Модель поляронного сверхпроводника

© Е.К. Кудинов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: kudinov@ekk.ioffe.rssi.ru

(Поступила в Редакцию 5 июля 2001 г.)

Исследуется механизм сверхпроводимости при сильной связи электронов с колебаниями решетки, когда электроны находятся в состоянии поляронов малого радиуса. Рассмотрение базируется на модели Холстейна в отсутствие дисперсии колебаний решетки и является последовательной реализацией подхода BCS (не возникает необходимости введения бозонов). Найдено основное состояние и спектр возбуждений. Исследованы токовые состояния и сформулирован критерий их устойчивости.

С ростом константы электрон-колебательной связи температура сверхпроводящего перехода неограниченно возрастает. Это сопровождается экспоненциальным уменьшением критического тока.

Некоторые определяющие свойства высокотемпературных сверхпроводников непосредственно следуют из такой модели.

Еще в 1981 г. задолго до открытия высокотемпературной сверхпроводимости А. Александровым и Ю. Раннингером в работах [1,2] была предложена модель биполяронного сверхпроводника, базирующаяся на теории полярона малого радиуса [3-5] (в частности, на возникновении механизма притяжения между электронами и возможности образования локализованных на узле пар электронов¹). Хотя в то время не было известно ни одного сверхпроводника, который напоминал вещества, подозреваемые в поляронной природе (главным образом, "грязные" диэлектрики типа NiO, TiO₂ и т.п.), эти работы оказались пророческими, поскольку открытые в 1981 г. высокотемпературные сверхпроводники (ВТСП) обладали свойствами именно этих последних. Значение работ [1,2] вне зависимости от полученных в них конкретных результатов, по нашему мнению, состоит в том, что гипотеза о поляронной природе ВТСП с самого начала была признана равноправной среди других.

Дополнительным стимулом к исследованию поляронного механизма сверхпроводимости явилось недавнее обнаружение в ряде манганатов (структура которых близка к структуре известных ВТСП) колоссального магнетосопротивления (многообещающего в области приложений). Это стимулировало многочисленные исследования их свойств (см., например, [6-10]), в результате которых выяснилось, что их специфика существенным образом связана с сильным взаимодействием электронов с колебаниями решетки (поляронный эффект). Отметим, что обнаруженный в этих соединениях гигантский изотопический эффект [11], экстремальным проявлением которого является переход проводящего состояния в диэлектрическое при изотопическом замещении [12], наблюдается также и в ВТСП [13]. Именно на базе свойств полярона малого радиуса подобный эффект получает естественное объяснение.

Структурное родство манганатов и высокотемпературных сверхпроводников позволяет надеяться, что и в последних сильное электрон-колебательное взаимодействие (ЭКВ) и поляронные эффекты играют существенную роль в понимании природы наблюдаемых явлений.

Настоящая статья посвящена исследованию механизма сверхпроводимости в модели Холстейна [3,4]. Реализован подход BCS в пределе сильного ЭКВ, когда в результате поляронного эффекта ширина зоны становится меньше характерной энергии взаимодействия. Эта модель ввиду ее простоты допускает достаточно полное рассмотрение, в частности, возможность рассмотреть переход от случая сильной связи к случаю слабой при непрерывном изменении параметров, а также выявить ряд характеристик сверхпроводящего состояния, которые в случае слабой связи остаются в тени.

1. Гамильтониан модели

Рассмотрим простейшую модель [3,4], в которой электроны взаимодействуют с колебаниями ионов кристаллической решетки, состоящей из N ионов. Ее гамильтониан имеет вид

$$H_{\rm ep} = H_{\rm v} - g \sum_{\mathbf{m}} \sum_{\sigma} n_{\mathbf{m},\sigma} x_{\mathbf{m}} + \sum_{\mathbf{m},\mathbf{g},\sigma} J(\mathbf{g}) a_{\mathbf{m},\sigma}^{+} a_{\mathbf{m}+\mathbf{g},\sigma},$$
$$H_{\rm v} = \sum_{\mathbf{m}} \left(\frac{p_{\mathbf{m}}^{2}}{2M} + \frac{M\omega^{2} x_{\mathbf{m}}^{2}}{2} \right). \tag{1}$$

 $p_{\rm m}, x_{\rm m}$ — импульс и координата иона, локализованного в окрестности узла решетки **m**, $a_{{\rm m},\sigma}^+$, $a_{{\rm m}+{\rm g},\sigma}$ — электронные операторы, $n_{{\rm m},\sigma} = a_{{\rm m},\sigma}^+ a_{{\rm m},\sigma}$, σ — спиновый индекс, M — масса иона, ω — частота колебаний иона,² g — константа ЭКВ. $\sum_{{\rm m}}$ есть сумма по всем узлам решетки, а $\sum_{{\rm g}}$ — по ближайшим соседям узла **m**. $J({\rm g})$ определяет

¹ Заметим, что указанная идея была высказана В.И. Сугаковым при обсуждении одного из докладов на Всесоюзной конференции по теории твердого тела (Москва, декабрь 1963 г.). Однако тогда она не привлекла внимания аудитории.

² Мы пренебрегаем дисперсией колебаний, так как при этом формализм много теряет в прозрачности, в то же время такой учет не меняет общей картины явления.

Рис. 1. Катион-анионный комплекс. Светлый кружок — катион, темные кружки — анионы.

ширину электронной зоны в жесткой решетке. Величина $M\omega^2$ имеет смысл упругой константы и не зависит от массы иона. ЭКВ обусловлено потенциальной энергией взаимодействия электронов с ионами, поэтому *g* также не зависит от *M*. Число электронов равно $N_e \leq 2N$. Полевые электронные операторы ψ^+_{σ} , ψ_{σ} определены как

$$\psi_{\sigma}(\mathbf{r}) = \sum_{\mathbf{m}} \varphi_{\mathbf{m}}(\mathbf{r}) a_{\mathbf{m},\sigma}, \qquad (2)$$

где $\varphi_{\mathbf{m}}(\mathbf{r})$ — набор ортонормированных функций типа Ванье.

Мы пренебрегаем эффектами, связанными с магнитным полем, полагая, что это разумнее делать в рамках феноменологической теории (типа Ландау–Гинзбурга).

Возможной реализацией модели является система тождественных катион-анионных комплексов, расположенных в узлах кристаллической решетки [14]. Комплекс состоит из четырех анионов, находящихся в вершинах ромба, с катионом в центре (рис. 1). Электроны мигрируют по комплексам. Допустив, что при деформации изменяется только длина диагонали ромба, в качестве характеристики деформации x_m можно взять координату одной из вершин, а за нуль отсчета выбрать положение равновесия в отсутствие электрона. Каноническое преобразование

$$U = \prod_{\mathbf{m}} \exp\left(i \frac{x_0}{\hbar} \sum_{\sigma} n_{\mathbf{m},\sigma} p_{\mathbf{m}}\right), \quad x_0 = \frac{g}{M\omega^2} \qquad (3)$$

(частный случай преобразования Ланг-Фирсова [5]) устраняет линейные по $x_{\mathbf{m}}$ члены в (1) и преобразует операторы a^+ , a

$$\tilde{a}_{\mathbf{m},\sigma}^{+} = \exp(i\beta p_{\mathbf{m}})a_{\mathbf{m},\sigma}^{+},$$
$$\tilde{a}_{\mathbf{m},\sigma} = \exp(-i\beta p_{\mathbf{m}})a_{\mathbf{m},\sigma}, \quad \beta = \frac{x_{0}}{\hbar}.$$
(4)

Операторы $n_{\mathbf{m},\sigma}$ при преобразовании (3) не меняются. Получаем

$$\tilde{H}_{\rm ep} = H_{\rm v} - E_p \sum_{\mathbf{m}} (n_{\mathbf{m}\uparrow} + n_{\mathbf{m}\downarrow})^2 + \sum_{\mathbf{m},\mathbf{g}} J(\mathbf{g}) \tilde{a}^+_{\mathbf{m},\sigma} \tilde{a}_{\mathbf{m}+\mathbf{g},\sigma}, \quad (5)$$

 $\tilde{H}_{\rm ep}=UH_{\rm ep}U^{-1}$. Здесь $E_p=g^2/2M\omega^2$ — поляронный сдвиг. Преобразованный оператор $\tilde{a}_{\rm m}^+$ рождает на

узле **m** электрон вместе с оптимальной деформацией. Такой комплекс при достаточно сильном ЭКВ, когда $\eta \equiv |J|/2E_p < 1$, представляет собой полярон малого радиуса. Гамильтониан (5) можно записать как

$$H_{\rm ep} = H_0 + V + H_1,$$

$$H_0 = H_{\rm v} - E_p \sum_{\mathbf{m}\sigma} n_{\mathbf{m}\sigma},$$

$$V = \sum_{\mathbf{m},\mathbf{g}} J(\mathbf{g}) \exp(i\beta(p_{\mathbf{m}} - p_{\mathbf{m}+\mathbf{g}})) a_{\mathbf{m},\sigma}^+ a_{\mathbf{m}+\mathbf{g},\sigma},$$

$$H_1 = -2E_p \sum_{\mathbf{m}} n_{\mathbf{m}\uparrow} n_{\mathbf{m}\downarrow}.$$
 (6)

В (6) мы вернулись к операторам a^+ , a. Отметим, что ЭКВ приводит к возникновению притяжения хаббардовского типа H_1 .

