Электронная структура, рентгеновские спектры и магнитные свойства нестехиометрических оксидов LiCoO_{2- δ} и Na_xCoO₂

© В.Р. Галахов, В.В. Карелина*, Д.Г. Келлерман*, В.С. Горшков*, Н.А. Овечкина, М. Нойманн**

Институт физики металлов Уральского отделения Российской академии наук,

620219 Екатеринбург, Россия

* Институт химии твердого тела Уральского отделения Российской академии наук,

620219 Екатеринбург, Россия

** Оснабрюкский университет,

Д-49069 Оснабрюк, Германия

E-mail: galakhov@ifmlrs.uran.ru

(Поступила в Редакцию 18 июня 2001 г.)

Исследованы магнитная восприимчивость, рентгеновские фотоэлектронные и рентгеновские эмиссионные спектры нестехиометрических оксидов LiCoO_{2- δ} и Na_xCoO₂. Проведен анализ структуры валентной полосы LiCoO₂. На основании измерения O K α -спектров эмиссии определена концентрация дырок в 2*p*-полосе кислорода LiNiO₂ и LiCoO₂. Измерениями Co 2*p*- и Co 3*s*-фотоэлектронных спектров показано, что ионы Co³⁺ находятся в низкоспиновом состоянии *S* = 0. В восстановленных оксидах LiCoO_{2- δ} дефицит кислорода обусловливает формирование двухвалентных ионов кобальта. Дефицит щелочного металла в Na_xCoO₂ приводит к образованию дырок в кислородной 2*p*-полосе, не изменяя электронной конфигурации *d*⁶ основного состояния ионов кобальта.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проекты № 99-03-32503 и 00-15-96575).

Сложный оксид LiCoO₂ обладает слоистой структурой, в которой ионы Li и Co упорядочены в чередующихся плоскостях (111). Наличие плоскостей, занятых исключительно ионами лития, обеспечивает возможность полной деинтеркалации щелочного металла и тем самым применимость данного соединения в качестве катодного материала в химических источниках тока. Основное состояние Co³⁺-ионов может быть записано в виде $t_{2g\uparrow}^3 t_{2g\downarrow}^3 e_g^0$, их немагнитный характер установлен Бонгерсом [1]. Согласно оценкам Ван Элпа [2], оксид LiCoO₂ — изолятор с величиной запрещенной щели 2.7 ± 0.3 eV.

Фотоэлектронные исследования валентной полосы стехиометрического оксида LiCoO₂ были проведены в работах [2–4]. В [5] выполнены измерения рентгеновских О 1*s*-спектров поглощения, а в работе [4] для схехиометрического оксида LiCoO₂ наряду с рентгеновскими фотоэлектронными спектрами измерены рентгеновские эмиссионные О $K\alpha$ - и Со $L\alpha$ -спектры.

Расчет зонной структуры LiCoO₂ выполнен в работе [6]. Проведенные в [2,3] исследования рентгеновских фотоэлектронных спектров внутренних Со 2*p*-уровней LiCoO₂ привели к различным выводам. Согласно исследованиям [2], LiCoO₂ является изолятором зарядового переноса с энергией, необходимой для переноса заряда от иона кислорода к иону металла, $\Delta = 4.0 \text{ eV}$, а основное состояние является сильно ковалентным с 47% конфигурации d^6 , 44% конфигурации d^7L и 9% конфигурации d^8L^2 . Здесь <u>L</u> обозначает дырку в 2*p*-оболочке кислорода к иону кобальта, а <u>L</u>² соответствует двум дыркам в оболочке кислорода.

Противоположный вывод был сделан в работе [3]. Кемп и Кокс [3] получили энергию переноса заряда $\Delta = -0.5$ eV. Из этого следует, что LiCoO₂ относится к классу изоляторов с отрицательной энергией переноса заряда, как и LiNiO₂, NaCuO₂, SrFeO₃ [7].

В оксидах с дефицитом щелочного металла $Li_x CoO_2$, $Na_x CoO_2$ (x < 1) для соблюдения электронейтральности необходимо наличие, наряду с ионами Co^{3+} , четырехвалентных ионов Co^{4+} . В работе [8] на основании измерения рентгеновских Co 2p- и O 1s-спектров поглощения деинтеркалированных образцов $Li_x CoO_2$ (x = 1, 0.69, 0.57, 0.46) было показано, что зарядовая компенсация осуществляется за счет дырок в O 2p-полосе кислорода, а не за счет образования четерыхвалентного кобальта. Согласно [8], структура Co 2p-спектров поглощения в деинтеркалированных оксидах соответствует рассчитанному мультиплету Co^{3+} -иона в низкоспиновом состоянии, а в O 1s-спектре найден "предпик" вблизи дна полосы проводимости, указывающий на образование допирующих дырок в 2p-полосе кислорода.

В настоящей работе представлены новые данные по исследованию магнитных свойств и электронной структуры как стехиометрического LiCoO₂, так и нестехиометрических соединений LiCoO_{2- δ} и Na_xCoO₂. Будет показано, как обработка образцов LiCoO₂ в среде с различным парциальным давлением кислорода приводит к формированию ионов Co²⁺.

