## Особенности анионного переноса в кристаллах HoF<sub>3</sub> при высоких температурах

© Н.И. Сорокин, Б.П. Соболев, М. Брайтер\*

Институт кристаллографии Российской академии наук, 117333 Москва, Россия \* Технический университет, Вена, Австрия

(Поступила в Редакцию 14 июня 2001 г.)

Проведены в широком интервале температур (323–1073 K) исследования анионной проводимости кристаллов HoF<sub>3</sub> со структурой типа  $\beta$ -YF<sub>3</sub> (ромбическая сингония, пр. гр. *Pnma*). Параметры решетки кристаллов HoF<sub>3</sub>  $a = 0.6384 \pm 0.0009$ ,  $b = 0.6844 \pm 0.0009$  и  $c = 0.4356 \pm 0.0005$  nm. Обнаружено, что во всем изученном интервале температур анизотропия проводимости в кристаллах HoF<sub>3</sub> незначительна. В области  $T_c \approx 620$  K происходит смена механизма ионного переноса. Энтальпия активации электропроводности  $\Delta H_1 = 0.744$  eV при  $T < T_c$  и  $\Delta H_2 = 0.43$  eV при  $T > T_c$ . Наиболее вероятными носителями заряда в кристаллах HoF<sub>3</sub> являются вакансии фтора. Фтор-ионная проводимость равна 5 × 10<sup>-10</sup> (323 K), 5 × 10<sup>-6</sup> (500 K) и 2 × 10<sup>-3</sup> S/cm (1073 K).

Работа поддержана Австрийским фондом им. Л. Майтнер (проект N M00231-CHE).

Фторидные материалы с высокой подвижностью анионов F<sup>-</sup> — важный класс суперионных проводников. В последние годы круг этих суперионных материалов расширился за счет новых соединений с различными типами структуры, в том числе трифторидов редкоземельных элементов RF<sub>3</sub>, принадлежащих к структурному типу ромбического  $\beta$ -YF<sub>3</sub> (пр. гр. *Pnma*) [1–4]. За исключением исследований [1] на частотах 1-10 kHz кристаллов YF<sub>3</sub> и LuF<sub>3</sub>, полученных методом отвердевания расплава, мы не знаем работ по электрофизическим свойствам ромбических RF<sub>3</sub> при высоких температурах. Настоящая работа посвящена изучению высокотемпературного (вплоть до 1073 К) анионного переноса в монокристаллах HoF<sub>3</sub> методом импедансной спектроскопии на частотах 0.1-10<sup>7</sup> Hz. Измерения электрофизических свойств ромбических RF<sub>3</sub> в широком интервале температур необходимы для понимания особенностей механизма их анионной электропроводности и для их практического использования в различных приборах ионики твердого тела.

## 1. Эксперимент

Монокристаллы HoF<sub>3</sub> были выращены методом направленной кристаллизации из расплава в Институте кристаллографии РАН. Описание методики роста кристаллов дано в [4]. Кристаллы не содержали рассеивающих включений кислородсодержащих фаз и их принадлежность к структурному типу  $\beta$ -YF<sub>3</sub> подтверждена рентгенографически. Параметры решетки полученных кристаллов HoF<sub>3</sub> равны:  $a = 0.6384 \pm 0.0009$ ,  $b = 0.6844 \pm 0.0009$  и  $c = 0.4356 \pm 0.0005$  nm.

Образцы для исследований представляли собой пластины с типичными размерами толщиной 1 mm и поверхностью  $5 \times 5$  mm. Поверхности монокристаллических образцов оптически полировали и очищали ультразвуком в ацетоне (Bransonic 221). Качество образцов оценивали с помощью оптического микроскопа Zeiss KL1500-Z. Термический анализ выполнялся на приборе Setaram DTA/TG 92-12 со скоростью 5–10 K/min при 293–1073 К в потоке газообразного азота.

