Модификация поверхности Al₂O₃ высокоэнергетическими ионами висмута

© В.А. Скуратов, А.Е. Ефимов, Д.Л. Загорский

Объединенный институт ядерных исследований, 141980 Дубна, Московская обл., Россия E-mail: skuratov@cv.jinr.ru

(Поступила в Редакцию 12 апреля 2001 г.)

Методом атомно-силовой микроскопии исследована поверхность монокристаллов α -Al₂O₃, облученных ионами Ві с энергиями 710, 557, 269 и 151 MeV. Установлена зависимость формы радиационных дефектов, вызываемых отдельными ионами, от уровня ионизационных потерь энергии. Пороговое значение плотности ионизации, начиная с которого наблюдается изменение топографии поверхности, лежит в интервале 27-35 keV/nm. Рассмотрены возможные механизмы образования дефектов в модели термического пика: фазовый переход и генерация термоупругих напряжений в области трека высокоэнергетических ионов.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 00-02-16559).

Одним из результатов облучения высокоэнергетическими тяжелыми ионами может быть образование на поверхности твердых тел специфических радиационных повреждений, связываемых с воздействием отдельных ионов. Эти повреждения наблюдаются начиная с некоторого порогового уровня ионизационных потерь энергии $(dE/dx)_{ion}$ и в зависимости от условий облучения и типа материала представляют собой кратеры или пирамидки (англ. hillock) с характерными размерами от единиц до нескольких десятков нанометров. Исследование механизмов формирования подобных дефектов и их взаимосвязи со структурными нарушениями в объеме представляется весьма актуальным для прогноза поведения материалов, радиационная стойкость которых определяется дефектами, создающимися осколками деления, т.е. атомами с массой от 80 до 155 и энергией около 100 MeV, в условиях высокого и сверхвысокого (больше 10 keV/nm) уровня ионизационных потерь энергии и высокого темпа генерации радиационных дефектов. В частности, значительный интерес представляет изучение топографии поверхности и микроструктуры ряда керамик и оксидов — материалов, перспективных в качестве инертных разбавителей (матриц) ядерного топлива, таких как MgO, Al₂O₃, MgAl₂O₄, SiC, TiC, AlN, Si₃N₄, облученных тяжелыми ионами с энергиями выше 1 MeV/nucleon, для моделирования воздействия продуктов деления актинидов.

Среди перечисленных выше материалов наиболее широко применяемыми или перспективными для применения в различных ядерно-энергетических установках является Al_2O_3 как один из наиболее радиационно стойких диэлектриков. В значительной степени это обусловлено тем, что ионизация как самостоятельный источник структурных нарушений в оксиде алюминия проявляет себя только при сверхвысоких уровнях потерь энергии, реализуемых в условиях облучения высокоэнергетическими тяжелыми ионами [1,2]. Оценка порогового значения (dE/dx)_{ion} = 21 keV/nm, начиная с которого

образование как точечных, так и протяженных радиационных дефектов может быть связано с неупругими потерями энергии, была сделана в работе [2] на основе анализа экспериментальных данных, полученных методом обратного резерфордовского рассеяния для монокристаллов сапфира, облученных ионами урана с энергиями 115-809 MeV. Продолжением работ [1,2] было обнаружение латентных треков в сапфире после облучения фуллеренами с энергией 20 MeV [3,4]. Прямые электронно-микроскопические наблюдения структуры впервые позволили определить диаметр трека, равный 13 nm при данном уровне ионизационных потерь энергии 76.2 keV/nm. В работе [4] было также проведено исследование топографии поверхности сапфира, облученного фуллеренами с энергией 30 MeV, методами атомносиловой микроскопии (АСМ), показавшее, что каждому латентному треку на поверхности образца соответствует пирамидка диаметром порядка 20 nm и высотой $4.5 \pm 0.5 \, \text{nm.}$ Обнаруженная корреляция между структурными изменениями в объеме и на поверхности облученных кристаллов представляется весьма интересной, поскольку значительно расширяет экспериментальные возможности за счет применения такого мошного инструмента, как АСМ. Несмотря на то что методы АСМ достаточно эффективно используются в подобных экспериментах на других материалах, работа [4] по нашим данным является практически единственным примером исследований изменения поверхности кристаллов Al₂O₃ под воздействием тяжелых ионов высоких энергий, что стимулирует проведение систематических исследований в широком интервале энергий и масс ионов. В нашей предыдущей работе [5] были представлены первые данные о радиационных дефектах на поверхности α -Al₂O₃ различной ориентации, подвергнутых облучению ионами висмута с энергиями 160-710 MeV. Целью настоящей работы является продолжение исследований методом АСМ структурных модификаций поверхности монокристаллов сапфира, облученных высокоэнергетическими ионами висмута.