1. Особенности эксперимента

Однофазный и гомогенный $LiCoO_2$ были получены спеканием смеси Co_3O_4 и Li_2CO_3 на воздухе при температуре $850^{\circ}C$ в течение 25 часов с последующим

Таблица 1.	Параметры	кристаллич	неской р	ешетки	образцов
системы LiCo	$O_{2-\delta}$ в завис	симости от	условий	синтеза	

Образец/давление кислорода	a,Å	$c, \mathrm{\AA}$
LiCoO ₂ (синтез в кислороде) LiCoO _{2-δ} (lg $p_{O_2} = -1.85$)	$\begin{array}{c} 2.8103 \pm 0.0002 \\ 2.8147 \pm 0.0002 \end{array}$	$\begin{array}{c} 14.027 \pm 0.004 \\ 14.039 \pm 0.005 \end{array}$
$lg p_{O_2} = -2.85$ $lg p_{O_2} = -3.1$ $Na_x CoO_2$	$\begin{array}{c} 2.8153 \pm 0.0002 \\ 2.8159 \pm 0.0002 \\ 2.833 \pm 0.001 \end{array}$	$\begin{array}{c} 14.047 \pm 0.005 \\ 14.049 \pm 0.005 \\ 10.88 \pm 0.01 \end{array}$

медленным охлаждением. Синтезированный таким образом LiCoO₂ был дополнительно отожжен в различных атмосферах: в кислороде и в атмосфере гелия с фиксированными парциальными давлениями кислорода (lg $p_{O_2} = -1.85$, -2.85, -3.1). Температура всех отжигов составляла 750°С. Рентгенофазовый анализ показал, что после указанной обработки все образцы сохраняют кристаллическую структуру LiCoO₂. Зависимость параметров решетки от парциального давления кислорода приведена в табл. 1. Следует отметить, что при отжиге при более высоких температурах и более низких парциальных давлениях кислорода LiCoO₂ становится неустойчивым и распадается с образованием CoO или Co₃O₄.

Оксид Na_xCoO₂ был синтезирован твердофазным методом из оксалата натрия Na₂C₂O₄ и оксида кобальта Co₃O₄. Отжиги проводили в токе кислорода при температуре 850°C в течение 150 часов с промежуточными перетираниями смеси для гомогенизации образца. По данным рентгенофазового анализа полученное соединение изоструктурно Na_{0.71}CoO₂.

Магнитную восприимчивость в температурном интервале 300–1000 К измеряли методом Фарадея в полях до 10 kOe, а при температурах 4–300 К — с помощью магнетометра Quantum Design SQUID при 1000 Oe.

Рентгеновские фотоэлектронные спектры измерены на рентгеновском фотоэлектронном спектрометре PHI 5600 сі Multitechnique System с использованием монохроматизированного Al $K\alpha$ -излучения. Образцы в виде спрессованных таблеток исследовали после разлома в высоком вакууме. Спектрометр калибровали по Au 4*f*-линии (энергия связи 84.0 eV). Энергетическое разрешение спектрометра, оцененное по спектру валентной полосы фольги золота, составляло 0.35–0.40 eV. Учет зарядки образца и вызванный этим сдвиг линий в сторону бо́льших энергий связи проводили по C 1*s*-линии, энергию которой принимали равной 285.0 eV.

Рентгеновские эмиссионные Со $L\alpha$ - и О $K\alpha$ -спектры измерены на рентгеновском спектрометре РСМ-500 при электронном возбуждении. Со $L\alpha$ -спектры получены во втором порядке отражения; аппаратурное уширение составляло примерно 0.8 eV. О $K\alpha$ -спектры измерены в первом порядке отражения с величиной аппаратурного уширения примерно 1 eV. Погрешность в определении энергетического положения максимумов спектров составляла ± 0.2 eV. Для калибровки О $K\alpha$ -спектров ис-

пользовалась V $L\alpha$ -линия металлического ванадия (энергия 511.3 eV [9]). Калибровку Со $L\alpha$ -линий проводили по Ni Ll, η - и Ni $L\alpha$ -линиям (энергии максимумов соответствено 742.7, 762 и 851.5 eV [9]).

2. Результаты

2.1. Магнитные свойства $LiCoO_{2-\delta}$ и Na_xCoO_2 . Было установлено, что отжиг LiCoO2 при пониженных парциальных давлениях кислорода приводит к возникновению кислородной нестехиометрии. Нестехиометричность объектов с очевидностью проявляется в данных по магнитной восприимчивости. Магнитная восприимчивость стехиометрического LiCoO₂ является температурно-независимой величиной в силу того, что трехвалентный кобальт Со³⁺ находится в низкоспиновом состоянии $t_{2_{g\uparrow}}^3 t_{2_{g\uparrow}}^3 e_g^0$ и, следовательно, магнитный момент на нем равен нулю. Наличие кислородных дефектов в LiCoO₂ и связанных с ними парамагнитных центров, которыми являются ионы Со²⁺ [10], должно приводить к возрастанию магнитной восприимчивости и к появлению зависимости ее от температуры. Из данных рис. 1 видно, что магнитная восприимчивость стехиометрического LiCoO₂, измеренная в атмосфере кислорода (кривая 1), практически не зависит от температуры до $T \sim 750$ K.

