Экситонный спектр поглощения тонких пленок Ag₂Znl₄

© О.Н. Юнакова, В.К. Милославский, Е.Н. Коваленко*

Харьковский национальный университет,

61077 Харьков, Украина

*Научный физико-технологический центр Министерства образования и Национальной академии наук Украины, 61145 Харьков, Украина

(Поступила в Редакцию 22 января 2001 г.)

В тонких пленках комплексного соединения Ag₂ZnI₄ исследован электронный спектр поглощения в интервале энергии фотонов 3–6 eV. Установлено, что край междузонного поглощения соответствует прямым разрешенным переходам с шириной запрещенного промежутка $E_g = 3.7$ eV. К краю поглощения примыкает сильная экситонная полоса при $E_{ex} = 3.625$ eV (80 K), температурный ход полуширины Γ которой в интервале 80–390 K определяется экситон-фононным взаимодействием, характерным для квазиодномерных экситонов. При $T \leq 390$ K наблюдается излом в зависимостях $E_{ex}(T)$ и $\Gamma(T)$, связанный с генерацией дефектов Френкеля и сопровождающийся переносом ионов Ag в междоузлия и вакансии кристаллической решетки соединения.

Среди соединений с высокой ионной проводимостью на основе AgI тройное соединение Ag₂ZnI₄ является одним из наименее изученных. В немногочисленных работах содержатся противоречивые сведения относительно фазовых диаграмм и кристаллической структуры Ag_2ZnI_4 [1–4]. Так, по данным [2,3], комплексное соединение Ag₂ZnI₄ существует в малом интервале молярных концентраций x в системе $(ZnI_2)_x(AgI)_{1-x}$ при x = 0.33и в интервале температур до 192°С. Согласно [1,2], соединение имеет гексагональную решетку с параметрами a = 0.439 и c = 0.73 nm. Однако из-за трудностей в дифрактометрии, как отмечают авторы [2], параметры полной элементарной ячейки не определены, так как при указанных параметрах ячейка содержит половину формульной единицы. При T > 192°C соединение распадается на ZnI₂ и α-AgI. Напротив, по более поздним данным [4], Ag₂ZnI₄ формируется в двух фазах: низкотемпературной с орторомбической решеткой и параметрами a = 1.173, b = 1.334 и c = 0.73 nm и высокотемпературной, формирующейся при T > 265°C. Последняя фаза существует в узком интервале температур от 265 до 280°С. Температурная зависимость электропроводности свидетельствует [2] о переходе Ag₂ZnI₄ в суперионное состояние при $T \approx 146^{\circ}$ С, что совпадает с температурой фазового перехода β -AgI в α -AgI и позволяет сделать вывод о частичном разложении соединения при *T* < 192°С.

Дополнительную информацию о фазовом составе и возможных фазовых переходах дает электронный спектр соединений. Как нам известно, электронный спектр Ag_2ZnI_4 не изучался. В силу высоких значений коэффициента поглощения в собственной электронной полосе удобными образцами для исследования спектра поглощения являются тонкие пленки. В настоящей работе приведены результаты исследования спектров поглощения Ag_2ZnI_4 в интервале энергии от 3 до 6 eV и температурном интервале от 80 до 440 K.