Venopug	ofmmound	MOHORPHOTOTIOD	COTTATION
условия	ООЛУЧСНИЯ	MOHOKDRUTALIOB	Cantonna

Толщина поглотителя, µm	Энерния ионов висмута, MeV	$(dE/dx)_{ion},$ keV/nm	$(dE/dx)_{\rm el},$ keV/nm
0	710	41	0.08
6	557	40	0.12
18	269	35	0.19
24	151	27	0.35
36			

1. Методика эксперимента

Облучение высокоэнергетическими ионами висмута проводилось на канале для прикладных исследований циклотрона У-400 ЛЯР ОИЯИ [6]. Монокристаллы Al₂O₃ с ориентациями (c) {0001}, (m) { $10\overline{1}0$ } и (a) { $11\overline{2}0$ } в виде пластинок размером 20 × 10 × 0.5 mm крепились с помощью тепло- и электропроводящего углеродного клея к держателю мишени, охлаждаемому водой. Для исключения перегрева облучаемых мишеней плотность потока ионов составляла $2 \cdot 10^8 \, \mathrm{cm}^{-2} \cdot \mathrm{s}^{-1}$. При таком режиме облучения тепловая мощность, вносимая ионным пучком, не превышала десятых долей W. Параметры облучения, такие как энергия ионов, удельные ионизационные потери и потери на упругое рассеяние в приповерхностном слое мишени (расчет по программе SRIM 2000), приведены в таблице. Вариация энергии ионов достигалась за счет использования алюминиевых поглотителей, закрывающих различные части одного и того же образца, что обеспечивало наиболее корректное сопоставление экспериментальных данных. Образцы облучались до значений флюенса 10¹⁰ ion/cm². Однородное распределение пучка по поверхности облучаемых мишеней достигалось сканированием пучка в вертикальном и горизонтальном направлениях.

АСМ-исследование облученных образцов было выполнено на микроскопе SOLVER P47-SPM-MDT производства NT-MDT (НИИФП им. Ф.В. Лукина, Зеленоград). Изучение топографии поверхности проводилось в резонансном режиме при частоте колебаний зонда $350 \pm 50 \,\mathrm{kHz}$, причем приборные параметры измерения, такие как свободная и рабочая амплитуда колебаний зонда, а также усиление обратной связи, поддерживались постоянными при исследовании частей образца данной ориентации, облученных ионами различных энергий. Полученные данные являются реальными трехмерными изображениями топографии изучаемой поверхности.

2. Результаты и обсуждение

Анализ результатов АСМ-исследований показал, что облучение ионами висмута с энергиями 710, 557 и 269 MeV приводит к появлению на поверхности монокристаллов сапфира индивидуальных дефектов, в то время как при энергии ионов 151 MeV и менее изменений на поверхности обнаружено не было. При этом плотность наблюдаемых дефектов в пределах точности измерений, составляющей $\pm 10\%$, соответствует флюенсу ионов, равному 10^{10} ion/cm². Как было установлено, форма дефектов качественно зависит от уровня ионизационных потерь энергии ионов вблизи поверхности, и в меньшей степени от кристаллографической ориентации образцов, однако можно отметить, что наиболее значительные изменения поверхности наблюдались на образцах **m**-ориентации.

Дефекты, наблюдаемые на поверхности образца **m**-ориентации, облученного ионами висмута с энергией 710 MeV ($(dE/dx)_{ion} = 41 \text{ keV/nm}$), представляют собой пирамидки с диаметром основания порядка 15 nm и средней высокой 2 nm, окруженные внешним кольцом — "бортиком" высотой порядка 1 nm и диаметром около 27 nm (рис. 1, 2, *a*). Практически такую же форму и размеры имеют дефекты, вызванные ионами с энергией 557 MeV, имеющими примерно такой же уровень ионизационных потерь энергии (40 keV/nm).

