. 2. Здесь и далее R — универсальная газовая постоянная.

Как следует из рис. 2 и табл. 2, аморфизация привела к увеличению коэффициентов как при линейном по температуре члене, так и при кубическом, причем коэффициент при линейном члене увеличился незначительно, а коэффициент при кубическом члене возрос на 40%.

3. Анализ и обсуждение результатов

Колебательная теплоемкость C_{vib} выделялась из экспериментально измеряемой C_p вычитанием поправки C_A , включающей в себя прочие вклады в теплоемкость, обусловленные ангармоническими эффектами, тепловым расширением вещества, а также электронами проводимости,

$$C_{\text{vib}} = C_p - C_A = C_p - [\gamma + (A - \gamma)(C_{\text{vib}}/3R)^2] T,$$
 (1)

где C_p — молярная теплоемкость при постоянном давлении, $C_{\rm vib}$ — колебательная составляющая теплоемкости в гармоническом приближении, γ — коэффициент электронной теплоемкости при низких температурах, A — коэффициент при линейном по температуре члене изобарной теплоемкости при высоких температурах.

Интерполяционная формула для C_A дает соответствующие линейные по температуре асимптотики как при низких, так и при высоких температурах и обеспечивает плавный переход между низко- и высокотемпературными асимптотиками по закону, подобному формуле Нернста–Линдемана [5].

Величина γ находилась стандартным способом: по низкотемпературной асимптотике температурной зависимости теплоемкости в соответствии с законом $C = \gamma T + \beta T^3$. Величина A вместе с параметрами Ω_2 , Ω_4 и Ω_* , характеризующими колебательный спектр, определялась по высокотемпературной асимптотике теплоемкости с помощью аппроксимации ее температурной зависимости соотношением вида

$$C_{p} = 3R \left[1 - \frac{1}{12} \left(\frac{\Omega_{2}}{T} \right)^{2} + \frac{1}{240} \left(\frac{\Omega_{4}}{T} \right)^{4} + \varphi \left(\frac{\Omega_{*}}{T} \right) \right]$$
$$+ T \left[\gamma + (A - \gamma) \left(\frac{C_{p}}{3R} \right)^{2} \right],$$
(2)

где

$$\varphi(z) = \frac{z^2 \exp z}{[1 - (\exp z)^2]} - \left(1 - \frac{z^2}{12} + \frac{z^4}{240}\right).$$
 (3)

Такое соотношение для асимптотического разложения колебательной теплоемкости при высоких температурах было предложено в [6] и использовалось в [7]. Величины Ω_2 и Ω_4 выражены в единицах температуры и связаны с моментами колебательного спектра соотношением

$$(\Omega_n)^n = \langle \omega^n \rangle = \left(\int_0^\infty g(\omega) \omega^n d\omega \right) / \left(\int_0^\infty g(\omega) d\omega \right).$$
(4)

Здесь $g(\omega)$ — энергетическая функция плотности колебательных состояний. Величина Ω_* в (2) близка к величине Ω_n из формулы (4) при n = 6.

Варьируя четыре прогоночных параметра (A, Ω_2 , Ω_4 и Ω_*), удалось аппроксимировать экспериментальные результаты в интервале температур 150–270 К соотношениями (1)–(3) со среднеквадратичным отклонением порядка 0.3%. Следует отметить, что вследствие узости температурного интервала, в котором производилась аппроксимация экспериментальных данных, погрешности в определении величин Ω_2 , Ω_4 и Ω_* сильно коррелированы и величина этих погрешностей сравнима с изменениями при аморфизации. Расширению области аппроксимации в сторону низких температур препятствует плохая сходимость аппроксимирующего ряда в этой области.

Однако если описывать непосредственно разность теплоемкостей, то сходимость существенно улучшается и можно расширить область аппроксимации в сторону низких температур и улучшить точность определения изменения соответствующих параметров в аппроксимирующей формуле, поскольку при анализе разностного эффекта происходит существенная компенсация как систематической экспериментальной погрешности измерения теплоемкости, так и расходимостей в указанной формуле. В интервале температур 100–270 К разность теплоемкостей описывается разностью выражений вида (1), (2) со среднеквадратичной погрешностью, составляющей менее 0.2% от полной теплоемкости. Полученные такой аппроксимацией оценки изменения величин Ω₂, Ω₄, Ω_{*} при аморфизации приведены в табл. 2 в скобках.

