Управляемая магнитным полем поляризованная люминесценция гранатов Y₃AI₅O₁₂-Tb и Y₃AI₅O₁₂-Ho

© У.В. Валиев, У.Р. Рустамов, Б.Ю. Соколов

Национальный университет Узбекистана, 700174 Ташкент, Узбекистан

(Поступила в Редакцию 24 мая 2001 г.)

Исследованы спектры циркулярно поляризованной люминесценции гранатов $Y_3Al_5O_{12}$ —Tb и $Y_3Al_5O_{12}$ —Ho в области длин волн ${}^5D_4 \rightarrow {}^7F_5$ -перехода в ионе Tb³⁺ и ${}^5S_2 \rightarrow {}^5I_8$ -перехода в ионе Ho³⁺. Обнаружено заметное различие в интенсивности ортогональных циркулярно поляризованных компонент ряда линий люминесценции исследованных гранатов. Полученные результаты объясняются "смешиванием" во внешнем магнитном поле электронных состояний ионов Tb³⁺ и Ho³⁺.

Работа поддержана грантом INTAS N 097-0366.

Как следует из [1], при определенных условиях "смешивание" во внешнем магнитном поле электронных состояний крамерсовского редкоземельного (РЗ) иона приводит к заметному изменению сил осциллятора $4f \rightarrow 4f$ -переходов. Так, например, разность интегральных интенсивностей ортогональных циркулярно поляризованных компонент линий вторичного свечения, связанных с ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ -переходом в ионе Er³⁺ в Y₃Al₅O₁₂-Er, при H = 10 kOe составила $\sim 15\%$. Еще более заметной модуляции интенсивности линий люминесценции за счет эффекта "смешивания" можно ожидать для некрамерсовских ионов Tb³⁺ и Ho³⁺ в гранатах, поскольку известно, что "смешивание" в поле Н электронных состояний играет определяющую роль в формировании зависящих от намагниченности свойств кристаллов с этими ионами [2]. Действительно, как показали наши измерения, магнитное поле оказывает существенное влияние на интенсивность циркулярно поляризованных компонент линий вторичного свечения, обусловленных некоторыми излучательными переходами в ионах Tb³⁺ и Ho³⁺ в матрице Y₃Al₅O₁₂, оставляя практически неизменными их спектральное положение, т.е. можно говорить об управляемой полем люминесценции исследованных гранатов.

1. Образцы и методика измерений

В работе использовались монокристаллы Y₃Al₅O₁₂–Tb и Y₃Al₅O₁₂–Ho с концентрацией P3 ионов ~ 5 wt.%. Были исследованы спектры циркулярно поляризованной люминесценции и спектры степени магнитной циркулярной поляризации люминесценции (МЦПЛ), связанные с ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ -переходом в ионе Tb³⁺ и с ${}^{5}S_{2} \rightarrow {}^{5}I_{8}$ -переходом в ионе Ho³⁺. Как возбуждение, так и наблюдение люминесценции осуществлялись "на просвет" в поле *H* напряженностью до 10 kOe при продольном относительно направления распространения света намагничивании. Степень МЦПЛ $P = (I_{+} - I_{-})/(I_{+} + I_{-})$, где I_{+} , I_{-} — интенсивности двух ортогональных циркулярно поляризованных компонент линии люминесценции, измерялась по методике с модуляцией поляризации вторичного

свечения пьезоэлектрическим модулятором [1,3]. При исследованиях спектров I_+ , I_- оптическое разрешение составляло ~ 1 и $\sim 2 \text{ cm}^{-1}$ при измерениях дисперсии *P*. Относительная погрешность измеряемых величин *P* и I_+ , I_- во всех экспериментах не превышала 5%.

Поскольку нам не была известна энергетическая структура ${}^{5}S_{2}$ -мультиплета иона Ho^{3+} , были проведены исследования спектра оптического поглощения гольмий-иттриевого граната-алюмината в области ${}^{5}I_{8} \rightarrow {}^{5}S_{2}$ -перехода. При этом для нахождения положения актуальных энергетических подуровней ${}^{5}S_{2}$ -мультиплета использовались сведения о кристаллическом расщеплении основного ${}^{5}I_{8}$ мультиплета иона Ho^{3+} в матрице $\mathrm{Y}_{3}\mathrm{Al}_{5}\mathrm{O}_{12}$ из [4].