При J = 0 преобразование (3) точно диагонализирует гамильтониан, и в условиях сильной связи $\eta < 1$ возможно построить теорию возмущения по величине J. При J = 0 состояния вырождены (их энергии зависят только от трех чисел узлов: пустых, с одним и двумя электронами). В низшем по J приближении собственные функции являются линейными комбинациями функций нулевого приближения (собственных функций Ψ_s гамильтониана $H_0 + H_1$). Последние имеют вид

$$\Psi_s = \Phi_s X_s, \tag{7}$$

где Φ_s — электронная функция, являющаяся произведением некоторого числа операторов $a^+_{\mathbf{m},\sigma}$ на функцию электронного вакуума, а X_s есть

$$X_s = \prod_{\mathbf{m}} \psi_{i_{\mathbf{m}}}(x_{\mathbf{m}}),$$

 $\psi_i(x)$ — функция гармонического осциллятора с квантовым числом *i*.

Низшие энергетические состояния в этом приближении получаются как решения секулярного уравнения на подпространстве { Ψ_0 } функций нулевого приближения с $X_s = X_0$, где $i_m = 0$ для всех *m*. В матричные элементы гамильтониана (6) операторы $\exp(\pm i\beta p_m)$ войдут только в виде средних по X_0 , которые равны³ (см. [3,4,14])

$$\langle X_0 | \exp(\pm i\beta p_{\mathbf{m}}) | X_0 \rangle = \exp\left(-\frac{M\hbar\omega}{4}\beta^2\right)$$

= $\exp\left(-\frac{E_p}{2\hbar\omega}\right) \equiv \Lambda^{1/2}.$ (8)

Отсюда следует, что в рассматриваемом приближении низшие энергетические состояния системы описываются

³ Величина E_p в [14] равна половине величины E_p , введенной Холстейном [3,4] и используемой в настоящей работе.

$$H_{e} = \sum_{\mathbf{m},\mathbf{g},\sigma} J^{*}(\mathbf{g}) a_{\mathbf{m},\sigma}^{+} a_{\mathbf{m}+\mathbf{g},\sigma}$$
$$- E_{p} \sum_{\mathbf{m},\sigma} n_{\mathbf{m},\sigma} - 2E_{p} \sum_{\mathbf{m}} n_{\mathbf{m}\uparrow} n_{\mathbf{m}\downarrow}, \qquad (9)$$

где $J^* = J\Lambda = J \exp(-E_p/\hbar\omega)$. Таким образом, ЭКВ приводит к перенормировке константы $J \to J^*$ (сужению зоны), сдвигу энергий вниз $-E_p$ и одноузельному притяжению, характеризуемого энергией $-2E_p$ (решеточному аналогу используемого в модели BCS δ -образного притяжения). Добавим к (5) кулоновское взаимодействие

$$H_{\rm ee} = \sum_{\{\mathbf{m}_i\}} \sum_{\sigma,\sigma'} A(\mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3, \mathbf{m}_4) a^+_{\mathbf{m}_1,\sigma} a^+_{\mathbf{m}_2,\sigma'} a_{\mathbf{m}_3,\sigma'} a_{\mathbf{m}_4,\sigma}.$$
(10)

После преобразования (3) под знаком суммы в (10) появится оператор

$$\hat{B}(\mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3, \mathbf{m}_4) = \exp(i\beta p_{\mathbf{m}_1}) \exp(i\beta p_{\mathbf{m}_2})$$
$$\times \exp(-i\beta p_{\mathbf{m}_3}) \exp(-i\beta p_{\mathbf{m}_4}). \quad (11)$$

На подпространстве $\{\Psi_0\}$ он равен среднему $\langle X_0 | \hat{B} | X_0 \rangle$, что приведет к умножению A на Λ^p , p = 1, 2, 3, 4. Для членов с $\mathbf{m}_1 = \mathbf{m}_4$, $\mathbf{m}_2 = \mathbf{m}_3$ и $\mathbf{m}_1 = \mathbf{m}_3$, $\mathbf{m}_2 = \mathbf{m}_4$ (кулоновского и обменного, не связанных с реальным переносом электрона с узла на узел) p = 0, т.е. они не меняются в результате преобразования. Все прочие связаны с таким переносом, для них $p \neq 0$, а наивысшая степень p = 4 реализуется для переноса пары $a_{m\uparrow}^+ a_{m\downarrow}^+ a_{m'\downarrow} a_{m'\uparrow}$. (Члены с p = 2 и 3 в нашем рассмотрении неэффективны). Далее рассмотрим случай сильного ЭКВ, т.е. $E_p/\hbar\omega$ достаточно велико и Λ экспоненциально убывает с ростом g. Поэтому разумно в $H_{\rm ee}$ сохранить лишь члены с p = 0. Предполагая, что в рассматриваемой системе не реализуются ни магнитный, ни зарядовый порядок, опустим соответствующие члены в (10), сохранив лишь член хаббардовского отталкивания

$$H_{\rm ee0} = 2A_0 \sum_{\mathbf{m}} n_{\mathbf{m}\uparrow} n_{\mathbf{m}\downarrow}, \quad A_0 = A(0, 0, 0, 0) > 0.$$
(12)

Значение A_0 определяется структурой катион-анионного комплекса и может существенно отличаться от хаббардовской энергии (несколько eV) "голого" иона. Итак, на подпространстве { Ψ_0 } гамильтониан (6) эквивалентен гамильтониану Хаббарда

$$H = H_{\rm H} + \bar{V},$$

$$H_{\rm H} = 2W \sum_{\mathbf{m}} n_{\mathbf{m}\uparrow} n_{\mathbf{m}\downarrow},$$

$$\bar{V} = \sum_{\mathbf{m}, \mathbf{g}, \sigma} J^*(\mathbf{g}) a^+_{\mathbf{m}, \sigma} a_{\mathbf{m} + \mathbf{g}, \sigma},$$
(13)

где $W = -E_p + A_0$. Здесь опущен пропорциональный E_p член гамильтониана, равный при заданном среднем

числе электронов N_e константе $-E_p N_e$. Параметр W есть разность не малых (при сильном ЭКВ) величин, поэтому величина и знак его могут быть произвольными. (Заметим, что всегда $|W| < E_p$). Гамильтониан (1) характеризуется двумя безразмерными параметрами: η (не зависит от массы иона M) и параметром адиабатичности (ПА) $v = |J|/\hbar\omega \propto M^{1/2}$. Описанная теория возмущения применима в "антиадиабатическом" пределе v < 1. В адиабатическом пределе v > 1 эффективные параметры гамильтониана (3) изменяются [15], но экспоненциальные множители $\exp(-E_p/\hbar\omega)$ сохранятся.

Наличие множителя $\exp(-E_p/\hbar\omega)$ у величины J^* в случае сильного ЭКВ приводит к значительному повышению ее чувствительности к изменению изотопического состава, в то время как подобная зависимость величины E_p (а следовательно, и W) остается слабой.

Полагаем, что n < 1, где $n = N_e/N$. Случай n > 1 сводится к n < 1 переходом от электронов к дыркам. Далее рассматривается хаббардовское притяжение $W < 0^4$ в пределе "сильной связи"⁵

$$|W| \gg |J^*|, \quad |W| \gg \hbar\omega, \tag{14}$$

когда зонный член \bar{V} является малой добавкой к хаббардовскому $H_{\rm H}$.

2. Основное состояние

Определяющую роль в рассматриваемой задаче играет тот факт, что основное состояние гамильтониана $H_{\rm H}$ из (13) сильно вырождено. При W < 0 в нем $N_e/2$ узлов решетки заняты парами, остальные — пусты. Его энергия равна $E_0(N_e) = -|W|N_e$ и не зависит от расположения занятых узлов. Кратность вырождения равна $C_{N_e/2}^N$, а энтропия и теплоемкость при T = 0 (напомним, что $n \leq 1$) отличны от 0

$$S_0 = -Nk\left(\frac{n}{2}\ln\frac{n}{2} + \left(1 - \frac{n}{2}\right)\ln\left(1 - \frac{n}{2}\right)\right),$$
$$C_0 = \frac{Nk}{2}\ln\frac{2 - n}{n}.$$
(15)

Поэтому в рассматриваемой системе не выполняется принцип Нернста. Это "избыточное" вырождение означает, что $H_{\rm H}$ не определяет систему полностью (так, не определена ее пространственная размерность: ее можно реализовать в пространстве произвольной размерности n).

