Перенос тепла в твердом растворе $Kr_{1-\xi}Xe_{\xi}$

© В.А. Константинов, Р.О. Пол*, В.П. Ревякин

Физико-технический институт низких температур Национальной академии наук Украины, 61103 Харьков, Украина

E-mail: konstantinov@ilt.kharkov.ua

* Лаборатория атомной физики и физики твердого тела Корнельского университета, 14853-2501 Итака, Нью-Йорк, США

(Поступила в Редакцию 4 июля 2001 г.)

Изохорная теплопроводность твердого раствора $Kr_{1-\xi}Xe_{\xi}$ ($\xi = 0.034$, 0.072 и 0.14) исследована в температурном интервале между 80 K и T_m (T_m — температура плавления) для образцов разной плотности. Наблюдался постепенный переход от теплопроводности совершенного кристалла к нижнему пределу теплопроводности решетки, по мере того как кристалл становился все более разупорядоченным. Количественное описание проводится в рамках дебаевской модели теплопроводности с учетом того, что длина свободного пробега фонона не может стать меньше половины длины волны.

Настоящая работа поддержана Министерством образования и науки Украины (договор № 2м/1862-97), а также Национальным научным советом США в рамках "Twinning Program 1999–2000".

В диэлектрических кристаллах тепло переносится главным образом фононами. При повышении температуры интенсивность процессов фонон-фононного рассеяния увеличивается, и длина свободного пробега l уменьшается, однако она не может стать меньше длины волны фонона λ . При $l \sim \lambda$ должны наблюдаться отклонения теплопроводности от зависимости $\Lambda \propto 1/T$, а ее абсолютное значение должно стремиться к некоторой минимально возможной для конкретного кристалла величине.

Сильное рассеяние фононов может быть вызвано разупорядоченной структурой, дефектами и др. Теплопроводность достигает своего нижнего предела Λ_{\min} в стеклах и сильно разупорядоченных кристаллах. Феноменологически нижний предел теплопроводности Λ_{\min} может трактоваться как выбор наименьшей нижней границы для длины свободного пробега фононов в модели Дебая. Слек [1] предполагал ее равной длине волны фонона. Кахил и Пол [2,3] показали, что теплопроводность ряда аморфных тел и сильно разупорядоченных кристаллов хорошо описывается в предположении, что возбуждения слабо локализованы в областях порядка половины длины волны $\lambda/2$ и мигрируют из области в область путем диффузии. В этом случае нижний предел теплопроводности Λ_{\min} может быть записан как

$$\Lambda_{\min} = \left(\frac{\pi}{6}\right)^{1/3} k_B n^{2/3} \sum_i v_i \left\{ \left(\frac{T}{\Theta_i}\right)^2 \int_{0}^{\Theta_i/T} \frac{x^3 e^x}{(e^x - 1)^2} \, dx \right\}.$$
(1)

Суммирование производится по трем колебательным модам (две поперечные и одна продольная) со скоростями звука v_i ; Θ_i — температура Дебая для каждой поляризации: $\Theta_i = v_i (\hbar/k_B) (6\pi^2 n)^{1/3}$, n — количество атомов в единице объема. В высокотемпературном $(T \ge \Theta_i)$ пределе Λ_{\min} не зависит от температуры, а

его абсолютная величина для большинства материалов составляет 1-10 mW / cm K.

Могут ли трехфононные процессы рассеяния сами по себе приводить к Λ_{\min} в совершенных кристаллах при повышении температуры? Этот вопрос рассматривался, в частности, в работах [1,4,5]. Согласно оценкам Роуфосса и Клеменса [4], заметные отклонения от зависимости $\Lambda \propto 1/T$ для большинства материалов должны наблюдаться лишь при температурах выше 1500 К. Из теоретического анализа Петерсона [5] следует, что теплопроводность может достигать нижнего предела Λ_{\min} в щелочно-галлоидных кристаллах, состоящих из сильно отличающихся по массе ионов, таких как NaBr, NaJ, КЈ, RbF и т.д. Прямые измерения теплопроводности щелочно-галлоидных кристаллов при предплавильных температурах к настоящему времени отсутствуют. В [1] обсуждался возможный "минимум" теплопроводности в ThO₂ и α -Al₂O₃ при T > 1500 K, однако проблема переноса тепла излучением при таких температурах, по всей видимости, требует более тщательного рассмотрения.