При меньшей энергии ионов (269 MeV, $(dE/dx)_{ion} = 35 \text{ keV/nm}$) наблюдается другой тип дефектов — пирамидки высотой порядка 1 nm и средним диаметром основания 22 nm, имеющие небольшое углубление в центре диаметром около 5 nm и глубиной поряка 0.7 nm (см. рис. 2, *b*).

Данные, представленные на рис. 1, 2, и зависимость характера наблюдаемых повреждений от плотности ионизации, позволяют однозначно связать образование радиационных дефектов на поверхности монокристаллов сапфира с неупругими потерями энергии ионов висмута. Как следует из таблицы, плотность ионизации падает с уменьшением энергии ионов, в то время как удельные потери на упругое рассеяние возрастают. Для объяснения природы структурных нарушений в диэлектриках, вызываемых релаксацией энергии возбужденных элек-

Рис. 1. АСМ-изображение поверхности сапфира, облученной ионами Ві с энергией 710 MeV. Размер изображения 180 × 180 nm.

Рис. 2. Трехмерное АСМ-изображение поверхностных дефектов, вызванных ионами Ві с энергией 710 (*a*) и 269 MeV (*b*). Размеры изображений 40×40 nm.

Рис. 3. Схема образования наблюдаемых поверхностных дефектов вследствие локального плавления (*a*, *b*) и последующей аморфизации (*c*) материала мишени в треке иона.

тронов, латентных треков, используются две основные модели: ионно-взрывного пика и термического пика, подробно рассмотренные в [7,8]. В первом случае предполагается, что тяжелая заряженная частица создает вдоль своей траектории цилиндрическую зону ионизованных атомов, которая затем "взрывается" из-за кулоновского взаимодействия между ионами, образуя протяженную зону дефектов. В модели термического пика образование латентных треков связывается с увеличением температуры в объеме, окружающем траекторию иона, выше температуры плавления, T_{melt} и с последующим фазовым превращением (аморфизации и рекристализации) за счет быстрого остывания перегретой области. На наш взгляд, результаты АСМ-измерений свидетельствуют в пользу термического механизма формирования дефектов на поверхности кристаллов *α*-Al₂O₃. Можно предположить, что в интервале $35 > (dE/dx)_{ion} > 27 \text{ keV/nm}$ температура уже превышает T_{melt} , в результате чего образуется расплав материала, вытесняемый на поверхность образца из-за разности объемов жидкой и кристаллической фаз. Форма поверхности расплава определяется при этом силой поверхностного натяжения и давлением столба расплава. Если сила поверхностного натяжения недостаточна для удержания поверхности, в расплаве появляется кратер. Эти процессы, схематично представленные на рис. 3, а, b происходят на адиабатической стадии, т.е. в период времени, когда теплота не успевает отводиться от места выделения. Другими возможными причинами образования кратера могут быть испарения атомов из центральной, наиболее перегретой, части расплава и разрыв поверхности уже во время остывания.

Топография дефектов, регистрируемых при плотности ионизации 40–41 keV/nm, дает основание связать их образование с формированием аморфной фазы с меньшей плотностью, чем плотность кристалла. Вследствие этого возникает разность объемов, которая, как предполагается, способствует "выдавливанию" лишнего объема на поверхность (рис. 3, c). Подобная интерпретация использовалась ранее в некоторых работах (см., например, [4]) для объяснения образования пирамидок на поверхности сапфира, облученного фуллеренами.

Сравнительный анализ экспериментальных данных, полученных методами ACM и просвечивающей электронной микроскопии, позволил установить корреляцию между поперечными размерами пирамидок и латентных треков в объеме материала. Согласно [9], диаметр трека приблизительно равен диаметру пирамидок, взятому на полувысоте гауссовского распределения. По нашим оценкам диаметр латентных треков в монокристаллах α -Al₂O₃, образованных ионами висмута с энергиями 557 и 710 MeV, составляет $D \approx 7$ nm, что близко к значению D = 8.4 nm, полученному в случае облучения сапфира фуллеренами при плотности ионизации, равной 41.4 keV/nm [4].