Добавив к $H_{\rm H}$ член λV_r , снимающий упомянутое вырождение, можно устранить эту неопределенность. Однако

⁴ Модель Хаббарда с притяжением рассматривалась в [16]. Поляронная модель сводится к модели Хаббарда только в низшем порядке по *J*. В следующих порядках небходимо учитывать операторный характер величин $\exp(\pm i\beta p)$, см. Приложение 1.

⁵ Мы используем кавычки, поскольку часто так называют модели, в которых реализуется противоположное (14) условие.

при этом характерные черты основного состояния системы с гамильтонианом $H_{\rm H} + \lambda V_r$ существенно зависят от конкретного вида V_r , в том числе и предельные основные состояния при $\lambda \rightarrow 0$ могут быть различными для различных V_r .

В нашем случае роль V_r играет зонный член \bar{V} ($\lambda = 1$). В качестве V_r можно было бы взять и член типа "перенос локализованных пар"

$$\sum_{\mathbf{m},\mathbf{m}',\mathbf{m}\neq\mathbf{m}'} A(\mathbf{m},\mathbf{m}') a_{\mathbf{m}\uparrow}^+ a_{\mathbf{m}\downarrow}^+ a_{\mathbf{m}'\downarrow} a_{\mathbf{m}'\uparrow}.$$
 (16)

Это привело бы к биполяронной картине [1,2]. Однако в рассматриваемой нами модели Холстейна (1), не учитывающей дисперсии колебаний, величина A, как отмечалось выше, имеет порядок $\exp(-4E_p/\hbar\omega)$. Применив теорию возмущения по J к гамильтониану (6), во втором порядке также можно получить член вида (16), который оказывается ~ $\exp(-2(E_p + |W|)/\hbar\omega)$ (см. Приложение 1). Поэтому при "сильной связи" член (16) экспоненциально мал по сравнению с зонным, который $\propto \exp(-E_p/\hbar\omega)$, а его вклад в энергию $\exp(\propto -2E_p/\hbar\omega)$, т. е. биполяронный механизм, в этом случае не реализуется. (Учет дисперсии колебаний может способствовать реализации биполяронной ситуации).

Введем в гамильтониан (13) химпотенциал µ

$$\tilde{H} = H - \mu \hat{N}_e = H_{\rm H} + \bar{V} - \mu \hat{N}_e, \qquad (17)$$

характеристической термодинамической функцией для (17) будет потенциал $\Omega(T, \mu) = E - \mu N_e$, где $E(T, N_e)$ — термодинамическое среднее от H (13). Поскольку в рассматриваемой системе предполагается ODLRO, число частиц не фиксировано и N_e следует интерпретировать как среднее число частиц. При $T \rightarrow 0 \Omega$ и E стремятся к средним по основному состоянию \tilde{H} и H соответственно. Переходя в **k**-представление, получим

$$\tilde{H} = \sum_{\mathbf{k}\sigma} (\varepsilon_{\mathbf{k}} - \mu) a_{\mathbf{k}\sigma}^{+} a_{\mathbf{k}\sigma} + \frac{2W}{N} \sum_{\{\mathbf{k}\}} \delta_{\mathbf{k}_{1} - \mathbf{k}_{2}, \mathbf{k}_{4} - \mathbf{k}_{3}} a_{\mathbf{k}_{1}\uparrow}^{+} a_{\mathbf{k}_{2}\uparrow} a_{\mathbf{k}_{3}\downarrow}^{+} a_{\mathbf{k}_{4}\downarrow}.$$
(18)

Здесь $\sum_{\mathbf{k}}$ — суммирование по зоне Бриллюэна,

$$\varepsilon_{\mathbf{k}} = \sum_{\mathbf{g}} J^*(\mathbf{g}) e^{i\mathbf{k}\mathbf{g}},\tag{19}$$

без ограничения общности можно наложить условие

$$\sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} = 0. \tag{20}$$

В дальнейшем рассмотрении эффективны лишь члены (18), удовлетворяющие условиям: $\mathbf{k}_1 = \mathbf{k}_2$, $\mathbf{k}_3 = \mathbf{k}_4$ либо $\mathbf{k}_1 + \mathbf{k}_3 = \mathbf{k}_2 + \mathbf{k}_4 = 2\mathbf{q}$. Здесь $2\mathbf{q}$ имеет смысл "импульса

куперовской пары". Будем искать волновую функцию основного состояния гамильтониана (18) в форме BCS

$$\Psi_{\rm BCS}^{\{\mathbf{q}\}} = \prod_{\mathbf{k}} (u_{\mathbf{k}} + e^{i\chi(\mathbf{k})} v_{\mathbf{k}} a^+_{\mathbf{k}+\mathbf{q}\uparrow} a^+_{-\mathbf{k}+\mathbf{q}\downarrow}) |0\rangle,$$
$$u_{\mathbf{k}}^2 + v_{\mathbf{k}}^2 = 1, \qquad (21)$$

 $u_{\mathbf{k}}, v_{\mathbf{k}}$ — вариационные параметры (положительные числа), $\chi(\mathbf{k})$ — произвольная вещественная функция \mathbf{k} .

Среднее значение $\Omega^{(0)}$ оператора \tilde{H} на состоянии $\Psi_{\rm BCS}^{\{0\}}$ выражается через средние значения таких операторных комбинаций

$$\bar{n}_{\mathbf{k}\uparrow} = \bar{n}_{-\mathbf{k}\downarrow} = v_{\mathbf{k}}^2, \quad \overline{a_{\mathbf{k}\uparrow}^+ a_{-\mathbf{k}\downarrow}^+} = e^{-i\chi(\mathbf{k})} u_{\mathbf{k}} v_{\mathbf{k}}$$
(22)

и равно

$$\langle \Psi_{\text{BCS}}^{\{0\}} | \tilde{H} | \Psi_{\text{BCS}}^{\{0\}} \rangle = \sum_{\mathbf{k}} (\varepsilon_{\mathbf{k}} - \mu) 2 v_{\mathbf{k}}^2 + \frac{2W}{N} \left(\sum_{\mathbf{k}} v_{\mathbf{k}}^2 \right)^2 + \frac{2W}{N} \left| \sum_{\mathbf{k}} e^{-i\chi(\mathbf{k})} u_{\mathbf{k}} v_{\mathbf{k}} \right|^2.$$
(23)

При W < 0 минимум величины (23) достигается при условии $\chi(\mathbf{k}) = \text{const} [17]$, т. е. имеет место характерная для BCS-подхода фазовая когерентность в **k**-пространстве (далее полагаем $\chi = 0$). Обозначим $u_{\mathbf{k}} = \cos \theta_{\mathbf{k}}$, $v_{\mathbf{k}} = \sin \theta_{\mathbf{k}}$. Тогда

$$n = \frac{1}{N} \sum_{\mathbf{k}} 2v_{\mathbf{k}}^2 = \frac{1}{N} \sum_{\mathbf{k}} (1 - \cos 2\theta_{\mathbf{k}}),$$
$$r = \frac{1}{N} \sum_{\mathbf{k}} u_{\mathbf{k}} v_{\mathbf{k}} = \frac{1}{2N} \sum_{\mathbf{k}} \sin 2\theta_{\mathbf{k}}.$$
(24)

Здесь $n = N_e/N$ — средняя концентрация электронов,

$$r = \frac{1}{2N} \overline{\sum_{\mathbf{k}} (a^+_{\mathbf{k}\uparrow} a^+_{-\mathbf{k}\downarrow} + a_{-\mathbf{k}\downarrow} a_{\mathbf{k}\downarrow})} -$$

параметр ODLRO (заметим, что он определен лишь при наличии указанной выше фазовой когерентности). (23) примет вид

$$\Omega^{(0)} = \sum_{\mathbf{k}} (\varepsilon_{\mathbf{k}} - \mu) (1 - \cos 2\theta_{\mathbf{k}}) + \frac{1}{2} W N n^2 + 2W N r^2.$$
(25)

Из необходимого условия минимума $\partial \Omega^{(0)} / \partial \theta_{\mathbf{k}} = 0$ при $\mu = \text{const}$ с учетом (24) получим

$$\cos 2\theta_{\mathbf{k}} = \pm \frac{\varepsilon_{\mathbf{k}} - \mu + Wn}{\sqrt{(\varepsilon_{\mathbf{k}} - \mu + Wn)^2 + Q^2}},$$
$$\sin 2\theta_{\mathbf{k}} = \mp \frac{Q}{\sqrt{(\varepsilon_{\mathbf{k}} - \mu + Wn)^2 + Q^2}}.$$
(26)

