Особенности поведения числа Лоренца в "легкой" тяжелофермионной системе YbInCu₄

© А.В. Голубков, Л.С. Парфеньева, И.А. Смирнов, Х. Мисиорек*, Я. Муха*, А. Ежовский*, Ф. Риттер**, В. Ассмус**

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Институт низких температур и структурных исследований Польской академии наук, 50-950 Вроцлав, Польша ** Университет им. И.В. Гёте, 60054 Франкфурт-на-Майне, Германия E-mail: Igor.Smirnov@pop.ioffe.ru

(Поступила в Редакцию 21 августа 2001 г.)

В интервале температур 4.2–300 К измерены удельное электросопротивление и теплопроводность двух поликристаллических образцов YbInCu₄, полученных с помощью различных методик в ФТИ им. А.Ф. Иоффе PAH (Санкт-Петербург, Россия) и Университете Франкфурта-на-Майне (Германия), в которых при $T_v \sim 75-78$ К наблюдался изоструктурный фазовый переход из состояния с целочисленной ($T > T_v$) в состояние с переменной ($T < T_v$) валентностью ионов Yb. Показано, что число Лоренца при $T < T_v$ в области температур, где YbInCu₄ принято относить к разряду "легкого" тяжелофермионного соединения, ведет себя так же, как и в случае классических тяжелофермионных систем. При $T > T_v$, когда YbInCu₄ является полуметаллом, число Лоренца имеет значение, характерное для стандартных металлов.

Работа проводилась в рамках двусторонних соглашений между Российской академией наук, Немецким научным обществом (Германия) и Польской академией наук и выполнялась при поддержке Российского фонда фундаментальных исследований (грант № 99-02-18078) и Польского комитета научных исследований (грант № 2 РОЗВ 129-19).

В последнее десятилетие исследователи ведущих лабораторий мира в США, Германии, Японии проявляли повышенный интерес к изучению физических свойств YbInCu₄.¹

В YbInCu₄ при $T_v \sim 40-80$ К и атмосферном давлении наблюдается изоструктурный фазовый переход от кюри-вейсовского парамагнетика с локализованными магнитными моментами (при $T > T_v$) к паулевскому парамагнетику с немагнитным состоянием Ферми-жидкости и переменной валентностью ионов Yb (при $T < T_v$).

При фазовом переходе валентность Yb изменяется от 3 $(T > T_v)$ до 2.9 $(T < T_v)$.

Высокотемпературная и низкотемпературная фазы представляют собой полуметалл и металл соответственно со слабой и сильной гибридизацией 4f-электронов Yb с электронами проводимости. При $T < T_v$ для YbInCu₄ наблюдается большая плотность состояний на уровне Ферми, что характерно для тяжелофермионных систем и систем с переменной валентностью редкоземельных ионов. Параметр γ (коэффициент при линейном по температуре члене в электронной теплоемкости) для низкотемпературной фазы равен $\sim 50 \text{ mJ/mol} \cdot \text{K}^2$ [4–6], что указывает на достаточно большую величину эффективной массы носителей тока. Систему YbInCu₄ в литературе относят к классу "легких" тяжелофермионных систем (light heavy-fermion system) [2,7].

YbInCu₄ кристаллизуется в кубической решетке типа AuBe₅ (структура *C*15*b*, пространственная группа $F\bar{4}3m(T_a^2)[8]$).

В интервале температур 4.2–300 К на установке, аналогичной использованной в [9], мы измерили полную теплопроводность \varkappa_{tot} и удельное электросопротивление ρ двух поликристаллических образцов YbInCu₄.