Пленки Ag_2ZnI_4 толщиной около 100 nm были приготовлены путем вакуумного испарения смеси порошков AgI и ZnI_2 заданного молярного состава на нагретые до 100°С кварцевые подложки. Из-за гигроскопичности соединения первоначально гладкие и прозрачные пленки, будучи вынесенными на воздух и охлажденными, сильно рассеивают и непригодны для оптических измерений. В связи с этим пленки в нагретом состоянии помещались в вакуумный криостат, медный палец которого предварительно нагревался до 70°С. После откачки криостата и заливки жидкого азота пленки сохраняли свою исходную прозрачность (контроль по видимому участку спектра). Фазовый состав пленок устанавливали непосредственно по спектрам поглощения, что возможно из-за существенного различия в спектральном положении узких экситонных полос в AgI, Ag₂ZnI₄ и ZnI₂ (рис. 1). При молярной концентрации x > 0.35 в спектре Ag₂ZnI₄ появляется дополнительная полоса при 4.45 eV, присущая ZnI2 и отстоящая от низкочастной экситонной полосы тройного соединения на 0.77 eV. При x < 0.3 в области прозрачности Ag₂ZnI₄ при 3 eV появляется дополнительное поглощение, связанное с избытком AgI. При заданной толщине наиболее интенсивный экситонный пик Ag₂ZnI₄ при $E = 3.625 \,\mathrm{eV}$ наблюдался при x = 0.32. Из-за гигроскопичности пленок их толщина определялась по спектру пропускания в области прозрачности методом, описанным в [5].

При повышении температуры экситонный пик при 3.625 eV несколько уширяется и смещается в сторону низких частот. Судя по интенсивности пика в тонкой пленке (t = 110 nm), экситонная полоса примыкает к краю прямых разрешенных междузонных переходов. Отделение экситонной полосы от края междузонных переходов дает значение ширины запрещенной зоны соединения $E_g \approx 3.7 \, \mathrm{eV}$ (оценка по точке перегиба в районе края). Отсутствие заметной температурной зависимости при $E > E_g$ в спектре оптической плотности свидетельствует об отсутствии более высокочастотных экситонных полос. Непрерывный спектр междузонного поглощения имеет широкий максимум при $E = 5.55 \, \text{eV}$. Предполагая, что максимум соответствует переходам между центрами разрешенных зон, мы находим суммарную ширину зоны проводимости и валент-

Рис. 1. Спектры поглощения тонких пленок: I — AgI при T = 90 K, 2 и 3 — Ag₂ZnI₄ при T = 90 и 290 K соответственно, 4 — ZnI₂ при T = 90 K.

ной зоны, примыкающих к запрещенному промежутку: $\Delta E = \Delta E_c + \Delta E_v = 2(E_m - E_g) = 3.7 \text{ eV}.$

Представляет интерес сравнение электронных спектров тройных соединений, производных от AgI. При T = 80 K низкочастотные экситонные полосы в соединениях RbAg₄I₅, KAg₄I₅, NH₄Ag₄I₅ и Ag₂CdI₄ расположены при 3.35 [6,7], 3.33 [6,8], 3.33 [6] и 3.31 eV [9] соответственно. Обращает на себя внимание близость энергий возбуждения 1 s экситонов, указывающая на слабую зависимость Еех от типа замещающих ионы Ад катионов. Этот факт позволяет сделать предположение о локализации экситонных возбуждений в AgI-подрешетке указанных соединений [7–9].Мы полагаем, что верхняя валентная зона тройных соединений, так же как и в AgI, формируется 5p-состояниями I и 4d-состояниями Ag, нижняя зона проводимости — 5s-состояниями Ag. Край непрерывного спектра всех соединений соответствует прямым разрешенным междузонным переходам. Высокочастотный сдвиг экситонных полос в тройных соединениях относительно низкочастотной полосы в AgI $(E_{\rm ex} = 2.3 \, {\rm eV})$ объясняется главным образом уменьшением числа *М* атомов Ag во второй координационной сфере [7-9]. Для всех указанных соединений характерна тетраэдрическая ионно-ковалентная связь атомов Ад с окружающими атомами І. В то же время экситонная полоса в Ag_2ZnI_4 сдвинута в высокочастотную область спектра на 0.32 eV относительно полосы в наиболее родственном соединении Ag_2CdI_4 .