Чтобы выбрать наиболее подходящие объекты для наблюдения "минимума" теплопроводности в совершенных кристаллах, сравним теплопроводность Λ_{meas} ряда кристаллов [1,5-9], имеющих разный тип химической связи и нижний предел теплопроводности Amin, рассчитанный согласно (1) при температурах, близких к плавлению (рис. 1). Для щелочно-галлоидных кристаллов теплопроводность вблизи Т_т оценивалась путем экстраполяции соответствующих литературных данных по зависимости $\Lambda \propto 1/T$ [5]. Плотности и скорости звука, необходимые для расчета Λ_{\min} , брались из [7–10]. Видно, что в отвердевших инертных газах и простых молекулярных кристаллах отношение $\Lambda_{\text{meas}}/\Lambda_{\text{min}}$ равно 1.5–2, в щелочно-галлоидных кристаллах оно составляет 2-5, а в кристаллах со структурой типа алмаза — ~ 10-12. В алмазе $\Lambda_{meas}/\Lambda_{min} \approx 30$ при температурах, предшествующих сублимации (рассчитано из данных [10,11]),

Рис. 1. Сравнение теплопроводности Λ_{meas} ряда кристаллов, имеющих различный тип химической связи [1,5–9], и нижнего предела теплопроводности Λ_{min} , рассчитанного согласно (1) при температурах, предшествующих плавлению.

т.е. отношение $\Lambda_{meas}/\Lambda_{min}$ растет по мере усиления связи. Для многокомпонентных, а также имеющих сложную структуру кристаллов, как правило, характерна низкая теплопроводность порядка нескольких mW/cm·K [12], что близко к Л_{min} большинства веществ [1-3]. Точный расчет Λ_{\min} в этом случае, однако, может быть затруднен из-за необходимости учета вклада оптических ветвей [1]. Подобная проблема возникает и в молекулярных кристаллах. Например, отношение $\Lambda_{\rm meas}/\Lambda_{\rm min} \approx 1.7$ в отвердевших инертных газах и N₂O. Изохорная теплопроводность отвердевших инертных газов лишь слабо (на 20–25%) отклоняется от зависимости $\Lambda \propto 1/T$ при предплавильных температурах [6], в то время как теплопроводность твердого N2O практически не зависит от температуры при $T \approx T_m$ [13]. Как отмечалось выше, теплопроводность не должна зависеть от температуры при $T \geq \Theta_D$ (Θ_D — дебаевская температура) в случае, если она достигла своего нижнего предела Аmin. Степень приближения изохорной теплопроводности к постоянной величине (например, параметр $(\partial \ln \Lambda / \partial \ln T)_v$) можно принять в качестве критерия близости Λ_{meas} и Л_{min}. В случае N₂O естественно сделать вывод, что наличие вращательных степеней свободы молекул в кристалле приводит к дополнительному вкладу в Λ_{\min} , что не учитывается выражением (1). Величина этого вклада должна определяться возможностью передачи вращательной энергии с узла на узел, т.е. величиной нецентрального взаимодействия.

Таким образом, кристаллы с ван-дер-ваальсовской связью, в частности, отвердевшие инертные газы, представляются наиболее удобными объектами для наблюдения эффектов, связанных с приближением теплопроводности к своему нижнему пределу только за счет U-процессов. Температура плавления большинства простых молекулярных кристаллов ниже комнатной, что исключает перенос тепла излучением. Отношение

 $\Lambda_{\rm meas}/\Lambda_{\rm min}$ при предплавильных температурах составляет для них 1.5–2. Исследования изохорной теплопроводности отвердевших инертных газов и простых молекулярных кристаллов обнаружили большие отклонения от зависимости $\Lambda \propto 1/T$ [6,13,14].

Если теплопроводность приближается к Amin при повышении температуры, влияние примесей должно проявляться своеобразно. Примесь не может сильно уменьшить теплопроводность при предплавильных температурах, где она уже близка к своему "минимуму". При понижении температуры вклад примеси в тепловое сопротивление кристалла $W = 1/\Lambda$ должен возрастать. Такое поведение теплопроводности действительно было обнаружено в твердом Kr с примесью CH₄ [15]. Максимальное содержание примеси составляло 6.3%, и теплопроводность все еще заметно превышала нижний предел, рассчитанный согласно [1]. В настоящей работе изучено влияние тяжелой примеси Хе на теплопроводность твердого Kr. Исследования теплопроводности проводились при постоянной плотности, чтобы исключить влияние теплового расширения.