Образцы приготовлялись в ФТИ им. А.Ф. Иоффе РАН (Санкт-Петербург, Россия) и в Университете им. И.В. Гёте (Франкфурт-на-Майне, Германия) с помощью различных методик [10–14]. YbInCu₄ плавился в индукционной печи в заваренных танталовых тиглях. Однако при синтезе материала в этих двух лабораториях использовались различные по чистоте исходные материалы. В дальнейшем образец, полученный в Санкт-Петербурге, будем называть "образец 1П", а во Франкфурте-на-Майне — "образец 2Ф".²

Образцы проходили рентгеноструктурный анализ на установке ДРОН-2 в Си K_{α} -излучении. Они были монофазны, имели кубическую решетку типа AuBe₅ с постоянными кристаллической решетки *a*, равными 7.133(4) Å (образец 1П) и 7.139(5) Å (образец 2Ф).

Система Yb–In–Cu имеет достаточно широкую область гомогенности. Согласно [11,12,15], ее можно представить в виде $YbIn_{1-x}Cu_{4+x}$. Составы получающихся образцов существенно зависят от способа их приготовления. В области гомогенности они имеют

¹ Ссылки на многочисленные работы, посвященные YbInCu₄, можно найти в [1-3].

² Экспериментальные данные по \varkappa_{tot} и ρ образца 2 Φ ранее использовались в работе [3].

температуры фазовых переходов T_v от 40 до 70–80 К. $T_v = 40$ К соответствует стехиометрии YbInCu₄. Состав YbIn_{0.8}Cu_{4.2} с наивысшей температурой плавления имеет $T_v \sim 70-80$ К. При условиях приготовления образцов YbIn_{1-x}Cu_{4+x} по методикам, использованным в Санкт-Петербурге и Франкфурте-на-Майне, затвердевание расплава начинается с образования кристаллов, отвечающих переходу при $T_v \sim 70$ К [11,12]. Согласно [16],³ полученные нами образцы с a = 7.133-7.139 Å соответствовали составу, близкому к YbIn_{0.83}Cu_{4.17}. Теплопроводность YbInCu измерялась в работах [3,17], однако их результаты подробно не анализировались.

Основная цель настоящей работы состояла в исследовании поведения числа Лоренца (L) в области $T < T_v$ у "легкой" тяжелофермионной системы YbInCu₄. Проявятся ли в ней особенности в поведении L, присущие классическим тяжелофермионным системам [18,19]? Поведение L, подобное наблюдавшемуся в таких системах, было обнаружено нами ранее у "легкой" тяжелофермионной системы YbIn_{0.7}Ag_{0.3}Cu₄ [20].

На рис. 1 и 2 приведены наши экспериментальные результаты для $\varkappa_{tot}(T)$ и $\rho(T)$ образцов 1П и 2Ф YbIn_{0.83}Cu_{4.17} при цикле измерений от 300 до 4 К. При обратном цикле (измерения от 4 до 30 К) в области $T > T_v$ из-за возникновения дефектов, связанных с напряжениями в кристаллической решетке, возникающими при переходе через T_v , появляется большой гистерезис в поведении $\rho(T)$ [23] и $\varkappa_{tot}(T)$.⁴

Несмотря на различие методик и чистоты исходных материалов при приготовлении образцов 1П и 2Ф, $\varkappa_{tot}(T)$ и $\rho(T)$ у них оказались достаточно близкими по величине и характеру температурной зависимости. Среднее значение T_v , оцененное из этих параметров, для обоих образцов составляет ~ 75-78 К. Мы попытались оценить состав образцов 1П и 2Ф другим способом, воспользовавшись данными для $T_v(x)$ в системе $YbIn_{1-x}Cu_{4+x}$, полученными в [22] (рис. 2, *b*). В этом случае образцы 1П и 2Ф также оказались близкими по составу к YbIn_{0.83}Cu_{4.17}. Для простоты изложения экспериментального материала будем считать, что в среднем состав исследованных нами образцов одинаков, но реально, как это видно из рис. 1 и 2 (а также из рис. 3 и 4), все же имеется небольшое различие в величинах *x*_{tot}, *x*_{ph} (решеточная составляющая теплопроводности) и ρ образцов 1П и 2Ф. Данный факт, по-видимому, связан с тем, что образцы все-таки отличаются (хотя и незначительно) по составу и, вероятно, содержат различное количество неучтенных примесей.