Минимум достигается при выборе верхнего знака. Соотношения, выражающие минимизирующие значения параметров n, r через μ и параметры гамильтониана, имеют вид

$$n = \frac{1}{N} \sum_{\mathbf{k}} \left(1 - \frac{\varepsilon_{\mathbf{k}} - \mu + Wn}{\sqrt{(\varepsilon_{\mathbf{k}} - \mu + Wn)^2 + Q^2}} \right), \qquad (27)$$

$$Q = -\frac{1}{N} \sum_{\mathbf{k}} \frac{WQ}{\sqrt{(\varepsilon_{\mathbf{k}} - \mu + Wn)^2 + Q^2}}.$$
 (28)

Мы обозначили Q = 2|W|r. Нетривиальное решение $Q \neq 0$ существует лишь при W < 0 (в дальнейшем рассматривается только этот случай). Величины $\Omega^{(0)}$ и энергия основного состояния $E^{(0)} \equiv \langle H \rangle$ гамильтониана (13) связаны соотношением $\Omega^{(0)} = E^{(0)} - \mu N_e$. Учитывая (20), получим следующее выражение для $E^{(0)}$ в минимуме:

$$E^{(0)} = -N_e E_p - N(1-n)\mu + \frac{1}{2}N\frac{Q^2}{|W|} - N|W|\frac{n(2-n)}{2} - \sum_{\mathbf{k}}\sqrt{(\varepsilon_{\mathbf{k}} - \bar{\mu})^2 + Q^2}.$$
 (29)

Здесь обозначено $\bar{\mu} = \mu + |W|n$. В (29) добавлен вклад поляронного сдвига $-N_e E_p$, опущенный в (13). В пределе $\varepsilon_{\mathbf{k}} \to 0$ из (27), (28) имеем

$$\mu = -|W|, \quad \sqrt{\bar{\mu}^2 - Q^2} = |W|, \quad Q^2 = W^2 n(2-n).$$
 (30)

Подставляя (30) в (29), получим $E^{(0)}|_{\varepsilon \to 0} = E_0 = -N_e(E_p + |W|)$ и $\Omega^{(0)}|_{\varepsilon \to 0} = 0.6$ В случае "сильной связи" (14) можно ограничиться в (27)–(29) разложением по ε в низшем (втором из-за (20)) порядке. В результате получаем

$$E^{(0)} \approx E_0 - \Delta E^{(0)}, \qquad (31)$$

$$\Delta E^{(0)} = N \frac{Q^2(\varepsilon \to 0)}{2W^2} \frac{\mathcal{E}}{|W|} = N \frac{n(2-n)}{2} \frac{\mathcal{E}}{|W|}, \quad (32)$$

$$\mathcal{E} = \frac{1}{N} \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}}^2 = \sum_{\mathbf{g}} J^{*2}(\mathbf{g}) > 0, \qquad (33)$$

т. е. учет зонного члена понижает энергию. Разность (31) и энергии нормального (Q = 0) состояния ΔE_{sn} равна

$$\Delta E_{\rm sn} = -N_e |W| \frac{2-n}{2} + O(J^*, J^{*2}/|W|), \qquad (34)$$

т. е. в случае "сильной связи" энергия состояния с $Q \neq 0$ всегда ниже энергии нормального состояния. Распределение $n_{\mathbf{k}}$ электронов по **k** в состоянии с ODLRO есть

$$n_{\mathbf{k}} \equiv 2v_{\mathbf{k}}^2 = n\left(1 - (2 - n)\frac{\varepsilon_{\mathbf{k}}}{|W|}\right) + O(J^{*2}/W^2)$$
 (35)

и отличается от $n_{\mathbf{k}} = \text{const}$ лишь малыми членами $\sim J^*/|W|$. Как следует из зонной теории, $\varepsilon_{\mathbf{k}}$ является аналитической функцией \mathbf{k} , поэтому и $n_{\mathbf{k}}$ есть аналитическая функция. В противоположном случае "слабой связи" $|J^*| \gg |W|$ функция $n_{\mathbf{k}}$ имеет вид фермиевской ступеньки, аналитически размытой в окрестности поверхности Ферми (как в модели BCS, Элиашберга и т.п.).

Уже на данном этапе видны характерные черты рассматриваемого состояния. Так, флуктуации фазы, вызывающие нарушение фазовой когерентности, сопровождаются, согласно (23), изменением энергии масштаба |W|, поэтому следует ожидать, что температура T_c фазового перехода имеет порядок |W|, а критический ток мал вследствие поляронного сужения зоны.

3. Волновая функция

Используя свойства Ферми-операторов, волновую функцию основного состояния (21) при $\mathbf{q} = 0$ и $\chi = \text{const} \neq 0$ можно записать так [18,19]:

$$\Psi_{\rm BCS}^{(0)}(\chi) = \left(\prod_{\mathbf{k}} u_{\mathbf{k}}\right) \exp\left(\sum_{\mathbf{k}} e^{i\chi} \frac{v_{\mathbf{k}}}{u_{\mathbf{k}}} a_{\mathbf{k}\uparrow}^+ a_{-\mathbf{k}\downarrow}^+\right) |0\rangle. \quad (36)$$

Состояние вырождено с единственным параметром вырождения χ . Переходя к функциям Ванье и учитывая (26), (30) и u > 0, v > 0, можно видеть, что при $\varepsilon \to 0$ функция $\Psi_{\text{BCS}}^{(0)}$ стремится к

$$\prod_{\mathbf{m}} \left(\sqrt{\frac{2-n}{2}} + e^{i\chi} \sqrt{\frac{n}{a}} a^+_{\mathbf{m}\uparrow} a^+_{\mathbf{m}\downarrow} \right) |0\rangle.$$
(37)

Функции же основного состояния гамильтониана *H*_H имеют вид

$$\prod_{\mathbf{m}} \left(\sqrt{\frac{2-n}{2}} + e^{i\chi_{\mathbf{m}}} \sqrt{\frac{n}{2}} a^+_{\mathbf{m}\uparrow} a^+_{\mathbf{m}\downarrow} \right) |0\rangle.$$
(38)

Параметром вырождения является набор N чисел $\chi_{\mathbf{m}}$. Объем подпространства функций (37) несравненно меньше объема пространства (38), поэтому для (37) принцип Нернста выполняется. Вводя операторы $\hat{R}(\mathbf{m})$

$$\hat{R}(\mathbf{m}) = \frac{1}{2} \sum_{\mathbf{G}} S(\mathbf{G}) \left(a_{\mathbf{m}\uparrow}^{+} a_{\mathbf{m}-\mathbf{G}\downarrow}^{+} + a_{\mathbf{m}-\mathbf{G}\uparrow}^{+} a_{\mathbf{m}\downarrow}^{+} \right),$$
$$S(\mathbf{G}) = e^{i\chi} \sum_{\mathbf{k}} \frac{v_{\mathbf{k}}}{u_{\mathbf{k}}} e^{i\mathbf{k}\mathbf{G}},$$
(39)

 $(\sum_{\substack{\mathbf{G}\\\mathbf{u} \text{ так}}}$ – сумма по узлам решетки), (36) можно записать

$$\Psi_{\rm BCS}^{(0)} = \text{const} \cdot \prod_{\mathbf{m}} \exp \hat{R}_{\mathbf{m}} |0\rangle.$$
 (40)

Величина $v_{\mathbf{k}}/u_{\mathbf{k}}$ является периодической функцией **k** и аналитической на вещественной оси для всех направлений **k**. Поэтому $S(\mathbf{G})$ при $|\mathbf{G}| \to \infty$ экспоненциально (точнее, быстрее любой степени $1/|\mathbf{G}|$) убывает. Оператор ехр $\hat{R}_{\mathbf{m}}$, действуя на вакуум $|0\rangle$, порождает "электронный кластер", центрированный на узле **m**, вклад в который состояний с индексом $\mathbf{m} + \mathbf{G}$ экспоненциально убывает при $|\mathbf{G}| \to \infty$ с характерной длиной порядка постоянной решетки a_0 . В случае "слабой связи" волновая функция основного состояния имеет вид и свойства, аналогичные (40), но с характерной длиной порядка

⁶ Соотношения (27), (28) для гамильтониана (13) при W < 0 были получены в [16]. Однако далее авторы [16] отклоняются от подхода ВСS, переходя к Бозе-операторам, а их результаты существенно отличаются от полученных ниже.

корреляционной длины $\sim \hbar v_{\rm F}/kT_c \gg a_0.^7$ Корреляторы вида $\langle A(\mathbf{r})B(\mathbf{r}')\rangle$ в обоих случаях при $|\mathbf{r} - \mathbf{r}'| \rightarrow \infty$ убывают быстрее любой степени $|\mathbf{r} - \mathbf{r}'|^{-1}$ [19].