1. Техника эксперимента

Проведение исследований при постоянном объеме возможно в случае молекулярных твердых тел, отличающихся сравнительно низким термическим коэффициентом давления $(dP/dT)_V$. Если ячейку высокого давления заполнить твердым образцом достаточно высокой плотности, в дальнейшем образец может быть охлажден при практически постоянном объеме, в то время как давление в образце уменьшается сравнительно медленно. В определенном интервале плотностей имеет место отслаивание образца от стенок ячейки при некоторой характерной температуре T_0 , и условие изохоричности нарушается. Начало плавления сдвигается в сторону более высоких температур при повышении плотности образца. Отклонения от постоянного объема, вызываемые термической и упругой деформацией измерительной ячейки, могут быть легко учтены.

Настоящие исследования проводились на установке коаксиальной геометрии стационарным методом [16]. Измерительная ячейка из бериллиевой бронзы имела внутренний диметр 17.6 mm, длину 160 mm и была рассчитана на максимальное давление 800 МРа. Диаметр внутреннего измерительного цилиндра составлял 10.2 mm. Датчики температуры (платиновые термометры сопротивления) размещались в специальных каналах внутреннего и наружного цилиндров и не подвергались влиянию высокого давления. Образцы выращивались при градиенте температуры вдоль измерительной ячейки около 1 К / ст. Давление в капилляре при выращивании может варьироваться в пределах 50-250 MPa для получения образцов различной плотности. После выращивания капилляр напуска блокировался путем замораживания его жидким азотом (водородом), и образцы отжигались 5-6 часов при предплавильных температурах. По окончании измерений образцы испарялись в тонкостенный сосуд, и их масса определялась путем взвешивания. Молярные объемы образцов определялись по известному объему измерительной ячейки и массе образца. Суммарная систематическая погрешность измерений была доминирующей и не превышала 5% для теплопроводности и 0.2% для объема. Чистота исходных газов Kr и Xe, используемых для приготовления раствора, была не ниже 99.98%. Концентрация компонент определялась хроматографическим методом в газовой фазе.

2. Результаты

В настоящей работе исследована изохорная теплопроводность твердого раствора $Kr_{1-\xi}Xe_{\xi}~(\xi=0.034,~0.072$ и 0.14) для образцов разной плотности в температурном интервале от 80 К и до начала плавления. Выбор данной системы, концентраций и температурного интеграла измерений был обусловлен следующими соображениями.

Таблица 1. Сглаженные значения коэффициентов изобарной (Λ_P) и изохорной (Λ_V) теплопроводностей образцов твердого раствора $Kr_{1-\xi}Xe_{\xi}$ (в mW/cmK)

	ξ							
Τ,	0.034			0.072			0.14	
Κ	Λ_P	Λ_V a	nt V _m	Δъ	Λ_V at V_m		Δъ	Λ_V at V_m
		28.95	29.35	Π	29.45	29.9	110	29.95
80	2.10	2.12		1.60			1.25	
90	1.75	1.98	1.80	1.44	1.55		1.18	1.20
100	1.54	1.90	1.73	1.32	1.52	1.35	1.10	1.17
110	1.35	1.83	1.63	1.21	1.50	1.32	1.03	1.15
120		1.76	1.55		1.45	1.29		1.13
130		1.70	1.50		1.43	1.27		1.11
140		1.66	1.47		1.40	1.25		1.09
150		1.63	1.45		1.38			1.08
160		1.60						

 Π римечание. Молярные объемы образцов приведены в ст 3 / mole.

Таблица 2. Молярные объемы образцов V_m , температуры T_0 начала выполнения в эксперименте условия V = const, температуры T_m начала плавления образцов, коэффициенты Бриждмена g

ξ	N of sample	V_m , cm ³ / mole	<i>Т</i> ₀ , К	$T_m,$ K	g
0.034	1	28.95	78	165	8.0
	2	28.35	87	150	
0.072	1	29.45	82	169	5.5
	2	29.90	95	150	
0.14	1	29.95	84	160	4.0

Рис. 2. Сглаженные значения изохорной теплопроводности чистого Kr [5] и твердого раствора Kr_{1- ξ}Xe_{ξ} ($\xi = 0.034$, 0.072 и 0.14) для образцов, объем которых фиксирован, начиная с 80 К. Результаты компьютерной подгонки показаны сплошными линиями. Нижний предел теплопроводности Λ_{\min} чистого Kr для изохорного случая ($T_0 = 80$ K) показан штриховой линией.