Согласно результатам измерений постоянной Холла [2,24], в обеих фазах ($T > T_v$ и $T < T_v$) наблюдается достаточно высокая концентрация носителей тока, так что величина \varkappa_{tot} должна включать в себя как решеточную, так и электронную (\varkappa_e) составляющие

Рис. 1. Температурная зависимость κ_{tot} для образцов 1П (*1*) и 2Ф (*2*).

Рис. 2. *а*) Температурная зависимость ρ для образцов 1П (*I*) и 2Ф (*2*) YbIn_{0.83}Cu_{4.17}, а также для соединения LuInCu₄, у которого отсутствует фазовый переход [21] (*3*). *b*) Зависимость T_v от x в системе YbIn_{1-x}Cu_{4+x} [22]. Штриховые линии используются для определения значений x образцов 1П (*I*) и 2Ф (*2*).

³ В [16] для YbIn_{1-x}Cu_{4+x} получена зависимость a от x.

⁴ Исследованию и обсуждению поведения $x_{tot}(T)$ при прямом и обратном ходе измерений мы посвятим отдельную статью.

Рис. 3. *a*) Температурная зависимость $\kappa_{\rm ph}$ образцов 1П (*I*) и 2Ф (*2*) УbIn_{0.83}Cu_{4.17} (объяснение $\kappa_{\rm ph}^0$ см. на рис. 4). *b*) Температурная зависимость $\kappa_{\rm ph}$ образца 1П (*I*) и образца УbIn_{0.7}Ag_{0.3}Cu₄ [20] (*2*).

Рис. 4. Температурная зависимость $\varkappa_{\rm ph}$ образцов 1П (*I*) и 2 Φ (2) YbIn_{0.83}Cu_{4.17}.

теплопроводности⁵

$$\varkappa_{\rm tot} = \varkappa_{\rm e} + \varkappa_{\rm ph}.$$
(1)

Согласно классической теории для теплопроводности твердых тел, \varkappa_e должна подчиняться закону Видемана– Франца и записываться в виде

$$\varkappa_{\rm e} = LT/\rho. \tag{2}$$

При $T \gtrsim \Theta/3$ (Θ — температура Дебая) и очень низких температурах для "чистых" металлов, а также при низких и высоких температурах для "грязных" металлов $L = L_0$ [26], где L_0 — зоммерфельдовское значение числа Лоренца ($L_0 = 2.45 \cdot 10^{-8} \text{ W} \cdot \Omega/\text{K}^2$). Образцы YbIn_{0.83}Cu_{4.17} нельзя отнести к очень "чистому" металлу и полуметаллу, и, таким образом, для всей исследованной нами области температур (4–300 K) в первом приближении можно считать, что $L = L_0$.

На рис. 3, *а* приведена зависимость $\varkappa_{\rm ph}(T)$, вычисленная по (1) и (2) в предположении, что $L = L_0$. Как видно из этого рисунка, а также их рис. 4, в интервале температур $\sim 120-300$ К $\varkappa_{\rm ph}$ возрастает по степенному закону: $\varkappa_{\rm ph} \sim T^{0.28}$ для образца 1П и $\varkappa_{\rm ph} \sim T^{0.34}$ для образца 2Ф. При понижении температуры $\varkappa_{\rm ph}$ последовательно проходит через минимум, достигает максимума, затем уменьшается и стремится к нулю.

Как можно объяснить такое поведение $\varkappa_{\rm ph}$? Рассмотрим сначала данные для области температур $T > T_v$. При этих температурах система не является тяжелофермионной, а представляет собой полуметалл, поэтому использование для расчета $\varkappa_{\rm e}$ значения $L = L_0$ не вызывает сомнений. Однако при этом остаются неясными причны, приводящие к росту $\varkappa_{\rm ph}$ с повышением температуры. Такое поведение $\varkappa_{\rm ph}(T)$ характерно для аморфных и сильно дефектных материалов. В нашем случае сильная дефектность для YbIn_{0.83}Cu_{4.17} может возникнуть за счет замещения в решетке индия медью [11] (на что мы уже обращали внимание при анализе данных для $\varkappa_{\rm ph}(T)$ YbIn_{0.7}Ag_{0.3}Cu₄ [20]). Такого рода "дефектность" будет существенно сказываться на поведении $\varkappa_{\rm ph}(T)$ как при $T > T_v$, так и при $T < T_v$.