Итак, волновая функция основного состояния сверхпроводника порождается действием произведения \prod_{m} упомянутых электронных кластеров на вакуум. Заметим, что в работе В. Кона [20] аргументировалось, что подобная структура волновой функции (но без ODLRO) является общей характеристикой диэлектрического состояния, не опирающейся на модельные представления. В недавней работе [21] эти соображения были существенно конкретизированы. В [19] на ряде примеров было продемонстрировано, что такая структура скорее характеризует свойство локализации Мотта, которое оказывается присущим помимо диэлектрического состояния также и моделям сверхпроводника типа BCS.

4. Токовые состояния

Рассмотрим случай, когда в (21) параметр **q** отличен от нуля. Результат минимизации дается формулами (27)–(29), в которых надо заменить

$$\varepsilon_{\mathbf{k}} \to \frac{1}{2}(\varepsilon_{\mathbf{k}+\mathbf{q}} + \varepsilon_{\mathbf{k}-\mathbf{q}}) \equiv \varepsilon(\mathbf{k}, \mathbf{q}).$$
 (41)

Разложение (31) принимает вид

$$\langle H \rangle^{(\mathbf{q})} = E^{(\mathbf{q})} = E_0 - N \frac{n(2-n)}{2} \frac{\mathcal{E}(\mathbf{q})}{|W|},$$
 (31a)

$$\mathcal{E}(\mathbf{q}) = \frac{1}{4N} \sum_{\mathbf{k}} (\varepsilon_{\mathbf{k}+\mathbf{q}} + \varepsilon_{\mathbf{k}-\mathbf{q}})^2$$
$$= \frac{1}{2} \sum_{\mathbf{g}} J^{*2}(\mathbf{q}) (1 + \cos 2\mathbf{q}\mathbf{g}). \tag{33a}$$

Очевидно, что $\mathcal{E}(\mathbf{q})$ есть периодическая функция \mathbf{q} с периодом, равным половине вектора обратной решетки. Оператор потока частиц $\hat{\mathbf{l}}$ дается формулой зонной теории

$$\hat{\mathbf{I}} \equiv \frac{1}{m} \int_{\mathcal{V}} d\mathbf{r} \sum_{\sigma} \left(\psi_{\sigma}^{+}(\mathbf{r}) \hat{\mathbf{p}} \psi_{\sigma}(\mathbf{r}) - \hat{\mathbf{p}} \psi_{\sigma}^{+}(\mathbf{r}) \psi_{\sigma}(\mathbf{r}) \right)$$
$$= \frac{1}{\hbar} \sum_{\mathbf{k}} \frac{\partial \varepsilon_{\mathbf{k}}}{\partial \mathbf{k}} (\hat{n}_{\mathbf{k}\uparrow} + \hat{n}_{\mathbf{k}\downarrow}), \qquad (42)$$

 \mathcal{V} — объем системы. Предполагается, что операторы $\psi_{\sigma}^{+}(\mathbf{r}), \psi_{\sigma}(\mathbf{r})$ удовлетворяют граничным условиям, которые обеспечивают эрмитовость оператора импульса $\hat{\mathbf{p}} = -i\hbar\nabla$ в объеме системы (например, циклическим граничным условиям).

Пусть образец имеет форму прямого цилиндра длиной L с осью вдоль направления \mathbf{e}_0 , ($\mathbf{e}_0^2 = 1$), а поток проходит через основания. Тогда средний поток $\overline{\mathbf{I}}$ направлен по

е₀ и $\bar{I} = \mathbf{e}_0 LI$, где I — полный ток частиц через сечение цилиндра. Используя результаты раздела 2 с учетом (41) и $\mathbf{q} = q\mathbf{e}_0$, можно видеть, что ток I в состоянии (21) в низшем по ε порядке равен

$$I(q) = -\frac{N}{L} \frac{Q^{2}(\varepsilon \to 0)}{2W^{2}} \frac{1}{\hbar} \frac{\partial}{\partial q} \frac{\mathcal{E}(q, \mathbf{e}_{0})}{|W|}$$
$$= -\frac{N}{L} \frac{n(2-n)}{2} \frac{1}{\hbar} \frac{\partial}{\partial q} \frac{\mathcal{E}(q, \mathbf{e}_{0})}{|W|},$$
$$\mathcal{E}(q, \mathbf{e}_{0}) = \frac{1}{2} \sum_{\mathbf{g}} J^{*2}(\mathbf{g}) [1 + \cos 2q(\mathbf{e}_{0}\mathbf{g})], \qquad (43)$$

т.е. пропорционален производной энергии (31a) по q. Вводя обозначение $E^{(qe_0)} = E(q)$, из (31a) и (43) имеем

$$I(q) = \frac{1}{\hbar L} \frac{\partial}{\partial q} E(q).$$
(44)

Итак, при заданной конфигурации (ориентации тока относительно осей кристалла), токовое состояние системы характеризуется скалярным параметром q $(-\infty < q < +\infty)$, а ее энергия является функцией q.

Соотношение (44) является частным случаем общего термодинамического соотношения.⁸ В основе лежит допущение о реализации термодинамически равновесного токового состояния (и не используются какие-либо соображения о механизме явления). Его прямым следствием является существование термодинамического параметра q, характеризующего такое состояние. Для тока Iполучаем (44). Условием устойчивости равновесного токового состояния является

$$\left(\frac{\partial I}{\partial q}\right)_{S} > 0. \tag{45}$$

(Заметим, что решение задачи о критическом токе в пленке [24] в рамках теории Ландау–Гинзбурга по существу опирается на термодинамические соотношения (44), (45)). В нашем случае имеем

$$I(q) = \frac{Nn(2-n)}{2L\hbar|W|} \sum_{\mathbf{g}} J^{*2}(\mathbf{g})(\mathbf{e}_0 \mathbf{g}) \sin 2q(\mathbf{e}_0 \mathbf{g}), \qquad (46)$$

$$\frac{dI}{dq} = \frac{Nn(2-n)}{L\hbar|W|} \sum_{\mathbf{g}} J^{*2}(\mathbf{g})(\mathbf{e}_0\mathbf{g})^2 \cos 2q(\mathbf{e}_0\mathbf{g}) > 0. \quad (47)$$

В нашем приближении граница устойчивости определяется зависимостью $\varepsilon_{\mathbf{k}}$. Ток I(q) является ограниченной и аналитической функцией q в области $-\infty < q < +\infty$, поэтому области неустойчивости, где $\partial I/\partial q < 0$, всегда существуют при любых значениях параметров задачи.

⁷ Разумеется, надо игнорировать традиционное обрезание по импульсу.

⁸ Автор вынужден сослаться на свою работу [22] (см. также [23]), поскольку не нашел подобного рассмотрения в литературе. Оно могло бы появиться еще во времена Каммерлинг–Оннеса (1911). В Приложении 2 дано краткое изложение [22].

Максимум модуля электрического тока *J_c* по порядку величины равен

$$|J_c| = Se\bar{n} \left(\frac{J^*}{W}\right)^2 \frac{a_0|W|}{\hbar}, \quad \bar{n} = na_0^{-3}, \quad S = N^{2/3}a_0^2, \quad (48)$$

*a*₀ — постоянная решетки.

5. Спектр возбуждений

Сначала найдем спектр возбуждений над полученным выше основным состоянием с $\mathbf{q} = 0$, используя метод самосогласованного поля (СП). Введем модельный гамильтониан

$$H(0) = \sum_{\mathbf{k}\sigma} (\varepsilon_{\mathbf{k}} - \mu) a^{+}_{\mathbf{k}\sigma} a_{\mathbf{k}\sigma} + \frac{2W}{N} \sum_{\{\mathbf{k},\mathbf{k}'\}} n_{\mathbf{k}\uparrow} n_{\mathbf{k}'\downarrow} + \frac{2W}{N} \sum_{\{\mathbf{k},\mathbf{k}'\}} a^{+}_{\mathbf{k}\uparrow} a^{+}_{-\mathbf{k}\downarrow} a_{-\mathbf{k}'\downarrow} a_{\mathbf{k}'\uparrow}.$$
(49)

Прежняя оценка фактора перенормировки входящей в $\varepsilon_{\mathbf{k}}$ величины *J* как $\exp(-E_p/\hbar\omega)$ в области фазового перехода непригодна, поскольку температура перехода порядка $|W| \gg \hbar\omega$. В духе СП перенормировку возможно определить как определяемое условием согласования среднее

$$J\langle \exp(i\beta p_{\mathbf{m}})\exp(-i\beta p_{\mathbf{m}+\mathbf{g}})\rangle = J^{*}(T).$$

Главный вклад вносит усреднение по невзаимодействующим колебаниям, что дает

$$J^{*}(T) = J \exp\left(-\frac{E_{p}}{\hbar\omega} \frac{1}{1 - \exp(-\hbar\omega/kT)}\right)$$
(50)