В табл. 2 также представлены значения параметров *A* и Ω_2 , Ω_4 , Ω_* , определенные методом наименыших квадратов. Здесь же приведено предельное высокотемпературное значение температуры Дебая Θ_H , связанное со вторым моментом фононного спектра соотношением $\Omega_2 = \Theta_H \sqrt{3/5}$.

Поскольку существенный вклад в колебательную теплоемкость при температуре T вносят колебания в той области энергии E, где E < 5kT (k — постоянная Больцмана), низкотемпературная теплоемкость содержит информацию о низкочастотной части спектра колебаний. В работе [8] было показано, что в области низких температур и низких энергий величина $C_{\rm vib}/T^3$ является хорошим приближенным образом функции $g(\omega)/\omega^2$ при $\omega = 4.93T$ (частота выражена в единицах температуры). Поэтому анализ колебательной компоненты теплоемкости в области низких температур удобно вести, представив на графике температурную зависимость теплоемкости в координатах ($C_{\rm vib}/T^3$, T), в которых традиционно проводится анализ отклонения температурной зависимости теплоемкости от дебаевского закона $C \sim T^3$.

Как видно из рис. 3, температурная зависимость $C_{\rm vib}(T)/T^3$ для аморфной системы Ni₂B проходит через широкий максимум при $T \approx 20$ K, что соответствует наличию в колебательном спектре интенсивной низкочастотной моды, расположенной при энергии $E \approx 10$ meV. Для кристаллического Ni₂B аналогичный, но меньший по амплитуде максимум наблюдается при $T \approx 30$ K, что соответствует положению низкочастотной моды при энергии $E \approx 15$ meV. Изменение величины максимума в зависимости $C_{\rm vib}(T)/T^3$ при переходе аморфного состояния к кристаллическому и смещение положения максимума в сторону более низких температур указывает на то, что при аморфизации происходит увеличение плотности колебательных состояний в области энергий порядка 10–15 meV.

Поскольку при увеличении температуры информативность анализируемой зависимости уменьшается изза быстрого убывания величины $C_{\rm vib}/T^3$, обсуждение температурной зависимости теплоемкости в широком интервале температур удобнее вести с помощью температурной зависимости характеристического параметра Дебая Θ , который является более тонкой характеристикой, определяющей, в частности, скорость выхода $C_{\rm vib}(T)$ на высокотемпературную асимптотику. На рис. 4 для обеих систем приведены температурные зависимости Θ , полученные из данных по теплоемкости, а также вычисленные по экспериментально исследованному в работе [4] спектру неупругого рассеяния нейтронов. В области температур 20-70 К наблюдается хорошее согласие как для абсолютных величин характеристических параметров Θ , определенных из теплоемкости и полученных в нейтронном эксперименте, так и для изменения этого параметра при аморфизации. Вне этого температурного интервала хорошее согласие наблюдается лишь в разностном эффекте — изменении Θ при аморфизации, а для абсолютных величин Θ , полученных из теплоемкости и из рассеяния нейтронов, имеется заметное различие. Отметим, что в этой области температур величина характеристического дебаевского параметра Θ формируется низкоэнергетической частью колебательного спектра, где нейтронный эксперимент и не претендует на высокую точность. Поэтому мы считаем, что в области температур до 15К (и в соответствующей области энергий до 7 meV) данные о колебательном спектре, полученные из теплоемкости, более надежны, а различие обусловлено погрешностями нейтронного эксперимента в области малых энергий.

Температурная зависимость дебаевского параметра проходит через широкий минимум в области температур 20–30 К, что соответствует максимуму на температурной зависимости величины $C_{\rm vib}/T^3$. С ростом темпе-

ратуры разница между величинами параметров Θ , характеризующих аморфное и кристаллическое состояния, уменьшается.

Деформацию колебательного спектра в области малых энергий при аморфизации удобно характеризовать относительным изменением колебательной теплоемкости аморфной системы по сравнению с теплоемкостью кристаллического аналога, т. е. безразмерной величиной вида

$$\Delta C_{\rm vib}(T)/C_{\rm vib}^{\rm cr}(T) = \left[C_{\rm vib}^{\rm am}(T) - C_{\rm vib}^{\rm cr}(T)\right] / C_{\rm vib}^{\rm cr}(T).$$
(5)

Температурная зависимость указанного относительного изменения колебательной теплоемкости исследованных сплавов при аморфизации представлена на рис. 5. В исследованной системе аморфизация приводит к возникновению максимума на температурной зависимости относительного изменения колебательной теплоемкости $\Delta C_{\rm vib}(T)/C_{\rm vib}^{\rm cr}(T)$ при T = 15 K, что свидетельствует о возрастании энергетической плотности колебательных состояний в области низких энергий при переходе от аморфной системы к кристаллической.