Рост $\varkappa_{\rm ph}$ с температурой был обнаружен и в ряде других соединений, которые можно отнести к тяжелофермионным системам: "легким" YbIn_{0.7}Ag_{0.3}Cu₄ [20], умеренным YbAgCu₄ [27], UInCu₅[28] и классическим CeAl₃ [29] (рис. 5). Трудно предположить, что у всех перечисленных соединений рост $\varkappa_{\rm ph}(T)$ связан лишь с большой степенью дефектности материала.⁶ Возмож-

⁵ Поскольку YbInCu₄ при $T > T_v$ является полуметаллом, при определенных зонных параметрах этого материала можно было бы ожидать появления вклада в \varkappa_{tot} и от биполярной составляющей теплопроводности (\varkappa_{bip}) [21,25], но, как следует из данных работы [3], вклад от \varkappa_{bip} в \varkappa_{tot} YbInCu₄ при T < 300 K не заметен.

⁶ В [28,29] рост $\varkappa_{\rm ph}$ по закону $\varkappa_{\rm ph} \sim T^n$ объясняется в рамках теоретической модели, развитой в [30]. Однако, на наш взгляд, такое объяснение не совсем корректно, поскольку в [30] показано, что $\varkappa_{\rm ph} \sim T$ (а в нашем случае $\varkappa_{\rm ph} \sim T^{0.3}$), и предложенная в [30] зависимость справедлива лишь для очень низких температур ($T < \Theta/20$), в то время как в настоящем эксперименте эффект наблюдается при существенно более высоких температурах (вплоть до 300 K).

но, что такое поведение $\varkappa_{\rm ph}(T)$ характерно для определенного класса тяжелофермионных систем.

Рассмотрим теперь поведение $\varkappa_{ph}(T)$ при $T < T_v$. Важно понять, за счет чего происходит такое резкое возрастание \varkappa_{ph} ; связано ли это с реальным ростом \varkappa_{ph} , присущим изучаемому соединению, или обусловлено неправильным учетом величины L при расчете \varkappa_e с помощью (2). Не исключено, что $L \neq L_0$, а меняется какимто сложным образом с температурой. На реальность второго предположения указывают следующие факты.

1) Для резкого роста \varkappa_{ph} при $T > T_v$ необходимо предположить, что при этой температуре выключается какой-то механизм, вызывающий сильное рассеяние фононов. Пока что нам не удалось найти разумное объяснение природы этого механизма. При $T < T_v$ изменяется валентность иона Yb с 3 на 2.9, при этом ионный радиус Yb увеличивается, решетка становится более "рыхлой" и, следовательно, более "дефектной", что должно приводит не к росту \varkappa_{ph} , а к ее уменьшению.

2) Согласно элементарной теории теплопроводности,

$$\varkappa_{\rm ph} \sim C v l,$$
(3)

где C, v и l — соответственно теплоемкость, скорость звука и длина свободного пробега фононов. В YbInCu₄ величины C [5] и v [10] изменяются скачкообразно в узкой области температур в районе T_v . При $T < T_v$ C и v плавно уменьшаются, а при $T > T_v$ также плавно возрастают, т. е., если исключить узкую область вблизи фазового перехода (при T_v), для всего исследованного нами интервала температур наблюдается плавное изменение C(T) и v(T).⁷ Это, конечно, только косвенно указывает на отсутствие "колоколообразного" вида кривой $\varkappa_{\rm ph}(T)$, представленной на рис. 3 для образцов 1П и 2Ф в области $T < T_v$.