(температурное сужение зоны [25]), а процедура самосогласования приведет лишь к малым поправкам $\sim (J^*/E_p)^2$. Введем СП $\bar{n}_{k\sigma}$ и $\overline{a_{k\uparrow}^+ a_{-k\downarrow}^+}$

$$n_{\mathbf{k}\uparrow}n_{\mathbf{k}'\downarrow} \to \bar{n}_{\mathbf{k}\uparrow}n_{\mathbf{k}'\downarrow} + n_{\mathbf{k}\uparrow}\bar{n}_{\mathbf{k}'\downarrow} - \bar{n}_{\mathbf{k}\uparrow}\bar{n}_{\mathbf{k}'\downarrow}, \qquad (51)$$

$$a_{\mathbf{k}\uparrow}^{+}a_{-\mathbf{k}\downarrow}^{+}a_{-\mathbf{k}\downarrow}a_{\mathbf{k}\uparrow\uparrow} \rightarrow \overline{a_{-\mathbf{k}'\downarrow}a_{\mathbf{k}\uparrow\uparrow}a_{\mathbf{k}\uparrow}^{+}a_{-\mathbf{k}\downarrow}^{+}} + \overline{a_{\mathbf{k}\uparrow}^{+}a_{-\mathbf{k}\downarrow}^{+}}a_{-\mathbf{k}'\downarrow}a_{\mathbf{k}'\uparrow} - \overline{a_{-\mathbf{k}'\downarrow}a_{\mathbf{k}'\uparrow}} \overline{a_{\mathbf{k}\uparrow}^{+}a_{-\mathbf{k}\downarrow}^{+}}.$$
 (52)

(Вычитание произведений средних необходимо для правильного определения энергии основного состояния). Положим все величины вещественными и $\bar{n}_{\mathbf{k}\uparrow} = \bar{n}_{\mathbf{k}\downarrow}$. Тогда гамильтониан СП принимает вид

$$H_M(0) = \sum_{\mathbf{k}\sigma} (\varepsilon_{\mathbf{k}} - \mu) n_{\mathbf{k}\sigma} - \frac{|W|}{N} \sum_{\mathbf{k}'\sigma'} \bar{n}_{\mathbf{k}'\sigma'} \sum_{\mathbf{k}\sigma} n_{\mathbf{k}\sigma}$$
$$- \frac{2|W|}{N} \sum_{\mathbf{k}'} \overline{a_{-\mathbf{k}'\downarrow} a_{\mathbf{k}'\uparrow}} \sum_{\mathbf{k}} (a_{\mathbf{k}\uparrow}^+ a_{-\mathbf{k}\downarrow}^+ + a_{-\mathbf{k}\downarrow} a_{\mathbf{k}\uparrow}).$$

1----

7 Физика твердого тела, 2002, том 44, вып. 4

Стандартная процедура дает гамильтониан возбуждений вида

$$H_{\text{ex}} = E^{(0)} + \sum_{\mathbf{k}} \xi_{\mathbf{k}} (\alpha_{\mathbf{k}}^{+} \alpha_{\mathbf{k}} + \beta_{\mathbf{k}}^{+} \beta_{\mathbf{k}}),$$
$$\xi_{\mathbf{k}} = \sqrt{(\varepsilon_{\mathbf{k}} - \bar{\mu})^{2} + Q^{2}}.$$
(53)

Такую процедуру можно произвести для состояния (21) с $\mathbf{q} \neq \mathbf{0}$. Результат имеет вид (53), где $E^{(0)}$ заменяется на $E^{(\mathbf{q})}$, а $\xi_{\mathbf{k}}$ — на

$$\xi(\mathbf{k};\mathbf{q}) = \sqrt{(\varepsilon(\mathbf{k},\mathbf{q}) - \bar{\mu})^2 + Q^2} \pm \frac{\varepsilon_{\mathbf{k}+\mathbf{q}} - \varepsilon_{\mathbf{k}-\mathbf{q}}}{2}.$$
 (54)

(53), (54) справедливы при W < 0 и произвольных соотношениях между J^* и |W|. (Критерий устойчивости (45) никак не связан со свойствами спектра возбуждений $\xi(\mathbf{k})$).

В случае "сильной связи" (14) величины ξ положительны при всех ${\bf k},{\bf q}$ и в пределе $\varepsilon\to 0$ с учетом (30) равны

$$\xi_0 = \sqrt{\bar{\mu}^2 + Q^2} = |W|.$$
 (55)

Условие $\xi > 0$ гарантирует в рамках используемого подхода устойчивость основного состояния. При этом добавка к энергии, обусловленная током, согласно (32a), (34a) имеет порядок ~ $J^{*2}/|W|$, т. е. мала по сравнению с энергией ~ |W|, ответственной за ODLRO. Нарушение критерия (45) приведет к перестройке токовой системы (например, к возникновению вихревой структуры), но не к разрушению ODLRO (сверхпроводник II рода [26]).

В пределе "слабой связи" существенные изменения происходят в малой окрестности поверхности Ферми, а критические явления связаны с появлением возбуждений с отрицательной энергией $\xi(\mathbf{k};\mathbf{q}) < 0$, условие возникновения которых может быть представлено в форме критерия Ландау $q > q_c = 2\Delta/\hbar v_F$, Δ — параметр щели, v_F — скорость на поверхности Ферми. Энергия, связанная с критическим током $\sim \hbar^2 q_c k_F/m$, оказывается порядка Δ . В этом случае следует ожидать разрушения ODLRO током (правило Сильсби; сверхпроводник I рода). Выход за рамки данной модели (например, явный учет магнитного поля) может изменить ситуацию.

Используя вариационный принцип Боголюбова– Фейнмана [27,28], можно найти свободную энергию в приближении, соответствующем приближению СП. При $\varepsilon \to 0$ получим такие выражения для энтропии S(T) и теплоемкости C(T)

$$S = 2Nk \frac{|W|}{kT} \exp\left(-\frac{|W|}{kT}\right),$$
$$C = 2Nk \frac{|W|}{kT} \left(\frac{|W|}{kT} - 1\right) \exp\left(-\frac{|W|}{kT}\right).$$
(56)

При низких температурах (kT < |W|) принцип Нернста очевидно выполняется, а *C* всегда > 0. Можно убедиться, что и при конечной $\varepsilon_{\mathbf{k}}$, малой по сравнению с |W|, теплоемкость положительна.

Рис. 2. Зависимость температуры перехода от концентрации электронов.

6. Фазовый переход

Используя результаты раздела 4, нетрудно получить в приближении самосогласованного поля уравнения, определяющие μ и Q при конечной температуре,

$$n = \frac{1}{N} \sum_{\mathbf{k}} \left(1 - \frac{\varepsilon_{\mathbf{k}} - \bar{\mu}}{\sqrt{(\varepsilon_{\mathbf{k}} - \bar{\mu})^2 + Q^2}} \operatorname{th} \frac{\sqrt{(\varepsilon_{\mathbf{k}} - \bar{\mu})^2 + Q^2}}{2kT} \right), (57)$$
$$Q = |W| \frac{1}{N} \sum_{\mathbf{k}} \frac{Q}{\sqrt{(\varepsilon_{\mathbf{k}} - \bar{\mu})^2 + Q^2}} \operatorname{th} \frac{\sqrt{(\varepsilon_{\mathbf{k}} - \bar{\mu})^2 + Q^2}}{2kT}. (58)$$

При "сильной связи" можно, игнорируя члены ~ J^{*2}/W^2 , положить $\varepsilon = 0$. Получим

$$\frac{1}{W|} = \frac{1}{\sqrt{\bar{\mu}^2 + Q^2}} \operatorname{th}\left(\frac{\sqrt{\bar{\mu}^2 + Q^2}}{2kT}\right),$$
$$\bar{\mu} = -(1 - n)|W|. \tag{59}$$

Температура перехода *T_c* определяется следующим выражением:

$$\frac{kT_c}{|W|} = \frac{1}{2} \frac{1-n}{\operatorname{Arth}(1-n)} + O\left(\frac{J^{*2}}{W^2}\right).$$
 (60)

(рис. 2). Максимум $T_c = |W|/2$ достигается при n = 1. Изотопически чувствительным в (60) является лишь малый поправочный член.

7. Обсуждение результатов

Из сказанного выше, можно сделать следующие выводы.

1) Рассмотренный механизм качественно вполне аналогичен механизму BCS; в обеих случаях происходит ликвидация фермиевской особенности у величины *n*_k. Определяющую роль играет куперовская неустойчивость относительно электрон-электронного притяжения. Разница лишь количественная: при слабой связи происходит сглаживание разрыва в малой окрестности поверхности Ферми, а при "сильной связи" перестройка захватывает всю зону Бриллюэна и в ней *n*_k почти постоянна.