Указанный сдвиг трудно объяснить увеличением ионности химической связи в Ag₂ZnI₄ по сравнению с Ag₂CdI₄, так как электроотрицательность атомов Zn и Cd (1.6 и 1.7 по Полингу и более поздним данным [10]) отличается незначительно. По-видимому, различие в спектральном положении экситонных полос следует искать в различии строения кристаллических решеток двух соединений. Соединение Ag₂CdI₄ формируется в тетрагональную решетку типа Ag₂HgI₄ с параметрами элементарной ячейки a = 0.635 и c = 1.27 nm [2]. Для Ag_2CdI_4 характерна тетраэдрическая связь ионов Ag и I, координационное число M = 6; объем, приходящийся на один атом I, равен $V_{\rm I} = 0.064 \, {\rm nm}^3$. Как уже упоминалось, по данным [1,2], AgZnI4 имеет гексагональную решетку, в которой на элементарную ячейку приходится 0.5 молекулы, а величина объема на один атом I составляет $V_{\rm I} = 0.61 \, {\rm nm}^3$, в то время как, по данным [4], низкотемпературная фаза соединения имеет орторомбическую решетку с четырьмя молекулами на элементарную ячейки и $V_{\rm I} = 0.072 \, {\rm nm}^3$. Исходя из этих данных, можно сделать вывод, что авторы [1,2] определили на основании рентгеноструктурного анализа не истинную элементарную ячейку, а параметры структурного элемента, входящего в элементарную ячейку орторомбической решетки.

В связи с этим целесообразно сравнить электронный спектр Ag₂ZnI₄ со спектром тройного соединения CsAg₂I₃, имеющего также орторомбическую решетку с параметрами *a* = 1.108, *b* = 1.374 и *c* = 0.623 nm [11] и четырьмя молекулами на элементарную ячейку. Как было установлено в [11], для CsAg₂I₃ характерно существование двойных цепочек, состоящих из тетраэдров AgI₄ и ориентированных вдоль оси с кристалла. Следует отметить, что в двойной цепи CsAg₂I₃ объем на один атом составляет $V_{\rm I} = 0.060 \, {\rm nm^3}$, в то время как в элементарной ячеке — $V_{\rm I} = 0.071 \, {\rm nm^3}$. Эти значения V_I очень близки к соответствующим значениям V_I для структурного элемента и элементарной ячейки в Ag₂ZnI₄. Различие в значениях $V_{\rm I}$ свидетельствует о более сильной гетерополярной связи внутри двойных цепей и структурных элементов в CsAg₂I₃ и Ag₂ZnI₄ по сравнению со связями между ними. В [12] показано, что низкочастотный спектр поглощения в CsAg₂I₃ связан с возбуждением экситонов и электронов в двойных цепях и электронные зоны в соединении имеют квазиодномерный характер.

Низкочастотный экситонный пик в CsAg₂I₃ расположен при 3.73 eV и близок по энергии к $E_{ex} = 3.625$ eV в Ag₂ZnI₄. Из изложенного выше можно сделать вывод о локализации экситонов и электронных возбуждений в Ag₂ZnI₄ в структурных элементах гексагональной симметрии, ориентированных вдоль оси *с* орторомбической решетки и о квазиодномерном характере энергетических зон этого соединения. Более детальное установление

Рис. 2. Температурная зависимость спектрального положения $E_m(T)$ (*a*) и полуширины $\Gamma(T)$ (*b*) длинноволновой *A*-экситонной полосы в Ag₂ZnI₄. Сплошная кривая — расчет по линейному закону $\Gamma_{\text{ex-ph}}(T)$, точки — экспериментальные значения $\Gamma(T)$.

связи между строением электронного спектра Ag₂ZnI₄ и его кристаллической структурой представляется затруднительным из-за отсутствия точных данных о строении кристаллической решетки этого соединения.