3) В YbIn_{0.7}Ag_{0.3}Cu₄ имеет место постепенный (без скачкообразного изменения ρ , *a* и других параметров при T_v) фазовый переход, аналогичный по природе фазовому переходу в YbInCu₄. При выделении из $\varkappa_{tot}(T)$ величины $\varkappa_{ph}(T)$ с помощью формул (1), (2) в предположении, что $L = L_0$ во всем исследованном интервале температур, мы получили, что кривая $\varkappa_{ph}(T)$ в этом соединении при $T < T_v$ имеет "колоколообразный" вид, аналогичный полученному для $\varkappa_{ph}(T)$ YbIn_{0.83}Cu_{4.17} (рис. 3, *a*, *b*). В [20] такое поведение $\varkappa_{ph}(T)$ нам удалось объяснить неправильным учетом в \varkappa_c числа Лоренца, которое, как оказалось, сложным образом изменяется с температурой и существенно больше по сравнению с L_0 . Возможно, что подобная ситуация имеет место и в YbIn_{0.83}Cu_{4.17}.

Таким образом, исходя из изложенного выше, за резкое увеличение теплопроводности при $T < T_v$ в нашем случае, вероятнее всего, несет ответственность не $\varkappa_{\rm ph}$, а $\varkappa_{\rm e}$.

Рис. 5. Температурная зависимость $\varkappa_{\rm ph}$ образцов YbIn_{0.83}Cu_{4.17} 1П (*I*), 2 Φ (*2*), YbIn_{0.7}Ag_{0.3}Cu₄ [20] (*3*), YbAgCu₄ [27] (*4*), UInCu₅ [28] (*5*) и CeAl₃ [29] (*6*). Штриховые линии для всех кривых — величина $\varkappa_{\rm ph}^0$, полученная путем экстраполяции высокотемпературных данных по степенным законам, присущим каждому из соединений. T_K и T_N — соответственно температуры Кондо и Нееля.

Попытаемся теперь проследить, как будет вести себя величина L в YbIn_{0.83}Cu_{4.17} при $T < T_v$.

Как уже неоднократно отмечалось, YbIn_{0.83}Cu_{4.17} при $T < T_v$ переходит в состояние, соответствующее "легкой" тяжелофермионной системе. Для классической системы с тяжелыми фермионами поведение числа Лоренца существенно отличается по величине и характеру температурной зависимости как от "чистых", так и от "грязных" металлов. Для такой системы, согласно [18,19], L_x/L_0 возрастает от 1 (при $T \sim 0$), проходит через максимум, затем уменьшается до 0.648 и потом вновь возрастает, достигая в районе $T \sim T_K$ (T_K температура Кондо) значения 1.

Для определения $L_x/L_0(T)$ при $T < T_v$ будем считать, что во всей исследованной нами области температур (4–300 K) $\varkappa_{\rm ph} \sim T^n$ (где *n*, как уже отмечалось выше, равно соответственно 0.28 и 0.34 для образца 1П и образца 2Ф). Для этого проэкстраполируем $\varkappa_{\rm ph}(T)$ по этому закону из области температур $T > T_v$ в об-

 $^{^{7}}$ К сожалению, нам не удалось оценить с помощью каких-либо прямых методов характер изменения l в исследованной области температур.

Рис. 6. Температурные зависимости L_x/L_0 для образцов YbIn_{0.83}Cu_{4.17} 1П (1), 2Ф (2), YbIn_{0.7}Ag_{0.3}Cu₄ [20] (3) и YbAgCu₄ (4).

ласть $T < T_v$ (рис. 4, $\varkappa^0_{\rm ph}$ на рис. 3 и 4, штриховые кривые на рис. 5)⁸ и из соотношения

$$\varkappa_{\rm e} = \varkappa_{\rm tot} - \varkappa_{\rm ph}^0 \tag{4}$$

для интервала 4–50 К определим $L_x/L_0(T)$ (мы исключили из рассмотрения область температур в окрестности T_v). Результаты такого расчета представлены на рис. 6.