Фазовая диаграмма твердого раствора $Kr_{1-\xi}Xe_{\xi}$ хорошо известна [17]. Жидкая и твердая фазы имеют точку равных концентраций при температуре 114.1 К и $\xi = 0.15$. Между 75 и 114 К компоненты формируют твердый раствор с ГЦК структурой для всех $1 \ge \xi \ge 0$. При выращивании образцов с градиентом температуры вдоль измерительной ячейки может иметь место расслоение твердого раствора при $\xi > 0.15$, поэтому максимальная концентрация Хе в растворе была ограничена 14%. Рассеивающий фактор Г (см. далее) для раствора $Kr_{1-\xi}Xi_{\xi}$ — один из самых больших среди растворов инертных газов, так что можно ожидать сильное рассеяние на примеси.

Сглаженные значения коэффициентов изохорной Λ_V и изобарной Λ_P теплопроводностей твердого раствора Kr_{1-ξ}Xe_ξ представлены в табл. 1. Молярные объемы образцов V_m , температуры T_0 , соответствующие началу выполнения в эксперименте условия V = const,температуры Т_т начала плавления образцов приведены в табл. 2 вместе с коэффициентами Бриджмена $g = -(\partial \ln \Lambda / \partial \ln V)_T$, рассчитанными из результатов измерений. Поскольку молярный объем твердого раствора сильно меняется от Kr к Xe при изменении ξ , сравнение экспериментальных результатов удобно проводить для образцов, которые достигают условия постоянства объема при одной и той же температуре T_0 . Довольно сложно подобрать условия выращивания так, чтобы получить образцы с одинаковой Т₀. Однако, если теплопроводность измерена на несколько изохорах при одной и той же концентрации компонент, она может быть пересчитана к любому То с использованием объемной зависимости теплопроводности в виде $g = -(\partial \ln \Lambda / \partial \ln V)_T$.

На рис. 2 показана изохорная теплопроводность чистого Kr и твердого раствора $Kr_{1-\xi}Xe_{\xi}$, приведенная

к $T_0 = 80$ К. Теплопроводность чистого Кг рассчитывалась по полуэмпирической зависимости, предложенной в [6]. Нижний предел теплопроводности Λ_{\min} чистого Кг для изохорного случая ($T_0 = 80$ K) показан штриховой линией. Данные по плотности и скоростям звука, необходимые для расчета, взяты из [9,18]. Видно, что теплопроводность твердого раствора Kr_{1- ξ}Xe $_{\xi}$ понижается с увеличением концентрации Хе и ее температурная зависимость ослабевает. Для $\xi = 0.14$ теплопроводность практически совпадает с нижним пределом, рассчитанным согласно (1).

3. Обсуждение результатов

Ранее уже упоминалось, что феноменологически нижний предел теплопроводности Λ_{\min} может трактоваться как выбор наименьшей нижней границы для длины свободного пробега фононов в модели Дебая. Поскольку как в случае И-процессов, так и рэлеевского рассеяния в первую очередь ограничивается длина свободного пробега высокочастотных фононов, можно считать, что тепло переносится как подвижными низкочастотными фононами, так и локализованными в областях порядка $\lambda/2$ модами. Граница фононной подвижности равна дебаевской частоте, если длина свободного пробега всех мод больше $\lambda/2$, и должна сдвигаться в сторону более низких частот при усилении рассеяния. В пределе очень сильного рассеяния, когда все моды рассеиваются на дистанции порядка $\lambda/2$, теплопроводность достигает своего нижнего предела Л_{тіп}. Весь процесс переход от слабого к сильному фононному рассеиванию может быть описан в рамках дебаевской модели. Используем выражение для теплопроводности в виде

$$\Lambda(T) = 3nk_B \upsilon \left(\frac{T}{\Theta_D}\right)^3 \int_0^{\Theta_D T} l(x) \frac{x^4 e^x}{(e^x - 1)^2} dx, \quad (2)$$