В то же время, восприимчивость дефектного $LiCoO_{2-\delta}$, синтезированного при пониженных парциальных давлениях кислорода, измеренная в условиях, близких к условиям синтеза, от температуры зависит явным образом (кривая 2 на рис. 1) и в температурном интерва-

Рис. 1. Температурная зависимость магнитной восприимчивости LiCoO₂, полученного при различных давлениях кислорода: $I - \text{LiCoO}_2$, отожженный в кислороде, 2 - отжиг при $\lg p_{O_2} = -3.1$ и измерения в вакууме, 3 - отжиг при $\lg p_{O_2} = -3.1$ и измерения в кислороде, 4 - температурная зависимость магнитной восприимчивости Na_xCoO₂.

ле 4-500 К может быть описана законом Кюри-Вейсса

$$\chi = \chi_0 + C/(T + \Theta), \tag{1}$$

где χ_0 — температурно-независимая часть, включающая в себя диамагнетизм и парамагнетизм Ван Флека, *С* константа Кюри, а Θ — константа Вейсса. В случае LiCoO_{2- δ}, полученного отжигом при lg $p_{O_2} = -3.1$, $\chi_0 = 0.000145 \text{ cm}^3/\text{mol}$, *C* = 0.40 cm³·K/mol, Θ = = -106.3 K, что соответствует содержанию приблизительно 2% ионов Co²⁺, или 1% вакантных позиций кислорода. Полученный результат не противоречит данным термогравиметрии, если предположить, что ионы Co²⁺ находятся в высокоспиновом состоянии *S* = 3/2. Предположение о низкоспиновом состоянии примесных ионов Co²⁺ (*S* = 1/2) привело бы к неоправданно больпим значениям концентрации двухвалентного кобальта.

Измерение восприимчивости нестехиометрического образца в атмосфере кислорода (кривая 3) показало, что в температурном интервале 300–750 К происходит уменьшение дефектности, что выражается в резком понижении восприимчивости. Обращает на себя внимание поразительно низкая температура, при которой становится возможен кислородный обмен с газовой фазой, приводящий к окислению нестехиометрического образца.

Магнитная восприимчивость Na_xCoO₂, представленная на рис. 1, хорошо описывается законом Кюри–Вейсса с параметрами $\chi_0 = 1.78 \cdot 10^{-4} \text{ cm}^3/\text{mol и }\Theta = -0.36 \text{ K}$. Величина эффективного магнитного момента, приходящегося на ион кобальта, очень мала и составляет $0.26 \,\mu_B$. Возникает вопрос о природе парамагнитных центров. Можно предположить, что в Na_xCoO₂, как и в LiCoO₂, кристаллическое поле также стабилизирует низкоспиновое состояние Co³⁺. В противном случае следовало бы ожидать существенно бо́льших значений магнитного момента, приходящегося на ион кобальта.

Исходя из принципа электронейтральности, химическую формулу Na_xCoO₂ следует записать следующим образом: Na¹⁺_xCo⁴⁺_{1-x}Co³⁺_xO²⁻. В таком случае экспериментально наблюдаемые парамагнитные центры тем или иным способом формально можно приписать наличию ионов Co⁴⁺. С учетом стехиометрического коэффициента магнитный момент, приходящийся на такой центр,

$$\mu(\text{Co}^{4+}) = \frac{\mu(\text{Co})}{\sqrt{1-x}} = 0.48\mu_B.$$
 (2)

Можно предположить и другой вариант: парамагнитными центрами являются не ионы Co^{4+} , а эквивалентное количество обменно-связанных пар $Co^{3+}-O^{1-}$, а магнитный момент 0.48 μ_B приходится именно на такую пару. Подобная ситуация описана для $Li_x Ni_{1-x}O_2$ в работе [11].

2. 2. Рентгеновские фотоэлектронные и эмиссионные спектры валентной полосы LiCoO₂. Рентгеновский фотоэлектронный спектр валентной полосы и рентгеновские эмиссионные О $K\alpha$ - и Со $L\alpha$ -спектры LiCoO₂ показаны на рис. 2. Рентгеновские эмиссионные

Рис. 2. Рентгеновский фотоэлектронный спектр валентной полосы и рентгеновские эмиссионные О $K\alpha$ - и Со $L\alpha$ -спектры LiCoO₂. Рентгеновские эмиссионные спектры сведены в единую энергетическую шкалу на основании энергий связи электронов внутренних уровней.

спектры приведены в единую энергетическую шкалу на основании энергий связи электронов внутренних O 1sи Co $2p_{3/2}$ -уровней. Для удобства сравнения рентгеновский фотоэлектронный и рентгеновский O $K\alpha$ -эмиссионный спектры разложены на составляющие — гауссианы. В фотоэлектронном спектре выделен фон, обусловленный рассеянием вторичных электронов, аппроксимированный по методу Ширли.