Диссипация энергии, локализованной в цилиндрическом объеме с радиусом несколько нанометров, как известно, сопровождается генерацией термоупругих напряжений, которые могут превышать предел прочности и должны существенно влиять на процессы дефектообразования в объеме и на поверхности облучаемого материала [10,11]. Оценим уровень напряжений, возникающих в зоне термического пика, создаваемого одиночным ионом висмута, предполагая распределение тепловой энергии в треке гауссовским

$$\varepsilon(r) = \left[(dE/dx) / \pi R_C^2 \right] \exp\left(-\frac{r^2}{R_C^2}\right), \qquad (1)$$

где R_C — эффективный радиус трека. Время перехода кинетической энергии ионов в энергию тепловых колебаний решетки ($10^{-12}-10^{-13}$ s) не превышает

Рис. 4. График зависимости функции α от времени при $r = 5R_C$ (форма радиальной составляющей импульса термоупругих напряжений).

характерного времени действия импульса напряжений $2R_{C/s} \ge 10^{-12}$ s, где s — скорость звука. Поэтому можно считать, что источник тепла действует мгновенно в момент времени t = 0, т.е. $\partial \varepsilon / \partial t = \varepsilon(r) \delta(t)$. Здесь $\varepsilon(r, t)$ — плотность поглощенной энергии к моменту t, $\delta(t)$ — дельта-функция Дирака. Для расчета используем приведенные в [10] уравнения для компонент тензора напряжений в треке заряженной частицы. Можно показать, что при $r > R_C$ величина радиального растягивающего напряжения определяется выражением

$$\sigma_{rr} \approx \frac{\Gamma}{\pi^{3/2} R_C^2} \frac{dE}{dx} \alpha \left(\frac{r}{R_C}, \frac{st}{R_C}\right), \qquad (2)$$

где Г — параметр Грюнайзена, α — функция, имеющая вид биполярного импульса, распространяющегося со скоростью звука и затухающего с расстоянием как $r^{-1/2}$. График зависимости α от времени при $r = 5R_C$ представлен на рис. 4. Нельзя исключать, что форма пирамидок, приведенная на рис. 3, *b*, определяется действием импульса термоупругих напряжений.

Принимая $\Gamma = 1.4$, $(dE/dx)_{ion} = 35 \text{ keV/nm}$, $R_C = 3 \text{ nm}$, получим максимальное значение на расстоянии 15 nm от оси трека, равное 40 GPa. Для сравнения приводимые в литературе значения макроскопической прочности на сжатие для сапфира составляют 0.3-2 GPa [12]. При таких уровнях термоупругих напряжений линейные уравнения для компонент тензора напряжений, скорее всего, уже неприменимы, и их можно использовать только для самой грубой оценки. Тем не менее можно сделать вывод о том, что возникающие при нашем уровне ионизационных потерь энергии термоупругие напряжения могут вносить значительный вклад в образование радиационных дефектов на поверхности и разрушение кристаллической структуры мишени даже на расстояниях, намного превышающих размер области термического пика. Кроме этого, при $(dE/dx)_{ion} = 40-41 \text{ keV/nm}$ необходимо принимать во внимание то, что возбуждаемый импульс не является чисто термоупругим, поскольку в нем должна содержаться добавка, связанная с изменением объема вещества ΔV_q за счет фазового превращения. Как показано в [11], акустический импульс, возбуждаемый частицами, стимулирующими фазовый переход, может на порядок и более превышать значения, даваемые линейной термоакустической теорией.

Следует отметить, что предположение о гауссовском распределении тепловой энергии в треке также является весьма упрощенным. Для того чтобы получить более точную оценку профиля распределения тепловой энергии в решетке и размера области, в которой происходит плавление и последующая аморфизация, необходимо более детальное изучение происходящих процессов теплоотдачи. В стандартной модели термического пика в металлах рассматривают двухступенчатый процесс нагрева решетки: термализация выделенной энергии в электронной подсистеме и передача этой энергии решетке за счет электрон-фононного взаиодействия. Для этого используется система нелинейных дифференциальных уравнений, в которой параметрами являются теплоемкость и теплопроводность электронной и решеточной подсистем, коэффициент электрон-фононного взаимодействия и энергия, переданная электронной подсистеме за время, гораздо меньшее характерного времени термализации [8].