где $\Theta_D = v(\hbar/k_B)(6\pi^2 n)^{1/3}$ — температура Дебая, v — усредненная по поляризациям скорость звука, l(x) — длина свободного пробега фонона. При $T \ge \Theta_D$ граничное рассеяние относительно мало и длина свободного пробега определяется в основном *U*-процессами и рэлеевским рассеянием [19]

$$l(x) = (l_{Rayl}^{-1} + l_{Umlk}^{-1})^{-1}.$$
 (3)

Соответствующие разным механизмам рассеяния длины свободного пробега имеют вид [19,20]

$$l_{Umkl}^{-1} = \frac{CT}{\lambda^2},\tag{4}$$

$$C = (12\pi^3/\sqrt{2})n^{-1/3}(\gamma^2 k_B/mv^2)$$
(5)

$$l_{Rayl}^{-1} = \frac{4\pi^3 \Omega_0 \Gamma}{\lambda^4},\tag{6}$$

где

$$\Gamma = \xi (1 - \xi) \left[\frac{\Delta M}{M} + 2\gamma \, \frac{\Delta \Omega_0}{\Omega_0} \right]^2. \tag{7}$$

Здесь γ — параметр Грюнайзена, равный 2.5 для Kr [9], m — масса атома, $M = (1 - \xi)M_{\rm Kr} + \xi M_{\rm Xe}$ и $\Omega_0 = (1 - \xi)\Omega_{0\rm Kr} + \xi\Omega_{0\rm Xe}$ — соответственно усредненные атомный вес и объем, приходящийся на один атом твердого раствора: ($\Omega_0 = 6.3 \times 10^{-23} \,{\rm cm}^3$, M = 131для чистого Xe и $\Omega_0 = 5.0 \times 10^{-23} \,{\rm cm}^3$, M = 83.8 для чистого Kr), $\Delta M = M - M_{\rm Xe}$ и $\Delta \Omega_0 = \Omega_0 - \Omega_{0\rm Xe}$ разница между усредненным атомным весом и объемом твердого раствора и атомным весом и объемом примеси.

Выражение (3) неприменимо, если l(x) становится порядка или меньше длины волны фонона. Подобная ситуация обсуждалась ранее только для случая *U*процессов [3]. Рассмотрим комбинированный случай *U*-процессов и рэлеевского рассеяния. Предположим, что l(x) описывается уравнением (3), если $l(x) \ge \alpha \lambda/2$, в противном случае

$$l(x) = \alpha \lambda / 2, \tag{8}$$

где α — численный коэффициент порядка единицы не зависящий от T и λ . Возбуждения, рассеивающиеся на дистанции порядка $\lambda/2$, будем считать локализованными. Граница фононной подвижности λ_* может быть найдена из условия

$$\left(\frac{CT}{\lambda_*^2} + \frac{B}{\lambda_*^4}\right)^{-1} = \alpha \,\frac{\lambda_*}{2}.\tag{9}$$

Введем эффективную температуру $\Theta_* = hv/k_B\lambda_*$ (предполагается, что $\Theta_* < \Theta_D$, в противном случае $\Theta_* = \Theta_D$). Напомним, что в настоящей модели тепло переносится подвижными низкочастотными фононами, а выше границы подвижности — локализованными в областях порядка $\lambda/2$ модами. Интеграл теплопроводности при этом разбивается на две части

$$\Lambda(T) = 3nk_B \upsilon \left(\frac{T}{\Theta_D}\right)^3 \left[\int_0^{\Theta_*/T} l(x) \frac{x^4 e^x}{(e^x - 1)^2} dx + \int_{\Theta_*/T}^{\Theta_D/T} \alpha \frac{\lambda}{2} \frac{x^4 e^x}{(e^x - 1)^2} dx\right].$$
(10)

В высокотемпературном ($T \ge \Theta_D$) пределе при наличии только *U*-процессов $\Lambda(T) = A_1/T^2 + \Lambda'_{\min}$, где A_1 — численный коэффициент, не зависящий от температуры, а Λ'_{\min} равно

$$\Lambda_{\min}' = 3\alpha \left(\frac{\pi}{6}\right)^{1/3} n^{2/3} k_B v \left(\frac{T}{\Theta_D}\right)^2 \int_0^{\Theta_D/T} \frac{x^3 e^x}{(e^x - 1)^2} \, dx.$$
(11)