Вблизи уровня Ферми сконцентрированы Со 3*d*-состояния, что следует из энергетического совпадения максимума (*A*) и составляющей (*B*) рентгеновского фотоэлектронного с максимумом рентгеновского эмиссионного Со *La*-спектра. Главный вклад в формирование фотоэлектронного спектра при энергии возбуждения 1486.7 eV вносят Со 3*d*-состояния. Пик с энергией связи 21.6 eV характеризует О 2*s*-состояния. В области энергий связи от 0 до 10 eV сосредоточены О 2*p*-состояния с максимумом распределения при 5 eV, как определено из положения О *Ka*-эмиссионного спектра (энергия максимума в шкале энергий фотонов — 525.2 eV). Со 3*d*- и О 2*p*-состояния занимают один и тот же энергетический интервал, что указывает на их сильную гибридизацию.

Чтобы провести анализ особенностей спектров, воспользуемся результатами расчета плотности состояний LiCoO₂, выполненного в приближении функционала плотности Чижиком и др. [6]. Если сопоставить экспериментальные спектры с расчетами, будет видно, что самому интенсивному максимуму (A) и особенности (B)соответствуют t_{2e}-орбитали. В упрощенной схеме молекулярных орбиталей для октаэдрического поля, когда рассматриваются только р-орбитали лиганда и d-орбитали металла, t_{2g}-уровень остается несвязывающим. Но если принять во внимание наличие двух других состояний кислорода и состояний лития, возникает вклад от t₂₀-орбиталей в химическую связь с существенной степенью ковалентности [6]. Особенностью фотоэлектронного спектра (С) в соответствии с расчетом [6] определяется орбиталями t_{1u}, которые сформированы главным образом О 2*p*-состояниями (см. соответствие с максимумом О $K\alpha$ -спектра (b)) с небольшой примесью Со 4*p*-состояний. Следующая по порядку полоса (*D*) образована гибридизованными О 2p-Co 3d (e_o) состояниями. И наконец, полоса (Е) отображает гибридизацию Со 4s, *p*-состояний (орбитали a_{1e} и t_{1u}) с О 2*p*-состояниями. Как видно из рис. 2, особенности (D) и (E) находят отображение в О $K\alpha$ -спектре — плечо (c), которое не расщепляется, по-видимому, из-за недостаточно высокого разрешения рентгеновского эмиссионного спектра.

Сателлит (F) при 11.5 eV не может быть объяснен на основе зонных расчетов, поскольку он возникает из-за присутствия плохо экранированной Со 3*d*-дырки ($3d^5$ -конечные состояния). Воспроизвести этот сателлит можно с помощью многоконфигурационных кластерных расчетов [2,3].

Таким образом, особенности фотоэлектронного спектра (A)-(E) связаны с состояниями, где дырка, возникшая в результате фотоэмиссии, экранирована за счет переноса электрона из 2*p*-полосы кислорода — $3d^6\underline{L}$ -конфигурация конечного состояния, а сателлит (F) характеризуется $3d^5$ -конфигурацией.

2.3. Концентрация дырок в 2*p*-полосе кислорода LiCoO₂. Оксиды LiCoO₂ и LiNiO₂ являются структурными аналогами. Однако если в LiCoO₂ ионы 3*d*-металла трехвалентны, то в LiNiO₂ для ионов Ni сохраняется электронная конфигурация основного состояния $3d^8$, соответствующая дыркам в 2*p*-полосе кислорода. Экспериментально это было показано в работе [11] на основании O 1*s*-спектров поглощения в системе Li_xNi_{1-x}O. Согласно этим данным, в LiNiO₂ 70% всех допирующих дырок локализовано на атомах кислорода. Естественно ожидать, что изменение заполнения O 2*p*-полосы должно проявиться не только в спектрах поглощения, но и в эмиссионных *К*α-спектрах кислорода.

На рис. 3, *а* приведены О $K\alpha$ -спектры эмиссии LiCoO₂ и CoO и O 1*s*-спектр поглощения LiCoO₂, воспроизведенный из работы [5]. Для удобства сравнения спектр CoO сдвинут в сторону больших энергий фотонов

Рис. 3. a — рентгеновские эмиссионные О $K\alpha$ -спектры (XES) LiCoO₂ и CoO и рентгеновский О 1*s*-спектр поглощения (XAS) LiCoO₂; О 1*s*-спектр поглощения взят из работы [5]. Заштрихованная область — разностный спектр, полученный вычитанием из О $K\alpha$ -спектра CoO спектра LiCoO₂. b — рентгеновские эмиссионные О $K\alpha$ -спектры LiNiO₂ и NiO и рентгеновский О 1*s*-спектр поглощения (XAS) LiNiO₂. О 1*s*-спектр поглощения воспроизведен из работы [11]. Приведен разностный спектр, полученный вычитанием из О $K\alpha$ -спектра NiO спектра LiNiO₂ (заштрихованная область).

на 0.5 eV до совпадения его максимума с максимумом спектра LiCoO₂. В пользу такого сравнения говорит тот факт, что спектры идентичны в области низких энергий фотонов и различаются только при высоких энергиях — вблизи уровня Ферми.