Поскольку в диэлектриках механизм передачи тепла от электронов решетке отличается от теплопередачи в металлах, параметры, описывающие релаксацию энергии в электронной подсистеме и передачу энергии решетке, нельзя определить таким же образом, как для металлов. Если в металлах перенос тепла свободными электронами в значительной степени происходит за счет замещения горячих электронов в области возбуждения холодными периферийными электронами, то в изоляторах свободные электроны вне возбужденной области отсутствуют. В работах [8,12] предложена упрощенная модель термического пика для изоляторов, в которой все параметры электронной подсистемы принимаются не зависящими от температуры. Главным параметром в данной модели является средняя длина свободного пробега электрона $\lambda = \sqrt{D\tau}$, где D — коэффициент тепловой диффузии горячих электронов, а τ — время электрон-фононной релаксации. Полученная из экспериментальных данных зависимость радиуса латентного трека (максимальное расстояние от оси трека, на котором происходит плавление) от $(dE/dx)_{ion}$ дает возможность найти длину свободного пробега электрона. Для определения параметра λ необходима конкретизация пороговой энергии, начиная с которой происходит образование латентных треков в сапфире. По данным настоящей работы это значение находится в интервале 27-35 keV/nm.

Таким образом, облучение ионами висмута с энергией выше 269 MeV приводит к появлению на поверхности монокристаллов α -Al₂O₃ радиационных дефектов, связываемых с неупругими потерями энергии. Морфология дефектов зависит от уровня ионизационных потерь энергии вблизи поверхности. При $(dE/dx)_{ion} = 40-41$ keV/nm дефекты имеют вид конических пирамидок, наиболее вероятной причиной образования которых является формирование в области трека аморфной фазы с плотностью, меньшей, чем плотность кристаллической решетки. Возникающие в области трека высокие термоупругие напряжения также могут оказывать значительное влияние на формирование дефектов.

Список литературы

- B. Canut, S.M.M. Ramos, P. Thevenard, N. Moncoffre, A. Benyagoub, G. Marest, A. Meftah, M. Toulemonde, F. Studer. Nucl. Instr. Meth. B80/81, 1114 (1993).
- [2] B. Canut, A. Benyagoub, G. Marest, A. Meftah, N. Moncoffre, S.M.M. Ramos, F. Studer, P. Thevenard, M. Toulemonde. Phys. Rev. B51, 18, 12194 (1995).
- [3] S.M.M. Ramos, N. Bonardi, B. Canut. Phys. Rev. B57, 1, 189 (1998).
- [4] S.M.M. Ramos, N. Bonardi, B. Canut, S. Bouffard, S. Della-Negra. Nucl. Instr. Meth. B143, 319 (1998).
- [5] D.L. Zagorski, V.A. Skuratov, A.E. Efimov, V.A. Kluev, Yu.P. Toporov, B.V. Mchedlishvili. 20th Int. Conf. on Nuclear Tracks in Solids. Portoroz, Slovenia (August 28–September 1, 2000). Book of Abstracts. P. 113 (to be published in Radiation Measurements).
- [6] V.A. Skuratov, A. Illes, Z. Illes, K. Bodnar, A.Yu. Didyk, A.V. Arkhipov, K. Havancsak. JINR Commun. (Dubna) E13-99-161, 8 (1999).
- [7] R.L. Fleisher, P.B. Price, R.M. Walker. Nuclear Tracks in Solids. University of California Press, Berkeley (1975).
- [8] M. Toulemonde, C. Dufour, E. Paumier. Phys. Rev. B46, 22, 14362 (1992).
- [9] A. Audouard, R. Mamy, M. Toulemonde, G. Szenes, L. Thome. Nucl. Instr. Meth. B146, 217 (1998).
- [10] А.А. Давыдов, А.И. Калиниченко. Атом. энергия 53, 3, 186 (1982).
- [11] А.И. Калиниченко, В.Т. Лазурик. В сб.: Радиационная акустика / Отв. ред. Л.М. Лямшев. Наука, М. (1987). С. 27.
- [12] A. Meftah, F. Brisard, J.M. Constantini, E. Dooryhee, M. Hagi-Ali, M. Hervieu, J.P. Stoquert, F. Studer, M. Toulemonde. Phys. Rev. B49, 18, 12457 (1994).