Физика твердого тела, 2002, том 44, вып. 5

Таблица 3.	Подгоночные	параметры	дебаевской	модели теп-
лопроводнос	ги для чистого	о Kr и тверд	цого раствор	a Kr _{1-ξ} Xe _ξ

ξ	$n \cdot 10^{-22}$ cm ⁻³	v, km∕s	Γ_{calc}	Варьируемые параметры		
				$C(\mathrm{cm}/\mathrm{K})$	α	
0	2.11	0.86	0	$1.07 \cdot 10^{-9}$	1.29	
0.034	2.07	0.863	0.10	$1.17 \cdot 10^{-9}$	1.2	
0.072	2.05	0.866	0.19	$1.75 \cdot 10^{-9}$	1.19	
0.14	2.02	0.87	0.29	$3.2 \cdot 10^{-9}$	1.05	

Это выражение для Λ_{\min} идентично выражению (1), если используется усредненная по поляризациям скорость звука и $\alpha = 1$. В случае сильного фононного рассеяния, если тепло переносится главным образом локализованными модами ($\Theta_* \ll \Theta_D$), теплопроводность определяется выражениями (1), (11).

Компьютерная подгонка с использованием выражения (10) для теплопроводности была выполнена для чистого Kr и твердого раствора Kr_{1- ξ}Xe_{ξ} (ξ = 0.034, 0.072 и 0.14) для изохор с $T_0 = 80$ К. Соответствующие плотности и скорости звука рассчитывались на основании данных [9,18] в предположении линейной интерполяции по ξ от Kr к Xe. Для уменьшения числа варьируемых параметров коэффициент В, описывающий рэлеевское рассеяние, рассчитывался в соответствии с (6) и (7). Результаты подгонки показаны сплошными линиями на рис. 2. Параметры дебаевской модели, используемые при подгонке (n, v, Γ) , а также значения C и α , полученные в результате подгонки, представлены в табл. 3. Коэффициент С, определяющий интенсивность U-процессов, хорошо согласуется с низкотемпературными данными [21], где его величина составляла 1.5 · 10⁻⁹ cm/K. Значения параметра α варьируют в пределах 1.2-1.4. Это подтверждает пригодность (1) для описания нижнего предела теплопроводности в отвердевших инертных газах. В то же время сама дискуссия о правильности выбора $\lambda/2$ в качестве нижнего предела для длины свободного пробега фононов, по-видимому, не имеет особого смысла. Простая дебаевская модель, используемая в настоящем рассмотрении, игнорирует целый ряд существенных факторов, в первую очередь, дисперсию и реальную плотность состояний. Значение коэффициента α в выражении (8) для длины свободного пробега представляет собой интегральный фактор, эффективно учитывающий несовершенство модели.

На рис. З показаны температурная и концентрационная зависимости порога подвижности фононов ω_*/ω_D , где $\omega_* = 2\pi v/\lambda_*$. Относительный вклад низкочастотных "подвижных" фононов в теплопроводность чистого Кг и твердого раствора Kr_{1- ξ}Хе $_{\xi}$ показан на рис. 4. Видно, что в чистом Кг локализация высокочастотных мод начинается выше 90 К. По мере увеличения концентрации примеси все бо́льшая часть тепла переносится локализованными модами, однако даже при максимальной концентрации примеси ($\xi = 0.14$) и максимальной температуре измерения (160 K) значительная часть тепла все еще переносится подвижными низкочастотными фононами.

В отличие от кристаллов с сильными межатомными связями, как например со структурой типа алмаза, теплопроводность отвердевших инертных газов приближается к своему нижнему пределу Л_{min} при предплавильных температурах. В этом случае примеси не могут существенно уменьшить теплопроводность вблизи Т_m, в то время как при понижении температуры уменьшение теплопроводности из-за введения примеси может быть весьма значительным. В твердом растворе Kr_{1-є}Xe_є наблюдается постепенный переход от теплопроводности совершенного кристалла к "минимуму" теплопроводности по мере того, как кристалл становится все более разупорядоченным. Поскольку как в случае Uпроцессов, так и рэлеевского рассеяния в первую очередь ограничивается длина свободного пробега высокочастотных фононов, тепло переносится подвижными низкочастотными фононами, а выше границы фононной подвижности локализованными в областях порядка λ/2

Рис. 3. Температурная и концентрационная зависимости ω_*/ω_D , где $\omega_* = 2\pi v/\lambda_*$ — порог подвижности фононов.