На рис. 3, *b* аналогичным образом даны О $K\alpha$ -спектры LiNiO₂ и NiO. О 1*s*-спектр поглощения LiNiO₂ взят из работы [11]. Как и в предыдущем случае, спектр NiO сдвинут в область более высоких энергий фотонов на 0.5 eV. Заштрихованные области на обоих рисунках демонстрируют результат вычитания из спектров образцов с литием спектров монооксидов.

Между двумя системами имеется существенное различие. Для системы NiO-LiNiO₂ разностный спектр по энергетическому положению точно соответствует первому пику спектра поглощения, который, согласно [11], обусловлен допирующими дырками. Интенсивность этого пика возрастает с ростом концентрации Li в системе $\text{Li}_x \text{Ni}_{1-x}$ O и достигает максимальной величины для LiNiO₂.

В случае CoO-LiCoO₂ разностный спектр и максимум спектра поглощения не совпадают по энергии и, сле-

довательно, имеют разную природу. Максимум спектра поглощения LiCoO₂ отображает верхнюю зону Хаббарда — конечные состояния конфигурации 3d⁷. Можно предположить, что различие в заполнении O 2*p*-состояний в CoO и LiCoO₂ определяется эффектами ковалентности — переносом заряда от кислорода к металлу.

Согласно работе [2], волновая функция основного состояния СоО может быть представлена в виде

$$|g\rangle = \alpha_0 |d^7\rangle + \alpha_1 |d^8 \underline{L}\rangle + \alpha_2 |d^9 \underline{L}^2\rangle.$$
(3)

Здесь <u>L</u> и <u>L</u>² отображают наличие одной и двух дырок в 2*p*-полосе кислорода, а коэффициенты при разложении волновой функции равны: $\alpha_0^2 = 0.79$, $\alpha_1^2 = 0.20$, $\alpha_2^2 = 0.01$. Это означает, что число электронов в 2*p*-полосе кислорода СоО определяется соотношением [4]

$$N_{O2p}(CoO) = 6 - (\alpha_1^2 + 2\alpha_2^2) = 5.78.$$
 (4)

Предположим, что в чисто ионном пределе число электронов в 2*p*-полосе кислорода равно 6, а перенос заряда от лиганда к металлу приводит к уменьшению заполнения полосы кислорода.

Отношение интегральных интенсивностей О $K\alpha$ -спектров LiCoO₂ и CoO, нормированных, как показано выше, составляет 0.958. Это означает, что на один ион кислорода в LiCoO₂ приходится 0.958 × 5.78 = 5.54 электронов, или 0.46 дырок.

В уже упомянутой работе [2] выполнены расчеты конфигурационного взаимодействия для LiCoO₂, согласно которым волновая функция основного состояния LiCoO₂ имеет вид

$$|g\rangle = \alpha_0 |d^6\rangle + \alpha_1 |d^7 \underline{L}\rangle + \alpha_2 |d^8 \underline{L}^2\rangle, \tag{4}$$

с коэффициентами $\alpha_0^2 = 0.47$, $\alpha_1^2 = 0.44$, $\alpha_2^2 = 0.09$. Это означает, что каждый из ионов металла получил от ионов кислорода $\Delta N = \alpha_1^2 + 2\alpha_2^2 = 0.62$ электрона. Предположим, что Li–O связь полностью ионная. Тогда в 2*p*-полосе иона кислорода будет 0.31 дырки. Это число находится в хорошем согласии с нашей величиной, определенной из интенсивности O *K* α -спектров.

В случае NiO волновую функцию основного состояния можно записать в виде

$$|g\rangle = \alpha_0 |d^8\rangle + \alpha_1 |d^9\underline{L}\rangle + \alpha_2 |d^{10}\underline{L}^2\rangle.$$
 (6)

Коэффициент α_1^2 , согласно работам [12–14], находится в пределах 0.176–0.21, а коэффициента α_2^2 — 0.005–0.006. Экспериментально найденное отношение интенсивностей О К α -спектров для LiNiO₂ и NiO равно 0.88. Используя коэффициенты α_1^2 и α_2^2 , получаем число дырок в 2*p*-полосе кислорода 0.88–0.89 на один ион.

Следует указать на различие между дырками, определенными для LiNiO₂ и LiCoO₂. В оксиде LiNiO₂ дырки в кислородной полосе являются допирующими и делокализованными, в то время как дырки в кислородной полосе LiCoO₂ являются ковалентными, локализованы на определенных атомах и определяют ковалентный вклад в химическую связь Co–O. Различие между допирующими и ковалентными дырками подробно рассмотрено на примере NiO в работе [15].

2.4. Рентгеновские фотоэлектронные спектры внутренних уровней $LiCoO_{2-\delta}$ и $Na_x CoO_2$. 2.4.1. Со 2p-спектры. Известно, что форма рентгеновских фотоэлектронных спектров внутренних уровней металла в оксидах чувствительна к электронной структуре соединений, в том числе к валентному состоянию ионов переходного металла и степени ковалентности связи металл-кислород [16]. Рассмотрим Со 2p-спектры, которые, как будет видно в дальнейшем, существенно меняются в зависимости от стехиометрии оксида $LiCoO_{2-\delta}$.