Безмодельные количественные оценки таких параметров колебательного спектра, как средняя по спектру частота колебаний, можно получить, вычислив моменты колебательного спектра, которые прямо выражаются через интегралы от колебательной теплоемкости [9].

Мы вычислили эти моменты, используя экспериментальные данные по теплоемкости, причем в области температур 10–270 К интегрирование производилось по экспериментальным точкам, а вне этой области использовалось экстраполирование теплоемкости по низкотемпературной асимптотике вида $C = \beta T^3$ либо по высокотемпературной асимптотике в модели дебаевского спектра, как в [10]. Результаты вычислений представлены в табл. 2, причем для удобства сравнения приведены не моменты спектра $\langle \omega^n \rangle$, а соответствующие им средние частоты Ω_n , определенные в (4) и выраженные в температурных единицах; величина среднелогарифмической частоты Ω_{\ln} дается соотношением

$$lg(\Omega_{ln}) = \frac{\langle \omega^{-1} \ln \omega \rangle}{\langle \omega^{-1} \rangle} \\ = \left(\int_{0}^{\infty} \frac{g(\omega) \ln \omega}{\omega} \, d\omega \right) / \left(\int_{0}^{\infty} \frac{g(\omega)}{\omega} \, d\omega \right). \quad (6)$$

Из этой таблицы видно, что аморфизация приводит к заметному уменьшению частот Ω_{-2} , Ω_{-1} и Ω_{\ln} , характеризующих низкоэнергетическую часть спектра, что отвечает росту плотности колебательных состояний в области низких энергий. По мере роста порядка соответствующего момента эффект аморфизации уменьшается и даже меняет знак: частоты, характеризующие высокоэнергетическую часть спектра (Ω_2 , Ω_4 и Ω_*), возрастают при аморфизации.

Чем выше порядок момента колебательного спектра, тем ближе соответствующая частота к граничной частоте колебаний, поэтому такой характер поведения моментов можно считать указанием на то, что спектральная плотность колебательных состояний в области высоких энергий и граничная частота колебаний атомов при аморфизации возрастают. Следует отметить, что эффект увеличения граничной частоты колебаний в данной системе при аморфизации наблюдался непосредственно в нейтронном эксперименте [4], так что данные о характере деформации колебательного спектра в области высоких энергий, полученные двумя независимыми способами (нейтронным и теплоемкостным), хорошо согласуются.

Авторы выражают благодарность Г.Ф. Сырых за предоставление образцов и М.Г. Землянову за обсуждение результатов.

Список литературы

- [1] Металлические стекла. В. 2 Атомная структура и динамика, электронная структура, магнитные свойства / Под ред. Г. Бека и Г. Гюндерота. Пер. с англ. Мир, М. (1986). 456 с. Glassy metals II: Atomic Structure and Dynamics, Electronic structure, Magnetic Properties / Ed. H. Beck and H.-J. Guntherodt. Springer–Verlag. Berlin, Heidelberg, N.Y., Tokyo. Topics in Applied Physics 53 (1983).
- [2] Г.Х. Панова, Н.А. Черноплеков, А.А. Шиков, Б.И. Савельев, М.Н. Хлопкин. ЖЭТФ 88, 3, 1012 (1985).
- [3] Г.Х. Панова, Н.А. Черноплеков, А.А. Шиков, М.Н. Хлопкин, Б.И. Савельев, Е.В. Мельников. ЖЭТФ 90, 4, 1351 (1986).
- [4] М.Г. Землянов, Г.Ф. Сырых, Н.А. Черноплеков, Э. Шваб. ЖЭТФ 94, 11, 365 (1988).
- [5] Л.А. Резницкий. Калориметрия твердого тела (структурные, магнитные, электронные превращения). Изд-во МГУ, М. (1981). 184 с.
- [6] V.N. Naumov. Phys. Rev. B49, 18, 13247 (1994).
- [7] M.I. Katsnelson, I.I. Naumov, A.V. Trefilov, M.N. Khlopkin, K.Yu. Khromov. Phil. Mag. B75, 3, 389 (1997).
- [8] A. Junod, T. Jarlborg, J. Muller. Phys. Rev. B27, 3, 1568 (1983).
- [9] A. Junod. Solid State Commun. 33, 1, 55 (1980).
- [10] А.В. Мирмельштейн, А.Е. Карькин, В.Е. Архипов, В.И. Воронин. ФММ 58, 5, 1008 (1984).