2. Полученные результаты и их обсуждение

Спектры циркулярно поляризованной люминесценции и степени МЦПЛ тербий-иттриевого граната-алюмината, связанные с ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ -переходом, показаны соответственно на рис. 1, 2. Отметим довольно значительную величину степени МЦПЛ этого граната на линиях люминесценции, обозначенных на рисунках цифрами 1-4, достигающей, например, для линии 2 при T = 90 К в поле H = 5 kOe ~ 0.4 (даже при низкой температуре в условиях парамагнитного насыщения типичное значение P в P3 соединениях составляет $\sim 10^{-1}$ [5,6]).

Обращает на себя внимание существенная разница в спектрах ортогональных циркулярно поляризованных компонент линии 2: для этой линии люминесценции интегральные интенсивности I_+ и I_- вне зависимости от температуры в поле H = 10 kOe различаются примерно в 1.4 раза. При этом из данных, полученных при T = 90 K, отчетливо видно, что линия 2 имеет дублетную структуру, и наиболее сильное влияние магнитное поле оказывает на интенсивности I_+ и $I_$ длинноволновой компоненты дублета (рис. 1). В то же время для линии 3 различие в интенсивностях I_+ и I_- становится заметным лишь при низкой температуре.

Рис. 1. Фрагмент спектра циркулярно поляризованных компонент линий люминесценции $Y_3Al_5O_{12}$ -Tb, полученный при T = 90 K в поле H = 5 kOe (сплошная линия — интенсивность левополяризованной компоненты, штриховая — интесивность правополяризованной компоненты). На вставке: спектр циркулярно поляризованной люминесценции $Y_3Al_5O_{12}$ -Tb при T = 300 K, H = 10 kOe (сплошной и штриховой линиями показаны ортогональные компоненты МЦПЛ).

Аналогичная разница в спектрах I_+ и I_- наблюдается при T = 90 К и для линии 4 (на рис. 1 не показано). Что же касается линии I, то при T = 90 К (так же как и при комнатной температуре) ее ортогональные циркулярно поляризованные компоненты остаются равными по интенсивности и лишь незначительно сдвинуты друг относительно друга по энергии.

Как известно, сдвиг по энергии компонент I_+ и $I_$ линии люминесценции связан с зеемановским расщеплением состояний, между которыми происходит данный излучательный переход; "примешивание" в поле H к комбинирующим в оптическом переходе состояниям других близлежащих состояний РЗ иона приводит к независимому от T различию сил осциллятора ортогональных компонент соответствующей линии люминесценции, а различие в термической заселенности состояний излучательного перехода — к температурной зависимости величины разности I_+-I_- . На основании этого, а также принимая во внимание характерное поведение дисперсии и температурной зависимости A, B, C — членов степени МЦПЛ [7,8] (рис. 2), можно заключить, что в спектрах МЦПЛ Y₃Al₅O₁₂-Tb линии I, 2 обусловлены переходами типа "синглет-квазидублет", а линии 3, 4 — переходами типа "квазидублет—синглет" либо "квазидублет квазидублет".

Используя результаты анализа приведенных на рис. 1, 2 спектров, а также известные данные по энергетическому спектру ${}^{5}D_{4}$ -мультиплета иона Tb^{3+} в матрице Y₃Al₅O₁₂ [9], можно построить схему магнитооптически активных излучательных ${}^{5}D_{7} \rightarrow {}^{7}F_{5}$ -переходов, показанную на рис. 2 (при этом предполагалось, что актуальными с точки зрения магнитооптики состояниями ${}^{5}D_{4}$ -мультиплета являются состояния двух квазидублетов Γ_{2} , Γ_{1} и $\Gamma_{1}\Gamma_{4}$, а также синглета Γ_{4}).

Таким образом, согласно рассмотренной модели ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ -перехода, значительное изменение в магнитном поле интенсивностей I_{+} и I_{-} более длинноволновой компоненты линии 2 связано с сильным "примешиванием" к верхнему подуровню квазидублета (с энергией

Рис. 2. Спектр степени магнитной циркулярной поляризации люминесценции $Y_3Al_5O_{12}$ -Tb, полученный при H = 5 kOe: сплошная линия — T = 300 K, штриховая — T = 90 K. Сверху показана схема магнитооптически активных ${}^5D_4 \rightarrow {}^7F_5$ -переходов в ионе Tb³⁺ (использован энергетический спектр 5D_4 -мультиплета из [9]). В скобках указаны энергии подуровней 7F_5 -мультиплета, найденные экспериментально. "Смешивание" в поле H состояний 7F_5 -мультиплета показано волнистой линией. Цифры на стрелках — нумерация соответствующих линий люминесценции.

Рис. 3. Фрагмент спектра циркулярно поляризованных компонент линий люминесценции $Y_3Al_5O_{12}$ –Ho, полученный при T = 300 K в поле H = 10 kOe (обозначения аналогичны принятым на рис. 1). Сверху показана схема излучательных ${}^5S_2 \rightarrow {}^5F_8$ -переходов в ионе Ho^{3+} (обозначения аналогичны принятым на рис. 2).