2) В пределе "сильной связи" T_c имеет порядок |W|/k. Отметим существенное отличие от бозонных моделей, где при $|W| \rightarrow \infty T_c$ стремится к нулю, так как соответствующая константа связи $\sim |W|^{-1}$.

3) Достижимые значения тока в конечной зоне ограничены по величине (см. (48)), и все явления, связанные с диамагнитными токами, имеют тенденцию к насыщению с ростом магнитного поля. Поэтому в этом пределе термодинамическое критическое поле H_c определяется парамагнитным эффектом [29]: $H_c \propto |W|/\mu_0, \mu_0$ — магнетон Бора.

Экспоненциальному сужению зоны должны соответствовать малые значения критического тока (малые значения первого критического поля H_{c1} и большие глубины проникновения). Энергия, связанная с потерей устойчивости тока мала по сравнению с kT_c , см. раздел 5. (Аналогичная ситуация наблюдается в He4, где критическая скорость, оцениваемая по температуре перехода на три порядка выше наблюдаемой). При очень узких зонах может возникнуть необходимость учета парамагнитного эффекта.

Итак, в случае "сильной связи" сверхпроводник обнаруживает свойства сверхпроводников II рода, в котором достижим парамагнитный предел. При $|W| \rightarrow \infty$ реализуется состояние с нулевым критическим током и высокотемпературным переходом II рода без видимого наличия какого-либо упорядочения.⁹ Подчеркнем, что в рассматриваемой модели высокая температура перехода достигается ценой уменьшения характерных токов (и индуцируемых ими магнитных полей).

4) Зависимость свойств модели от изотопического состава имеет дифференцированный характер. В пределе "сильной связи" T_c определяется величиной поляронного сдвига (не зависящей от массы ионов) и не зависит от изотопического состава. Изотопическая зависимость T_c появляется по мере ослабления связи, см. (60). Явления же, связанные с электронным переносом, обнаруживают изотопическую зависимость из-за сужения электронной зоны $\propto \exp(-E_p/\hbar\omega)$, которая резко усиливается с ростом ЭКВ из-за экспоненциального характера зависимости.

5) При непрерывном изменении параметра |W| от отрицательных значений к положительным (модель Хаббарда с отталкиванием) при достаточно больших W > 0 естественно ожидать возникновения диэлектрического магнитоупорядоченного состояния.

⁹ Предельный переход должен быть корректно определен, см. раздел 2. О возможности возникновения такого состояния упоминалось в [30] и [31]. В отличие от [30], в данной работе оно является предельным и не образует фазы.

Заметим, что естественным следствием рассмотренной выше простейшей поляронной модели сверхпроводника в случае "сильной связи" являются две характерных черты ВТСП: 1) малость нижнего критического поля при очень высоких значениях верхнего, см. выше п. 3 (это было установлено уже в самых ранних исследованиях); 2) дифференцированный характер изотопического эффекта [13] (п. 4). Модель также содержит потенциальную возможность описания наблюдаемого перехода в магнито-упорядоченное состояние с изменением состава (п. 5).

Фундаментальный вопрос об условиях реализации одноузельного притяжения W < 0 в данной работе не обсуждался. Для выяснения ситуации полезно исследовать "малые" модели (пару электрон-ионных комплексов типа рис. 1) с учетом реальных механизмов поляризации.

Автор благодарит Ю.А. Фирсова, А.В. Гольцева, Л.И. Коровина, С.А. Ктиторова, Б.Н. Шалаева за полезное обсуждение.

Приложение 1.

Из результатов раздела 1 следует, что перенос электрона между пустым и одноэлектронным состояниями узла сопровождается преодолением энергетического барьера E_p . При переносе же между пустым и двухэлектронным состояниями высота этого барьера равна $4E_p$. Хаббардовское отталкивание (12) приведет к понижению этого барьера. Оценим соответствующий вклад в энергию. Второе приближение теории возмущения по *J* дает такое выражение для параметра $A(\mathbf{m}, \mathbf{m}') \equiv J^2 \equiv$ в члене (16) эффективного гамильтониана, описывающего перенос пары как целого с узла **m** на **m**',

$$\Xi = \sum_{s_1=0}^{\infty} \sum_{s_2=0}^{\infty} \frac{1}{2|W| + \hbar\omega(s_1 + s_2)}$$
$$\times \langle 0| \exp[i\beta(p_1 - p_2)]|s_1, s_2\rangle$$
$$\times \langle s_1, s_2| \exp[i\beta(p_1 - p_2)]|0\rangle. \tag{\Pi1.1}$$

Имеем

$$\frac{1}{2|W|+\hbar\omega(s_1+s_2)}\equiv\int\limits_0^\infty\exp[-(2|W|+\hbar\omega(s_1+s_2))\lambda]d\lambda.$$

Тогда

$$\Xi = \int_{0}^{\infty} e^{-2|W|\lambda} \sum_{s_{1}=0}^{\infty} \exp(-\hbar\omega s_{1}\lambda) \langle 0| \exp(i\beta p_{1})|s_{1}\rangle$$
$$\times \langle s_{1}| \exp(i\beta p_{1})|0\rangle \sum_{s_{2}=0}^{\infty} \exp(-\hbar\omega s_{2}\lambda)$$
$$\times \langle 0| \exp(-i\beta p_{2})|s_{2}\rangle \langle s_{2}| \exp(-i\beta p_{2})|0\rangle d\lambda.$$

7* Физика твердого тела, 2002, том 44, вып. 4

Перейдем к операторам вторичного квантования

$$p_{i} = i\sqrt{\frac{M\hbar\omega}{2}}(b_{i}^{+} - b_{i}),$$
$$i\beta p_{i} = -\gamma(b_{i}^{+} - b_{i}), \quad \gamma = \sqrt{\frac{E_{p}}{\hbar\omega}}.$$
(II1.2)

Введем функцию

$$S(\lambda) = \sum_{s_1=0}^{\infty} e^{-\hbar\omega s_1\lambda} \langle 0| \exp(-\gamma (b_1^+ - b_1)) |s_1\rangle$$
$$\times \langle s_1| \exp(-\gamma (b_1^+ - b_1)) |0\rangle.$$

Запишем $\exp(-\hbar\omega s\lambda)\langle 0|\exp(i\beta p)|s\rangle$ как $\langle 0|\exp(\lambda H_c) \times \exp(i\beta p)\exp(-\lambda H_c)|s\rangle$, $H_c = \hbar\omega b^+ b$. Обозначив $p(\lambda) = \exp(\lambda H_c)p\exp(-\lambda H_c)$, представим $S(\lambda)$ в виде

$$S(\lambda) = \langle 0 | e^{-\gamma [b^+(\lambda) - b(\lambda)]} e^{-\gamma (b^+ - b)} | 0
angle, \ b^+(\lambda) = e^{\lambda \hbar \omega}, \quad b(\lambda) = e^{-\lambda \hbar \omega}$$

(индекс у *b*, *b*⁺ опущен). Воспользовавшись известными соотношениями для полиномов Эрмита [32] (см. также [14]), можно получить

$$S(\lambda) = \exp[-\gamma^2(1 + e^{-\hbar\omega\lambda})].$$

Для Ξ получаем

$$\Xi = \int_{0}^{\infty} e^{-2|W|\lambda} (S(\lambda))^{2} d\lambda = \frac{1}{\hbar\omega} \int_{0}^{\infty} \exp[-(2|W|/\hbar\omega)z]$$
$$\times \exp\left(-2\frac{E_{p}}{\hbar\omega}(1+e^{-z})\right) dz. \tag{\Pi1.3}$$

Оценка методом перевала при $E_p, |W| \gg \hbar \omega$ дает

$$\Xi = \sqrt{\frac{\pi}{|W|\hbar\omega}} \exp\left(-\frac{2E_p}{\hbar\omega}\right) \exp\left(-\frac{2|W|}{\hbar\omega} \left(1 - \ln\frac{|W|}{E_p}\right)\right). \tag{II1.4}$$

По сравнению со вкладом от зонного члена $\Delta E^{(0)}$ (32) (который ~ $\exp(-2E_p/\hbar\omega)$), имеется дополнительная экспоненциальная малость $\exp(-2|W|/\hbar\omega\alpha)$, где $\alpha > 1.^{10}$ В модели же Хаббарда, не учитывающей ЭКВ, этот член был бы порядка $\Delta E^{(0)}$.

Приложение 2. Термодинамика токового состояния

Элементарная работа, совершаемая над токовой системой, равна [33]

$$\Delta \mathcal{A} = -\frac{1}{c} \int_{\mathcal{V}} \mathbf{j}(\mathbf{r}) \Delta \mathbf{A} d\mathbf{r}, \qquad (\Pi 2.1)$$

j(r) — плотность тока в системе, ΔA — изменение вектор-потенциала (ВП), произведенное внешним источником. Это следует из того, что работа ΔA , совершаемая

 $^{^{10}}$ Если энергия хаббардовского отталкивания 2A₀ равна нулю, эта величина равна $\exp(-2E_p/\hbar\omega)$ и $\Xi \propto \exp(-4E_p/\hbar\omega)$, как в члене прямого взаимодействия локализованных пар, см. раздел 1.