Электрофизические свойства исследовали методом диэлектрических потерь с использованием импедансметра Solarton 1260 (диапазон частот  $10^{-1}-10^7$  Hz, напряжение 30 mV). Измерения импеданса кристаллов с блокирующими ионы F<sup>-</sup> электродами (серебряная паста) выполнены в интервале температур от 323 до 1073 K в потоке N<sub>2</sub>. Подробное описание экспериментальной установки дано в [5]. Параметры процесса анионного переноса рассчитывали по формуле  $\sigma T = A \exp(-\Delta H/kT)$ , где  $\Delta H$  — энтальпия активации электропроводности.

В обычных условиях эксперимента при повышенных температурах вследствие пирогидролиза на поверхности монокристаллов HoF<sub>3</sub> образовывалась электропроводная



**Рис. 1.** Влияние пирогидролиза на электропроводность монокристалла HoF<sub>3</sub> (1 — нагревание, объемное сопротивление  $R_b$ , 2 — охлаждение, полное сопротивление  $R_b + R_f$  и 3 — охлаждение, сопротивление пленки  $R_f$ ).

пленка, затрудняющая определение объемного сопротивления. На рис. 1 приведены типичные результаты электрофизических измерений без принятия специальных мер предосторожности. К пирогидролизу монокристаллов  $HoF_3$  приводят следы воды в окружающей атмосфере. Очистка поверхностей образцов ультразвуком, измерения в потоке очищенного азота, использование широкого диапазона частот (для разделения вкладов объемного сопротивления монокристалла и сопротивления пленки) и некоторые другие специальные меры позволили провести высокотемпературные исследования электролитных свойств монокристаллов  $HoF_3$ .

## 2. Результаты и обсуждение

Температурные зависимости ионной проводимости образцов HoF<sub>3</sub> с различной ориентацией показаны на рис. 2. Для всех образцов наблюдалась хорошая воспроизводимость данных в режимах нагрева и охлаждения. Термограммы не показали никаких тепловых эффектов в температурном диапазоне 293-1073 К. Порошкограммы НоF<sub>3</sub> после термического циклирования также не показали никаких следов присутствия других фаз. Зависимости  $\sigma(T)$  разбиваются при  $T_c \approx 620$  К на два линейных участка, соответствующих различным механизмам ионного переноса, при этом в высокотемпературной области наблюдается уменьшение энтальпии электропроводности. Аналогичные две области на зависимости  $\sigma(T)$  наблюдались в кристаллах  $\beta$ -YF<sub>3</sub> (рис. 1 в [3]). Значения предэкспоненциального множителя А и энтальпии  $\Delta H$  для различно ориентированных образцов HoF<sub>3</sub> приведены в табл. 1. Полученные параметры анионного переноса для кристалов HoF<sub>3</sub> несколько отличаются от данных, полученных авторами [6] для этого кристалла, но в то же вре-



**Рис. 2.** Температурная зависимость анионной проводимости для монокристаллов HoF<sub>33</sub>. *1,2* — образец параллелен или перпендикулярен оси *b* соответственно, *3* — неориентированный образец.

**Таблица 1.** Значения A и  $\Delta H$  для монокристаллов HoF<sub>3</sub>

| Ориентация    | $\Delta T, K$ | $\Delta H, \mathrm{eV}$ | $\lg A$ , Scm <sup>-1</sup> K |
|---------------|---------------|-------------------------|-------------------------------|
| Образец 1,    | 323-623       | 0.737                   | 4.61                          |
| $\parallel b$ | 623-1073      | 0.45                    | 2.34                          |
| Образец 1,    | 323-623       | 0.745                   | 5.14                          |
| $\perp b$     | 623-1073      | 0.43                    | 2.78                          |
| Образец 2,    | 323-623       | 0.765                   | 5.14                          |
| $\parallel b$ | 623-1073      | 0.37                    | 2.15                          |
| Образец 2,    | 323-623       | 0.722                   | 4.65                          |
| $\perp b$     | 623-1073      | 0.45                    | 2.49                          |
| Образец 3,    | 323-623       | 0.750                   | 4.72                          |
| неориентир.   | 623-1073      | 0.43                    | 2.14                          |
|               |               |                         |                               |