На рис. 4 показаны рентгеновские фотоэлектронные Со 2*p*-спектры образцов LiCoO_{2- δ} с разной степенью стехиометрии, Co₃O₄, Na_xCoO₂, монокристаллического CoO и металла Co. Приведен также спектр образца LiCoO₂, подвергнутого бомбардировке ионами аргона

Рис. 4. Рентгеновские фотоэлектронные Со 2*p*-спектры СоО, Со₃O₄, стехиометрического LiCoO₂, LiCoO_{2- δ}, отожженного при парциальных давлениях кислорода lg $p_{O_2} = -1.85$, -2.85 и lg $p_{O_2} = -3.1$, и Na_xCoO₂. Приведены спектры LiCoO₂, подвергнутого чистке ионами аргона, и металлического Со.

энергии 4.5 eV. Со 2*p*-спектр СоО воспроизведен из работы [17].

В дополнение в двум спин-орбитальным компонентам, Со $2p_{3/2}$ и Со $2p_{1/2}$, в спектрах наблюдаются сателлиты, определяемые эффектов зарядового переноса. В то время как главная линия (*A*) характеризуется в основном $2p^53d^7\underline{L}$ -конфигурацией конечного состояния фотоэмиссии, сателлит *C* должен соответствовать сумме конфигураций $2p^53d^6$ и $2p^53d^8\underline{L}^2$.

В спектрах стехиометрического LiCoO₂ сателлит (*C*) отстоит на 9.5 eV от Co $2p_{3/2}$ -максимума; аналогичный Co $2p_{1/2}$ -сателлит находится на 10 eV от Co $2p_{1/2}$ -максимума. Дефицит кислорода приводит к сдвигу максимумов спектров в область более высоких энергий связи и к появлению дополнительного сателлита (*B*), отстоящего от главной линии примерно на 4.5 eV. Интенсивность этого сателлита возрастает с уменьшением содержания кислорода.

Можно предположить, что появление дополнительного сателлита (B) связано с формированием ионов Co^{2+} . После бомбардировки LiCoO2 ионами аргона спектр существенно меняется и становится почти таким же, как и у монокристаллического СоО, где ионы кобальта двухваленты. Это означает, что образцы, приготовленные в условиях дефицита кислорода, содержат ионы Co²⁺. Необходимо отметить, что спектры восстановленных образцов не могут быть представлены простой суммой спектров CoO и стехиометрического LiCoO₂. Однако 2% ионов Co²⁺, найденные из измерения магнитной восприимчивости образца LiCoO_{2-δ}, приготовленного при парциальном давлении кислорода lg $p_{O_2} = -3.1$, вряд ли в состоянии дать такое сильное изменение рентгеновского фотоэлектронного Со 2*p*-спектра. На наш взгляд, причина такого различия состоит в следующем.

Измерения магнитной восприичивости относятся к объему образца. Толщина анализируемого слоя в методе рентгеновской фотоэлектронной спектроскопии составляет всего десятки нанометров. Спектры были получены от образца, изломанного в вакууме. Однако излом происходит по границам зерен, где содержание двухвалентного кобальта, по-видимому, выше, чем внутри зерен. Поэтому эффект изменения спектров при дефиците кислорода значительно больше, чем следует из данных по магнитной восприимчивости.

Нестехиометрия в кислородной подрешетке приводит к сдвигу в сторону более высоких энергий связи не только Со 2*p*-уровней, но и энергий связи всех остальных линий (табл. 2). Этот эффект нельзя объяснить химическим сдвигом, и его следует приписать сдвигу уровня Ферми внутри запрещенной полосы. Этот сдвиг может возникнуть из-за формирования внутри запрещенной полосы примесных уровней. Следует отметить, что примесные уровни в нестехиометрическом LiCoO_{2- δ} вполне вероятны, поскольку уход кислорода из ячейки сопровождается появлением дополнительных рентгеновских линий, свидетельствующих о появлении неструктурного кислорода.

Таблица 2. Энергии связи электронов внутренних уровней, eV

Образец/давление кислорода	Co 2 <i>p</i>	Co 3 <i>p</i>	Co 3s	O 1 <i>s</i>	Li 1s
CoO	780.4	59.9	101.9	529.5	-
Co ₃ O ₄	779.9	61.3	102.7	530.1	_
LiCoO ₂	779.4	60.8	102.3	529.1	54.1
LiCoO _{2-δ} , lg $p_{O_2} = -1.85$	779.5	60.7	102.3	529.1	54.0
$\lg p_{\rm O_2} = -2.85^2$	779.6	60.7	102.3	529.1	54.1
$\lg p_{O_2} = -3.1$	780.5	61.9	103.4	530.2	55.0
Na _x ČoO ₂	779.2	59.9	102.1	528.7	—

Рентгеновский фотоэлектронный Со 2*p*-спектр $Na_x CoO_2$ практически не отличается от спектра стехиометрического LiCoO₂. Это означает, что электронная конфигурация основного состояния в $Na_x CoO_2$ такая же, как и в LiCoO₂ — d^6 . Дефицит ионов щелочного металла компенсируется изменением заселенности 2*p*-кислородной полосы. По-видимому, взаимодействие спинов дырок в кислородной 2*p*-полосе со спинами 3*d*-электронов приводит к появлению локальных магнитных моментов и, следовательно, к изменению хода магнитной восприимчивости.