Как видно из этого рисунка, поведение $L_x/L_0(T)$ для исследованных нами образцов 1П и 2Ф соответствует рассмотренной выше теоретической картине поведения числа Лоренца в тяжелофермионной системе [18].

Таким образом, можно сделать вывод о том, что закономерности поведения числа Лоренца для классической и "легкой" тяжелофермионных систем аналогичны.

На рис. 6 для сравнения приведены данные для $L_x/L_0(T)$ YbIn_{0.7}Ag_{0.3}Cu₄ [20] и уточненные нами данные для YbAgCu₄ из [27]. В [27] для получения отношения $L_x/L_0(T)$ мы использовали несколько иную методику. Здесь же мы применили к YbAgCu₄ методику

определения $\varkappa_{\rm ph}^0(T)$ и $L_x/L_0(T)$ (рис. 5), предложенную в настоящей работе, и, как нам кажется, получили более правильные сведения о поведении числа Лоренца в этом соединении. Однако нужно обратить внимание на пока непонятное для нас поведение $L_x/L_0(T)$ YbAgCu₄. Возникает некоторый парадокс. В "легких" тяжелофермионных системах, например в YbInCu₄, YbIn_{0.7}Ag_{0.3}Cu₄, для которых параметр $\gamma \simeq 50$ mJ/mol · K², $L_x/L_0(T)$ ведет себя как в классических тяжелофермионных системах (с $\gamma \ge 400$ mJ/mol · K²). В то же время, в "умеренных" тяжелофермионных системах с $\gamma \sim 200-250$ mJ/mol · K², к которым принадлежит YbAgCu₄, для $L_x/L_0(T)$ в исследованном интервале температур (4–300 K) наблюдается лишь незначительное отступление L_x/L_0 от 1 в области температур $T < T_K$.

Авторы выражают благодарность Н.Ф. Картенко и Н.В. Шаренковой за проведение рентгеноструктурных исследований.

Список литературы

- J.L. Sarrao, C.D. Immer, Z. Fisk, C.H. Booth, E. Figueroa, J.M. Lawrence, R. Modler, A.L. Cornelius, M.F. Hundley, C.H. Kwei, J.D. Thompson, F. Bridges. Phys. Rev. B59, 10, 6855 (1999).
- [2] A.V. Goltsev, G. Bruls. Phys. Rev. B63, 15, 155109 (2001).
- [3] И.А. Смирнов, Л.С. Парфеньева, А. Ежовский, Х. Мисёрек, С. Кремпел-Хессе, Ф. Риттер, В. Ассумус. ФТТ 41, 9, 1548 (1999).
- [4] A.L. Cornelius, J.M. Lawrence, J.L. Sarrao, Z. Fisk, M.F. Hundley, G.H. Kwei, J.D. Thompson, C.H. Booth, F. Bridges. Phys. Rev. B56, 13, 7993 (1997).
- [5] J.L. Sarrao, A.P. Ramirez, T.W. Darling, F. Freibert, A. Migliori, C.D. Immer, Z. Fisk, Y. Uwatoko. Phys. Rev. B58, *1*, 409 (1998).
- [6] N. Pillmayer, E. Bauer, K. Yoshimura. J. Magn. Magn. Mater. 104–107, 639 (1992).
- [7] I. Felner, I. Nowik, D. Vakin, U. Potzel, J. Moser, G.M. Kalvius, G. Wortmann, G. Schmiester, G. Hilscher, E. Gratz, C. Schmitzer, N. Pillmayer, K.G. Prasad, H. de Waard, H. Pinto. Phys. Rev. B35, 13, 6956 (1987).
- [8] R. Kojima, Y. Nakai, T. Susuki, H. Asano, F. Izumi, T. Fujita, T. Hihara. J. Phys. Soc. Jap. 59, 3, 792 (1990).
- [9] A. Jezowski, J. Mucha, G. Pompe. J. Phys. D: Appl. Phys. 20, 1500 (1987).
- B. Kindler, D. Finsterbusch, R. Graf, F. Ritter, W. Assmus, B. Lüthi. Phys. Rev. B50, 2, 704 (1994).
- [11] A. Löffert, M.L. Aigner, F. Ritter, W. Assmus. Cryst. Res. Technol. 34, 2, 267 (1999).
- [12] A. Löffert, S. Hautsch, F. Ritter, W. Assmus. Physica B259– 261, 134 (1999).
- [13] E. Feschbach, A. Löffert, F. Ritter, W. Assmus. Cryst. Res. Technol. 33, 267 (1998).
- [14] А.В. Голубков, Т.Б. Жукова, В.М. Сергеев. Изв АН СССР. Неорган. материалы 2, 77 (1966).
- [15] А.В. Голубков, Л.С. Парфеньева, И.А. Смирнов, Х. Мисиорек, Я. Муха, А. Ежовский, Ф. Риттер, В. Ассмус. ФТТ, в печати.