**Таблица 2.** Электрофизические характеристики ромбических *R*F<sub>3</sub>

| RF <sub>3</sub>          | Ориентация    | $\sigma_{500\mathrm{K}},\mathrm{S/cm}$ | $\Delta H, \mathrm{eV}$ | Литературная<br>ссылка |
|--------------------------|---------------|----------------------------------------|-------------------------|------------------------|
| TbF <sub>3</sub>         | [010]         | $1 \times 10^{-5}$                     | 0.74                    | [6]                    |
| HoF <sub>3</sub>         | $\parallel b$ | $4 	imes 10^{-6}$                      | 0.75                    | Данная                 |
|                          | $\perp b$     | $7	imes 10^{-6}$                       | 0.73                    | работа                 |
|                          | Неориентир.   | $3 \times 10^{-6}$                     | 0.75                    |                        |
|                          | »             | $1 \times 10^{-5}$                     | 0.64                    | [6]                    |
| ErF                      | »             | $1 \times 10^{-6}$                     | 0.74                    | [4,7]                  |
| $\beta$ -YF <sub>3</sub> | [101]         | $2 	imes 10^{-6}$                      | 0.71                    | [6]                    |
|                          | [010]         | $3 \times 10^{-6}$                     | 0.71                    | [6]                    |
|                          | Неориентир.   | $2 \times 10^{-6}$                     | 0.70                    | [3]                    |

мя хорошо согласуются с результатами этих же авторов по кристаллам ромбических  $RF_3$  (R = Tb, Er, Y) [3,4,6,7], в которых верхняя температурная граница измерений составляла 923 К (табл. 2). Анизотропия проводимости в кристаллах HoF<sub>3</sub>, как и в кристаллах  $\beta$ -YF<sub>3</sub>, незначительна и ею можно пренебречь (табл. 1 и 2).

Результаты структурных исследований [8] свидетельствуют о близости мотивов структурных типов тисонитовых и ромбических трифторидов редкоземельных элементов. Для номинально чистых тисонитовых RF3 (R = La - Nd) характерно образование дефектов Шоттки (вакансии V<sub>F</sub> и V<sub>La</sub>), при этом подвижными дефектами являются вакансии фтора  $V_{\rm F}^+$ , которые отвечают за высокую ионную проводимость  $\sigma \sim 10^{-6}$  S/cm при 293 K [9]. Аналогично тисонитовым RF<sub>3</sub>, экспериментальные данные по ионному транспорту в ромбических кристаллах *R*F<sub>3</sub> непротиворечиво интерпретируются, если предположить реализацию в их структурах вакансионного механизма электропроводности. В [3] также указывалось, что в кристаллах  $\beta$ -YF<sub>3</sub> именно вакансии V<sub>F</sub> являются наиболее вероятными структурными дефектами, ответственными за анионную проводимость. Найденное значение  $\Delta H = 0.74 \, \text{eV}$  для кристаллов HoF<sub>3</sub> довольно близко к значению энтальпии миграции вакансий фтора  $\Delta H \approx 0.70 \,\mathrm{eV}$  [3] в кристаллах  $\beta$ -YF<sub>3</sub>.

Учитывая низкие коэффициенты диффузии катионов в трифторидах, следует заключить, что излом зависимости  $\sigma(T)$  при  $T_c \approx 620$  К отражает трансформацию механизма анионной проводимости в кристаллах HoF<sub>3</sub>. Заметим, что для ромбических трифторидов редкоземельных элементов, также как и для тисонитовых трифторидов [10], выполняется условие  $\Delta H_2 < \Delta H_1$ , где  $\Delta H_1$  и  $\Delta H_2$  — энтальпия активации электропроводности при  $T < T_c$  и  $T > T_c$ . Это позволяет предположить участие вакансий  $V_{\rm F}$  различных кристаллографических позиций в механизме ионного транспорта.