Рис. 4. Относительный вклад низкочастотных "подвижных" фононов в теплопроводность чистого Kr и твердого раствора $Kr_{1-\xi}Xe_{\xi}$.

модами. Граница фононной подвижности сдвигается от дебаевской частоты к более низким частотам по мере усиления рассеяния. В пределе очень сильного рассеяния, когда все моды рассеиваются на дистанции порядка $\lambda/2$, теплопроводность достигает своего нижнего предела Λ_{\min} . Показано, что поведение теплопроводности твердого раствора $Kr_{1-\xi}Xe_{\xi}$ может быть описано в рамках дебаевской модели с учетом того, что длина свободного пробега фонона не может стать меньше половины длины волны.

Авторы выражают благодарность академику НАН Украины В.Г. Манжелию за постоянный интерес к работе и плодотворную дискуссию.

Список литературы

- G.A. Slack. In: Solid State Physics / Ed. by H. Ehrenreich, F. Seitz, D. Turnbull. Academic Press, N. Y.–London (1979). Vol. 34. P. 1.
- [2] D.G. Cahill, S.K. Watson, R.O. Pohl. Phys. Rev. B46, 10, 6131 (1992).
- [3] D.G. Cahill, R.O. Pohl. Solid State Commun. 70, 10, 927 (1989).
- [4] M.C. Roufosse, P.G. Klemens. J. Geophys. Res. 79, 5, 703 (1974).
- [5] S. Pettersson. J. Phys.: Condens. Matter 1, 2, 361 (1989).
- [6] В.А. Константинов, В.Г. Манжелий, М.А. Стржемечный, С.А. Смирнов. ФНТ 14, 1, 90 (1988).
- [7] V.G. Manzhelii, A.I. Prokvatilov, V.G. Gavrilko, A.P. Isakina. Handbook for structure and thermodynamic properties of cryocrystals. Begell House Inc., N.Y.-Wallingford (1999). 316 p.
- [8] Аккустические кристаллы / Под ред. М.П. Шпольского. Наука, М. (1982).
- [9] Rare gas solids / Ed. by M.L. Klein, J.A. Venables. Vol. II. Academic Press, London–N.Y. (1977). 1241 p.
- [10] Основы физики ультразвука / Под ред. В.А. Шутилова. Изд-во ЛГУ, Л. (1980).
- [11] J.R. Olson, R.O. Pohl, J.W. Vandersande, A. Zoltan, T.R. Anthony, W.F. Bangolzer. Phys. Rev. B47, 22, 14850 (1993).
- [12] D.P. Spitzer. J. Phys. Chem. Solids 31, 1, 19 (1970).
- [13] В.А. Константинов, В.Г. Манжелий, С.А. Смирнов, А.М. Толкачев. ФНТ 14, 2, 189 (1988).
- [14] В.А. Константинов, В.Г. Манжелий, В.П. Ревякин, С.А. Смирнов. ФНТ **21**, *1*, 102 (1995).
- [15] V.A. Konstantinov, V.G. Manzhelii, V.P. Revyakin, S.A. Smirnov. Physica **B291**, *1*, 59 (2000).
- [16] В.А. Константинов, С.А. Смирнов, В.П. Ревякин. ПТЭ 42, 1, 145 (1999).
- [17] V.G. Manzhelii, A.I. Prokhvatilov, I.Ya. Minchina, L.D. Yantsevich. Handbook of Binary Solutions of Cryocrystals. Begell House Inc., N. Y. (1996). 235 p.
- [18] П.А. Безуглый, Л.М. Тарасенко, О.И. Барышевский. ФТТ 13, 8, 2 392 (1971).
- [19] R. Berman. Thermal Conduction in Solids. Clarendon Press, Oxford (1976).
- [20] L.A. Turk, P.G. Klemens. Phys. Rev. B9, 10, 4422 (1974).
- [21] В.В. Дудкин, Б.Я. Городилов, А.И. Кривчиков, В.Г. Манжелий. ФНТ 26, 9–10, 1 023 (2000).