Температурная зависимость параметров низкочастотной экситонной полосы Ag₂ZnI₄ исследована в интервале 80-435 К, включающем температуру фазового перехода $\beta \rightarrow \alpha$ в AgI (419 K). Экситонная полоса аппроксимировалась смешанным гауссовым и лоренцевым симметричным контуром, и параметры полосы (спектральное положение $E_{\rm ex}$, полуширина Γ и сила осциллятора) определялись путем наилучшего согласования спектральной зависимости оптической плотности с расчетной на длинноволновом склоне полосы с учетом интерференции света в тонком слое по При низких температурах экситонные методу [13]. полосы хорошо описываются лоренцевым контуром, с ростом Т доля гауссовой составляющей возрастает и при Т, выше комнатной, контур становится гауссовым. В интервале температур от 80 до 390 К наблюдается (рис. 2, а) линейный сдвиг полосы в низкочастотную область с $dE_{\rm ex}/dT = -2.8 \cdot 10^{-4} \, {\rm eV/K}$, характерный по порядку величины для ряда тройных соединений на основе AgI и свидетельствующий об экситон-фононном взаимодействии. Экситон-фононное взаимодействие проявляется также в уменьшении силы осциллятора экситонной полосы и ее асимметрии с ростом температуры (рис. 1). Однако увеличение полуширины с ростом Т незначительно (рис. 2, b). В том же интервале T полуширина Г возрастает от 0.1 до 0.115 eV. Обработка экспериментальных значений Г методом наименьших квадратов по линейному закону дает $\Gamma(0) = 0.09 \pm 0.01 \, eV$ и $d\Gamma/dT = (1.3 \pm 0.4) \cdot 10^{-4} \, \mathrm{eV/K}$. Возможной причиной слабой зависимости Г от Т является квазиоднородный характер экситонов в этом соединении. Для сравнения в соединении Ag₂CdI₄, где экситоны имеют трехмерный характер, полуширина полос в том же температурном интервале возрастает от 0.025 до 0.15 eV [9]. Теория экситон-фононного взаимодействия, развитая для экситонов разной размерности [14], предсказывает при прочих равных условиях (междоузельная энергия переноса экситонов, частота фононов) большую ширину полосы при низких Т и более слабый температурный рост Г одномерных экситонов по сравнению с трехмерными.

При $T \ge 390 \, \text{K}$ наблюдается резкий сдвиг экситонной полосы в сторону низких частот с $dE_{\rm ex}/dT$ = $-8.75 \cdot 10^{-4} \,\mathrm{eV/K}$, при этом сдвиг полосы сопровождается изломом на зависимости $\Gamma(T)$ с увеличением полуширины в малом интервале *Т* (390–445 K) от 0.115 до 0.165 eV. Наблюдаемые изменения Eex и Г в этом интервале Т хорошо коррелируют с резким подъемом на 3 порядка ионной проводимости соединения. Так же как и в других AgI содержащих соединениях, изменения в температурном ходе Γ при $T \ge 390 \, {\rm K}$ мы связываем с генерацией дефектов Френкеля. Как следует из [15], генерация дефектов Френкеля сопровождается появлением хаотических внутренних электрических полей, вызывающих дополнительное рассеяние экситонов. Поскольку экситонная полоса при $T \ge 390 \, {\rm K}$ имеет гауссову форму, полная полуширина полосы в этом интервале Т равна

$$\Gamma = \sqrt{\Gamma_{\text{ex-ph}}^2 + \Gamma_F^2},\tag{1}$$

где $\Gamma_{\text{ex-ph}}$ — вклад в полуширину за счет экситон-фононного взаимодействия, Γ_F — за счет генерации дефектов Френкеля. По измеренным значениям Γ значениям $\Gamma_{\text{ex-ph}}$, экстраполированным на заданный интервал T, можно оценить величину Γ_F и ее температурный ход. Поскольку Γ_F пропорциональна концентрации дефектов Френкеля n_F , а последняя зависит от T по закону Аррениуса

$$n_F = A e^{-u_F/kT},\tag{2}$$

 $\Gamma_F(T)$ интервале линеаризация зависимости в 390-445 К дает следующую энергию активации дефектов Френкеля: $u_F = (0.31 \pm 0.04)$ eV. Представленная величина и_F почти в 2 раза ниже энергии активации температурной зависимости ионной проводимости Ag_2ZnI_4 ($u_{\sigma} = 0.77 \, eV$ [2]). Следует отметить, что, как правило, для суперионных проводников энергия активации, найденная по зависимости $\Gamma_F(T)$, ниже, чем u_{σ} [8]. По-видимому, такое различие связано с активационным характером движения катионов по междоузлиям, и температурная зависимость $\sigma(T)$ включает в себя энергию миграции катионов по решетке.