В структуре тисонита LaF<sub>3</sub> (пр. гр.  $P\bar{3}c1$ , число формульных единиц z = 6) имеются три подрешетки фтора: F<sub>1</sub>, F<sub>2</sub> и F<sub>3</sub>, причем количество анионов в элементарной ячейке F<sub>1</sub> : F<sub>2</sub> : F<sub>3</sub> = 12 : 4 : 2. Вдоль оси *с* располагаются ионы F<sub>1</sub> в гофрированных анионных слоях и ионы F<sub>2</sub> и F<sub>3</sub> в плоских катион-анионных слоях. При объяснении электрофизических свойств тисонитов ионы F<sub>2</sub> и F<sub>3</sub> часто объединяют в общую комбинированную подсистему F<sub>2.3</sub> (при F<sub>2</sub> = F<sub>3</sub> тригональная тисонитовая структура пр. гр.  $\bar{3}c1$  с z = 6 переходит в гексагональную тисонитовую структуру пр. гр. P6/mmm с z = 2), тогда имеем  $F_1 : F_{2,3} = 2 : 1$ . В структуре  $\beta$ -YF<sub>3</sub> (пр. гр. *Ртта*, z = 4) [11,12] вдоль оси b располагаются чисто анионные слои, образованные ионами F<sub>3</sub>, и катион-анионные слои, содержащие ионы F2. Количество анионов в элементарной ячейке  $\beta$ -YF<sub>3</sub> F<sub>1</sub> : 2 = 2 : 1. При  $T < T_c$  анионный перенос в структуре  $\beta$ -YF<sub>3</sub> преимущественно происходит сначала в одной фторной подсистеме (вероятно, в  $F_1$ ), затем подключается вторая подрешетка (F<sub>2</sub>). В области Т<sub>с</sub> происходит интенсивный обмен вакансиями фтора между анионными подсистемами, и при  $T < T_c$  анионный перенос охватывает все фторные позиции.

Однако анионная проводимость кристаллов HoF<sub>3</sub> достигает только уровня  $2 \times 10^{-3}$  S/cm при 1073 K, что существенно ниже электропроводности тисонитовых  $RF_3$  ( $\sigma \sim 1$  S/cm). Это сильное различие проводимости ионов F<sup>-</sup> в ромбической и тисонитовой структурах трифторидов лантаноидов находит объяснение с кристаллохимических позиций [13]. Характерным координационными полиэдром  $R^{3+}$  является тригональная призма с различной степенью искажения, обеспечивающая минимальное координационное число 6. Способ взаимного расположения таких призм в пространстве приводит к увеличению координационного числа до 9 в структурах типа  $\beta$ -YF<sub>3</sub> и до 11 в структурах типа тисонита.

Высокосимметричная гексагональная структура тисонитового типа построена из перпендикулярных оси *с* слоев, составленных правильными тригональными призмами, заселенными поочередно La и F по мотиву, аналогичному MoS<sub>2</sub>. В этом типе структуры фтор занимает две разные позиции: в вершинах полиэдров и в центрах призм из одноименных ионов, последнее весьма необычно для ионных структур. В силу этого обстоятельства при гетеровалентном изоморфном замещении  $R^{3+}$ на Ca<sup>2+</sup> (Sr<sup>2+</sup>, Ba<sup>3+</sup>) вакантными оказываются именно позиции фтора в центре призм. При переходе к низкосимметричной тригональной модификации происходят лишь незначительные подвижки атомов фтора, вызывающие искажение тригональных призм.