Аналогом LiCoO₂ может служить LaCoO₃, где ионы кобальта трехвалентны. Замещение трехвалентных ионов лантана двухвалентными ионами стронция в оксиде $La_{1-x}Sr_xCoO_3$ должно привести к появлению четырехвалентных ионов кобальта. В пределе при x = 1 (соединение SrCoO₃) согласно простой ионной модели кобальт должен быть четырехвалентным.

На основании исследования рентгеновских спектров поглощения Потце и др. [18] показали, что основное состояние SrCoO₃ — промежуточное спиновое состояние $(t_{2g}^4 e_g^1, S = 3/2)$. Однако доминантной конфигурацией является не d^5 , а $d^6 \underline{L}$, поскольку энергия зарядового переноса $\Delta < 0$. Это утверждение согласуется не только с результатами фотоэлектронных и абсорбционных исследований [19], но и с данными по магнитной восприимчивости [20].

2.4.2. Со 3s - спектры. Изменение структуры сателлитов в процессе восстановления можно видеть и в 3s-спектрах. Известно, что 3s-уровни в соединениях переходных металлов проявляют обменное расщепление. Величина этого расщепления пропорциональна (2S + 1), где S — локальный спин 3d-электронов в основном состоянии. В дополнении к процессам обменного вза-имодействия важную роль играют эффекты зарядового переноса.

На рис. 5 для монооксида CoO проведен учет сателлитов на основе простой двухуровневой модели (см. [21,22]), предполагающей смесь $3s^{1}3d^{7}$ - и $3s^{1}3d^{8}L$ конфигураций в конечном состоянии. Расчет выполнен для следующих параметров: энергии переноса заряда $\Delta = 2.9 \,\text{eV}$, энергии кулоновского взаимодействия между дыркой на 3s-уровне и 3d-электронами $U_{sd} = 6.0 \,\text{eV}$,

Рис. 5. Рентгеновские фотоэлектронные Со 3*s*-спектры СоО, Co₃O₄, стехиометрического LiCoO₂, LiCoO_{2- δ}, отожженного при парциальных давлениях кислорода lg $p_{O_2} = -1.85$, -2.85 и lg $p_{O_2} = -3.1$, и Na_xCoO₂. Для СоО приведены линейчатые спектры, показывающие вклады $3s^13d^7$ и $3s^13d^8\underline{L}$ конечных состояний в формирование главный линейчатых спектров. Сплошная линия получена размытием линейчатых спектров.

интеграла переноса T = 2.9 eV. Со 3*s*-спектр монокристалла СоО получен в работе [18]. Рассчитанные линейчатые спектры конфигурации $3s^{1}3d^{8}L$ показаны штриховой линией, а конфигурации $3s^{1}3d^{7}$ — сплошной линией. Огибающая — результат размытия линейчатых спектров на смесь лоренциана-гауссиана. Каждая конфигурация расщепляется на высокоспиновую и низкоспиновую компоненты.

Для стехиометрического LiCoO₂ низкоспиновая конфигурация $3d^6$ (S = 0) не расщепляется. Однако Со 3*s*-спектр проявляет сателлитную структуру в области от 105 до 115 eV. Эта структура может быть объяснена на основе концепции зарядового переноса, если принять во внимание конфигурации $3d^6$, $3d^7L$, $3d^8L^2$.

Рентгеновские фотоэлектронные Со 3*s*-спектры Na_xCoO_2 практически не отличаются от спектров стехиометрического LiCoO₂ (рис. 5). Следовательно, основное состояние Na_xCoO_2 должно быть представлено в виде суммы основных состояний для трехвалентного иона Co^{3+} и для формально четырехвалентного иона Co^{4+}

$$|g\rangle = (1-x) \cdot |d^6\rangle + x \cdot |d^6\underline{L}\rangle.$$
⁽⁷⁾

наличие d^5 -конфигурации в предположении высокоспинового основного состояния в рентгеновских фотоэлектронных 3*s*-спектрах должно привести к обменному расщеплению между компонентами спектра ⁷S и ⁵S примерно 6.2–6.5 eV, что не наблюдается для Na_xCoO₂. В настоящей работе проведен комплекс исследований электронной структуры, магнитных свойств нестехиометрических оксидов LiCoO_{2- δ} и Na_xCoO₂, в том числе измерения мягких рентгеновских эмиссионных

числе измерения мягких рентгеновских эмиссионных О Ка- и Со La-спектров, рентгеновских фотоэлектронных спектров валентной полосы и внутренних Со 2*p*и Со 3*s*-уровней. На основании выполненных исследований можно сделать следующие выводы.