Рис. 3. Сверхпроводящий цилиндр, включенный в цепь с источником ЭДС. Площадь электродов 2, 2' предполагается достаточно большой, так что поле *E* отлично от нуля только внутри зазора между ними.

за время Δt внешним силовым полем **F** над частицей, движущейся со скоростью **v**, есть $\Delta A = \mathbf{F} \cdot \mathbf{v} \Delta t$ (откуда вытекает также, что (П2.1) не содержит заряда электрона).

Допуская существование равновесного токового состояния (РТС), найдем ΔA для цилиндрического проводника *I* (рис. 3) длины *L* и сечения *S*, который посредством электродов *2*, *2'* включен в цепь с регулируемым источником ЭДС *3*. Внутреннее сопротивление источника предполагается большим (источник тока). Ось цилиндра направлена по *X*. Предполагается, что влияние магнитного поля, созданного протекающим в цепи током, на проводник исключено.

Пусть в цепи установился равновесный ток J_x . (В соответствие с допущением разность потенциалов ΔU электродов 2, 2' равна нулю). Начиная с момента t = 0, источник 3 поддерживает напряженность $E \neq 0$ между электродами, совершая при этом работу над проводником. ВП линейно зависит от времени A(t) = -cEt и направлен по X. В момент t_1 регулировка прекращается, ΔU обращается в 0 и система переходит в РТС со значением тока, отличным от начального. Процесс обратим при $E \rightarrow 0, t_1 \rightarrow \infty, Et_1$ — конечно (и мало). В таком процессе изменение ВП есть $\Delta A = -cEt_1$, и совершена работа

$$\Delta \mathcal{A} = LJ_x Et_1, \quad LJ_x \equiv \int_{\mathcal{V}} j_x(\mathbf{r}) d\mathbf{r}. \tag{\Pi2.2}$$

(В нормальном проводнике в таком процессе всегда $J_x = 0$ и $\Delta A = 0$). Положив $-eEt_1 = \hbar \Delta q = \Delta A$, $(-1/e)J_x = I$ (ток частиц), имеем

$$\Delta \mathcal{A} = \hbar L I \Delta q. \tag{\Pi2.3}$$

Величина q (размерности L^{-1}) является термодинамическим параметром, характеризующим РТС, средняя энергия E есть функция q, а фундаментальное термодинамическое тождество имеет вид

$$dE(S,q) = TdS + \hbar LIdq, \qquad (\Pi 2.4)$$

S — энтропия. Отсюда следует $I = (\hbar L)^{-1} (\partial E / \partial q)_S$ (I и q термодинамически сопряжены). Нетрудно получить условие устойчивости РТС

$$\left(\frac{\partial^2 E}{\partial q^2}\right)_S \equiv \hbar L \left(\frac{\partial I}{\partial q}\right)_S > 0. \tag{\Pi2.5}$$

В качестве термодинамического параметра можно выбрать ток *I*. Именно этот случай реализуется на практике. Характеристической функцией для него будет $W(S, I) = E - \hbar L I q$ (аналог энтальпии).

Функцию E(S, q), характеризующую равновесное токовое состояние при наличии ODLRO для конфигурации рис. З можно определить обычными методами статистической механики с дополнительным условием: фиксируя калибровку кинетической энергии (например, взяв ее в виде $\hat{\mathbf{p}}^2/2m$) и налагая на фазу ϕ аномального среднего $F(\mathbf{r}) = \langle \psi_{\sigma}(\mathbf{r})\psi_{-\sigma}(\mathbf{r}) \rangle \equiv \Lambda(\mathbf{r}) \exp i\phi(\mathbf{r})$ условие¹¹ $\phi_{S_2} - \phi_{S_1} = Lq$. Легко убедиться, что в Фурье-разложении $F(\mathbf{r})$ сохранятся лишь члены вида $\langle a_{-\mathbf{k}+\mathbf{q}-\sigma}a_{\mathbf{k}+\mathbf{q}}\sigma \rangle$, $\mathbf{q} = q\mathbf{e}_0$. Величина q является характеристикой макроскопического состояния. Эта процедура без труда обобщается на тело произвольной формы.

Проведенное рассмотрение справедливо и при учете магнитных полей (как созданных током в образце, так и внешних). При этом следует фиксировать калибровку вектор-потенциала [22].

Список литературы

- [1] A. Alexandrov, J. Ranninger. Phys. Rev. B23, 4, 1796 (1981).
- [2] A. Alexandrov, J. Ranninger. Phys. Rev. B24, 3, 1164 (1981).
- [3] T. Holstein. Ann. of Phys. 8, 325 (1959).
- [4] T. Holstein. Ann. of Phys. 8, 343 (1959).
- [5] И.Г. Ланг, Ю.А. Фирсов. ЖЭТФ 43, 1843 (1962).
- [6] J. van der Brink, W. Stekelenburg, D.I. Khomskii, G.A. Sawatzky, K.I. Kugel. Cond-mat/9802146.
- [7] M. Quijada, J. Cerne, J.R. Simpson, H.D. Drew, K.H. Ahn, A.J. Millis, R. Shreekala, R. Ramech, M. Rajeswari, T. Venkatesan. Cond-mat/9803201.
- [8] K.H. Kim, J.H. Jung, T.W. Noh. Cond-mat/9804167.
- [9] A.S. Alexandrov, A.M. Bratkovsky. Cond-mat/9806030.
- [10] Unjong Yu., B.I. Min. Cond-mat/9906263.
- [11] Guo-meng Zhao, K. Conder, H. Keller, K.A. Miller. Nature 381, 676 (1996).

¹¹ Может показаться необходимым задать условия на величину модуля F на торцах. Однако можно показать, что проведенное рассмотрение эквивалентно случаю тороидального образца с возбуждением тока линейно меняющимся магнитным потоком, где подобные границы вообще отсутствуют. Заметим также, что значения q квантуются: $q = 2\pi n/L$, n — целое.

- [12] Н.А. Бабушкина, Л.М. Белова, В.И. Ожогин, О.Ю. Горбенко, А.Р. Каул, А.А. Босак, Д.И. Хомский, К.И. Кугель. Condmat/9805315 (1998).
- [13] Guo-meng Zhao, M.B. Hunt, H. Keller, K.A. Miller. Nature 385, 236 (1997).
- [14] Ю.А. Фирсов, Е.К. Кудинов. ФТТ 39, 12, 2159 (1997).
- [15] Ю.А. Фирсов, Е.К. Кудинов. ФТТ 43, 3, 431 (2001).
- [16] P. Nozieres, S. Schmitt-Rink. J. Low. Temp. Phys. 59, 195 (1985).
- [17] P.W. Anderson. Phys. Rev. 112, 1900 (1958).
- [18] J.R. Schrieffer. Theory of Superconductivity. Benjamin, Reading, MA. (1964).
- [19] Е.К. Кудинов. ФТТ 41, 9, 1582 (1999).
- [20] W. Kohn. Phys. Rev. 133A, 1, 171 (1964).
- [21] R. Resta, S. Sorella. Cond-mat/9808151.
- [22] Е.К. Кудинов. ФТТ 30, 9, 2594 (1988).
- [23] Е.К. Кудинов. ФТТ 26, 10, 3122 (1984).
- [24] П. Де Жен. Сверхпроводимость металлов и сплавов. Мир, М. (1968). [P.G. De Gennes. Superconductivity of Metals and Alloys. N.Y., (1966).]
- [25] J. Yamashita, T. Kurosawa. Phys. Chem. Solid. 5, 34 (1958).
- [26] А.А. Абрикосов. ЖЭТФ **32**, *6*, 1442 (1957).
- [27] R. Feynman. Statistical Mechanics. W.A. Benjamin, Inc. Massachusetts (1972).
- [28] С.В. Тябликов. Методы квантовой теории магнетизма. Наука, М. (1965).
- [29] A. Clogston. Phys. Rev. Lett. 9, 266 (1962).
- [30] B.K. Chakraverty. J. Phys. (Paris) 37, C4–353 (1976).
- [31] А.В. Иванов, Е.К. Кудинов. ФТТ 31, 6, 14 (1989).
- [32] H. Bateman, A. Erdelyi. Higher Transcendental Functions. Vol. 2. Mc Graw-Hill Book Company, N.Y.–Toronto–London (1953).
- [33] Л.Д. Ландау, Е.М. Лифшиц. Электродинамика сплошных сред. Наука, М. (1982). 622 с.