⁸ На реальность поведения $\chi^0_{\rm ph}$ при низких температурах для исследованных нами образцов YbIn_{0.83}Cu_{4.17} косвенно указывают результаты работ [28,29], согласно которым зависимость $\varkappa_{\rm ph}(T)$ YbIn_{0.83}Cu_{4.17} ведет себя так же, как в CeAl₃ и UInCu₅ (рис. 5).

- [16] J. He, N. Tsujii, K. Yoshimura, K. Kosuge, T. Goto. J. Phys. Soc. Jap. 66, 8, 2481 (1997).
- [17] E. Bauer, E. Gratz, G. Hutflesz, A.K. Bhattacharjee, B. Coqblin. Physica B186/188, 494 (1993).
- [18] V.I. Belitsky, A.V. Goltsev. Physica B172, 459 (1991).
- [19] I.A. Smirnov, V.S. Oskotskii. Handbook on the Physics Chemistry of Rare Earth. V. 16 / Ed. K.A. Gschneidner, Jr., L. Eyring, Elsever Science Publ. B. V. (1993). P. 107.
- [20] А.В. Голубков, Л.С. Парфеньева, И.А. Смирнов, Х. Мисиорек, Я. Муха, А. Ежовский. ФТТ 43, 10, 1739 (2001).
- [21] А.В. Голубков, Л.С. Парфеньева, И.А. Смирнов, Х. Мисёрек, Я. Муха, А. Ежовский. ФТТ 42, 8, 1357 (2000).
- [22] K. Yoshimura, N. Tsujii, K. Sorada, T. Kawabata, H. Mitamura, T. Goto, K. Kosuge. Physica B281/282, 141 (2000).
- [23] J.L. Sarrao, C.D. Immer, C.L. Benton, Z. Fisk, J.M. Lawrence, D. Mandrus, J.D. Thompson. Phys. Rev. B54, 17, 12207 (1996).
- [24] Y. Itoh, H. Kadomatsu, J. Sakurai, H. Fujiwara. Phys. Stat. Sol. (a) **118**, 513 (1990).
- [25] А.В. Голубков, Л.С. Парфеньева, И.А. Смирнов, Х. Мисёрек, Я. Муха, А. Ежовский. ФТТ 42, 11, 1938 (2000).
- [26] И.А. Смирнов, В.И. Тамарченко. Электронная теплопроводность в металлах и полупроводниках. Наука, Л. (1977). 151 с.
- [27] А.В. Голубков, Л.С. Парфеньева, И.А. Смирнов, Х. Мисёрек, Я. Муха, А. Ежовский. ФТТ 43, 2, 210 (2001).
- [28] D. Kaczorowski, R. Troc, A. Czopnik, A. Jezowski, Z. Henkie, V.I. Zaremba. Phys. Rev. B63, 144 401 (2001).
- [29] H.R. Ott, O. Marti, F. Hulliger. Solid State Commun. 49, 12, 1129 (1984).
- [30] I.E. Zimmerman. J. Phys. Chem. Sol. 11, 299 (1959).