Здесь d⁶L обозначает конфигурацию основного состоя-

ния для формально четырехвалентного кобальта. Для ис-

тинно четырехвалентного кобальта конфигурацию основного состояния следовало бы записать в виде d^5 . Однако

1) Валентное состояние ионов кобальта в LiCoO₂, согласно измерениям Со 2p-рентгеновских фотоэлектронных спектров, равно 3+.

2) Рентгеновский фотоэлектронный Со 3s-спектр LiCoO₂ не проявлет обменного расщепления, что подтверждает низкоспиновую конфигурацию S = 0 основного состояния.

3) Дырки, вызванные замещением кобальта литием, локализованы в Со 3*d*-полосе.

4) Согласно нашим оценкам, число дырок в 2*p*-полосе кислорода, обусловленных ковалентностью связи "кобальт-кислород", составляет 0.46 на один атом кислорода.

5) В LiCoO₂ O 2*p*-состояния, отображаемые рентгеновскими эмиссионными О $K\alpha$ -спектрами, располагаются ближе к уровню Ферми, чем в СоО, что указывает на бо́льшую гибридизацию (Со 3d-O 2p)-состояний в LiCoO₂ по сравнению с СоО.

6) В восстановленных оксидах LiCoO_{2-δ} дефицит кислорода обусловливает формирование двухвалентных ионов кобальта.

7) Дефицит щелочного металла в Na_xCoO₂ приводит к образованию дырок в кислородной 2*p*-полосе — к конфигурации основного состояния 3*d*⁶*L*.

Список литературы

- P.F. Bongers, Ph.D. Thesis. University of Leiden, The Netherlands (1957).
- [2] J. van Elp, J.L. Wieland, H. Eskes, P. Kuiper, G.A. Sawatzky, F.M.F. de Groot, T.S. Turner. Phys. Rev. B44, 12, 6090 (1991).
- [3] J.P. Kemp, P.A. Cox. J. Phys.: Condens. Matter. 2, 48, 9652 (1990).
- [4] V.R. Galakhov, E.Z. Kurmaev, S. Uhlenbrock, M. Neumann, D.G. Kellerman, V.S. Gorshkov. Solid State Commun. 99, 4, 221 (1996).
- [5] F.M.F. de Groot, M. Abbate, J. van Elp, G.A. Sawatzky, Y.J. Ma, C.T. Chen, F. Sette. J. Phys.: Condens. Matter. 5, 2277 (1993).

- [6] M.T. Czyżyk, R. Potze, G.A. Sawatzky. Phys. Rev. B46, 7, 3729 (1992).
- [7] T. Mozokawa, A. Fujimori, H. Namatame, K. Akeyama, H. Kondoh, H. Kuroda, N. Kosugi. Phys. Rev. Lett. 67, 12, 1638 (1991).
- [8] L.A. Montoro, M. Abbate, J.M. Rosolen. Electrochemical and Solid State Letters 3, 9, 410 (2000).
- [9] J.A. Bearden. Rev. Mod. Phys. **39**, 1 (1967).
- [10] В.С. Горшков, Д.Г. Келлерман, В.В. Карелина. ЖФХ 73, 6, 1041 (1999).
- [11] P. Kuiper, K. Kruizinga, J. Ghijsen, G.A. Sawatzky, H. Verweij. Phys. Rev. Lett. 62, 2, 221 (1989).
- [12] G. van der Laan, J. Zaanen, G.A. Sawatzky. Phys. Rev. B33, 6, 4253 (1986).
- [13] J. van Elp, H. Eskes, P. Kuiper, G.A. Sawatzky. Phys. Rev. B45, 4, 1612 (1992).
- [14] A. Tanako, J. Takeo. J. Phys. Soc. Japan 63, 7, 2788 (1994).
- [15] S. Hüfner, P. Steiner, I. Sander, M. Neumann, S. Witzel. Z. Phys. B83, 2, 185 (1991).
- [16] G. van der Laan, G. Westa, C. Haas, G. Sawatzky. Phys. Rev. B23, 9, 4369 (1981).
- [17] S. Uhlenbrock. Doktordissertation. Universität Osnabrück, Germany (1994).
- [18] R.H. Potze, G.A. Sawatzky, M. Abbate. Phys. Rev. B51, 11, 11501 (1995).
- [19] T. Saitoh. T. Mizokawa, A, Fujimori, M. Abbate, Y. Takeda, M. Takano. Phys. Rev. B56, *3*, 1290 (1997).
- [20] H. Taguchi, M. Shimada, M. Koizumi. J. Solid State Chem.
 29, 2, 221 (1979); 33, 169–172, 169 (1980).
- [21] V.R. Galakhov, S. Uhlenbrock, S. Bartkowski, A.V. Postnikov, M. Neumann, L.D. Finkelstein, E.Z. Kurmaev, A.A. Samokhvalov, L.I. Leonyuk. http:// xxx.lanl./gov/abs/cond-mat-9903354.
- [22] V.R. Galakhov, L.D. Finkelstein, D.A. Zatsepin, E.Z. Kurmaev, A.A. Samokhvalov, S.V. Naumov, G.K. Tatarinova, M. Demeter, S. Bartkowski, M. Neumann, A. Moewes. Phys. Rev. B62, 8, 4922 (2000).