В структурах типа ромбического  $\beta$ -YF<sub>3</sub> атомы фтора расположены только в вершинах координационных полиэдров — искаженных тригональных призм, что затрудняет возникновение анионных вакансий (носителей заряда) и как следствие образование твердых растворов  $MF_2$ (M = Ca, Sr, Ba) в ромбических трифторидах. Приведенное кристаллохимическое рассмотрение подтверждается близостью энтальпии активации низкотемпературного (при  $T < T_c$ ) механизма анионного переноса в кристаллах HoF<sub>3</sub> ( $T_c \approx 620 \text{ K}$ ,  $\Delta H_1 = 0.74 \text{ eV}$ ) и тисонитовых твердых растворов Ho<sub>0.77</sub>Ca<sub>0.23</sub>F<sub>2.77</sub> ( $T_c \approx 685 \text{ K}$ ,  $\Delta H_1 = 0.7 \text{ eV}$  [14]) и Ho<sub>0.75</sub>Sr<sub>0.25</sub>F<sub>2.75</sub> ( $T_c \approx 670 \text{ K}$ ,  $\Delta H_1 = 0.6 \text{ eV}$  [15]).

Авторы благодарят В.С. Сидорова и П.П. Федорова за предоставленные кристаллы.

## Список литературы

- [1] M. O'Keeffe. Science 180, 1276 (1973).
- [2] А.И. Лившиц, В.М. Бузник, П.П. Федоров, Б.П. Соболев. Ядерный магнитный резонанс в кристаллах. Институт физики СО АН СССР, Красноярск (1978). С. 90.
- [3] В. Трновцова, П.П. Федоров, Б.П. Соболев, К.Б. Сейранян, С.А. Оганесян, М.Д. Вальковский. Кристаллография 41, 4, 731 (1996).
- [4] V. Trnovcova, P.P. Fedorov, M.D. Valkovskii, T. Sramkova, A.A. Bystrova, B.P. Sobolev. Ionics 3, 313 (1997).
- [5] N.I. Sorokin, M.W. Breiter. Solid State Ionics 99, 241 (1997).
- [6] V. Trnovcova, L. Mitas, C. Jeskova, P.P. Fedorov, B.P. Sobolev. Extended abstracts of VI Int. conf. on Solid State Ionics. Garmisch–Partenkirchen, Germany (1987). P. 165.
- [7] V. Trnovcova, F. Hanic, A.N. Smirnov, P.P. Fedorov, B.P. Sobolev. Proc. Int. conf. Engineering Ceramics-92. Bratislava, Slovakia (1993). P. 183.
- [8] Л.С. Гарашина, Б.П. Соболев, В.Б. Александров, Ю.С. Вишняков. Кристаллография 25, 2, 294 (1980).
- [9] A. Sher, R. Sobolev, K. Lee, M.W. Muller. Phys. Rev. B144, 2, 593 (1966).
- [10] Н.И. Сорокин, Б.П. Соболев. Кристаллография **39**, *5*, 889 (1994).
- [11] A. Zalkin, D.H. Templeton. J. Amer. Chem. Soc. 75, 2453 (1953).
- [12] Б.П. Соболев, Л.С. Гарашина, П.П. Федоров, И.Л. Ткаченко, К.Б. Сейранян. Кристаллография 18, 4, 751 (1973).
- [13] Л.С. Гарашина, Р.М. Закалюкин, Е.А. Кривандина, Н.И. Сорокин, Б.П. Соболев. Тез. докл. II Нац. кристаллохим. конф. Черноголовка, Россия (2000). С. 163.
- [14] Н.И. Сорокин, М.В. Фоминых, Е.А. Кривандина, З.И. Жмурова, В.В. Фистуль, Б.П. Соболев. ФТТ 41, 4, 638 (1999).
- [15] Н.И. Сорокин, М.В. Фоминых, Е.А. Кривандина, З.И. Жмурова, Б.П. Соболев. Кристаллография 41, 2, 310 (1996).