 $E = 2168 \,\mathrm{cm}^{-1})^{-7} F_5$ -мультиплета иона Tb³⁺ состояний ближайшего синглетного уровня.¹

Качественно близкая к рассмотренной выше ситуация наблюдается для ряда переходов между состояниями ${}^{5}S_{2}$ и ${}^{5}I_{8}$ -мультиплетов иона Ho^{3+} в $\mathrm{Y}_{3}\mathrm{Al}_{5}\mathrm{O}_{12}$ -Ho. Как видно из представленного на рис. 3, фрагмента спектра циркулярно поляризованной люминесценции этого граната в области длин волн ${}^{5}S_{2} \rightarrow {}^{5}I_{8}$ -перехода, линии 1, 4, 5 имеют заметное различие в интегральных интенсивностях I_+ и I_- уже при комнатной температуре (аналогичное различие спектра МЦПЛ наблюдается и при $T = 90 \, {\rm K}$). Очевидно, что различие в спектрах I_+ и I_ для линий 1, 4, 5 нельзя объяснить в модели перехода "квазидублет-синглет", считая разность $(I_+ - I_-)$ связанной с различием термической заселенности компонент квазидублета. Действительно, в этом случае [7,8] $(I_{+}-I_{-})/(I_{+}+I_{-}) \approx g\beta H/\beta T$ (где g - g-фактор квазидублета, β — магнетон Бора, k — постоянная Больцмана), и для получения наблюдаемой при $T = 300 \, \text{K}$ разности $(I_{+} - I_{-})$ в области линий 1, 4, 5 необходимо предположить наличие у квазидублета нереально большого g-фактора (что в свою очередь должно приводить к значительно большему, чем полученное в эксперименте, зеемановскому расщеплению соответствующих линий люминесценции).

Схема излучетельных ${}^{5}S_{2} \rightarrow {}^{5}I_{8}$ -переходов в ионе Ho³⁺, построенная на основе результатов измерений МЦПЛ в Y₃Al₅O₁₂–Но при использовании данных по энергетическому спектру ${}^{5}S_{2}$ -мультиплета, найденных из спектров оптического поглощения этого граната, приведена на рис. 3. Как видно из этой схемы, к заметному различию сил осциллятора переходов *I*, *4*, *5* в ортогональных поляризациях приводит "смешивание" в поле *H* состояний двух квазидублетов, расположенных в верхней части основного мультиплета иона Ho³⁺.

Полученные результаты позволяют заключить, что сильное влияние магнитного поля на силы осциллятора $4f \rightarrow 4f$ -переходов является достаточно общим явлением в РЗ системах с квазидублетной структурой энергетического спектра и вклад "смешивания", которым обычно пренебрегают, вблизи соответствующих линий поглощения или люминесценции может играть заметную роль в магнитооптике таких систем.

Список литературы

- Ш.У. Абдуллаев, У.В. Валиев, Б.Ю. Соколов. Оптика и спектроскопия 87, 3, 419 (1999).
- [2] А.К. Звездин, В.М. Матвеев, А.А. Мухин, А.И. Попов. Редкоземельные ионы в магнитоупорядоченных кристаллах. М. (1985). 294 с.
- [3] У.В. Валиев, Т. Асилов, Р.А. Салюков. ПТЭ 4, 87 (1994).
- [4] V. Nekvasil. Phys. Stat. Sol. (b) 94, K41 (1979).
- [5] Е.Л. Ивченко, Е.В. Максимов, В.Н. Медведев. Оптика и спектроскопия 47, 6, 1096 (1979).
- [6] В.С. Запасский, П.П. Феофилов. Оптика и спектроскопия 41, 6, 1051 (1976).
- [7] В.С. Запасский, П.П. Феофилов. УФН 116, 1, 41 (1975).
- [8] Ш.У. Абдуллаев, У.В. Валиев, Д.Р. Джураев, В. Неквасил. Оптика и спектроскопия 84, 3, 471 (1998).
- [9] R. Baurer, J. Heber, D. Mateika. Z. Phys. B: Condens Matter. 64, 201 (1986).

¹ Заметное различие спектров I_+ и I_- для линии 2 нельзя объяснить "смешиванием" состояний ⁵ D_4 -мультиплета, поскольку, согласно [8], в МЦПЛ этого граната на ⁵ $D_4 \rightarrow$ ⁷ F_6 -переходе в ионе Tb³⁺ подобного эффекта не наблюдалось.