Резкое снижение E_{ex} с ростом T характерно также для классического проводника β-AgI при температурах, близких к температуре фазового перехода в *α*-AgI $(T_c = 419 \,\mathrm{K})$ [16]. Так же как и в Ag₂ZnI₄, резкий спад E_{ex} сопровождается ростом полуширины. При *T* ≥ *T_c* имеет место насыщение величин *E*_{ex} и Γ. Однако в отличие от Ag₂ZnI₄ сдвиг полосы в AgI происходит в меньшем интервале Т (408-421 К) при заметно большей величине сдвига ($\Delta E_{\text{ex}} = 0.185 \,\text{eV}$). На основании сказанного можно сделать вывод, что образование дефектов Френкеля и ионная проводимость в Ag₂ZnI₄ определяются переходом ионов Ag в междоузлия и вакансии, сопровождающие ионы Zn²⁺. Повидимому, при T ≥ 419 K имеет место также частичное разупорядочение соединения с выделением α-AgI, предшествующее его полному распаду на $ZnI_2 - \alpha$ -AgI при 455 К [2]. Последний вывод согласуется с данными по фазовым диаграммам и проводимости работ [2,3].

В заключение отметим, что существенное различие в электронном спектре поглощения и температурном поведении экситонных полос в близких по химическому составу соединениях Ag_2CdI_4 и Ag_2ZnI_4 определяется различием их кристаллических решеток. По-видимому, особенности строения решетки в последнем соединении определяют квазиодномерный характер низкочастотных электронных возбуждений.

Список литературы

- P. Fourcroy, I. Rivet, I. Flahaut. C.r. Acad. Sci. 278, 19, 1189 (1974).
- J.W. Brightwell, C.N. Buckley, G. Forton, L.S. Miller, B. Ray. J. Mater. Sci. Lett. 1, 10, 429 (1982).
- [3] J.W. Brightwell, C.N. Buckley, R.C. Hollyoak, B. Ray. J. Mater. Sci. Lett. 3, 5, 443 (1984).
- [4] R. Blachnik, U. Stoter. Thermochim. Acta 145, 93 (1984).
- [5] В.К. Милославский, А.И. Рыбалка, В.И. Шмандий. Оптика и спектроскопия 48, 3, 619 (1980).
- [6] И.Х. Акопян, Д.Н. Громов, А.В. Мищенко, А.Е. Монов, Б.В. Новиков, М.Д. Яуфман. ФТТ 26, 9, 2628 (1984).
- [7] В.К. Милославский, О.Н. Юнакова, Сунь Цзя-Линь. Функцион. матер. 1, 1, 438 (1994).
- [8] В.К. Милославский, Сунь Цзя-Линь. Функцион. матер. 2, 4, 438 (1995).
- [9] О.Н. Юнакова, В.К. Милославский, М. Жавлангийн. УФЖ 35, 10, 1502 (1990).
- [10] W. Gordy, W.J. Thomas. J. Chem. Phys. 24, 439 (1956).
- [11] C. Brink, N.F. Binnenijk, J. Van de Linde. Acta Cryst. 7, 1, 176 (1954).
- [12] В.К. Милославский, Сунь Цзя-Линь, О.Н. Юнакова. Оптика и спектроскопия 80, 4, 643 (1996).
- [13] В.К. Милославский, О.Н. Юнакова, Сунь Цзя-Линь. Оптика и спектроскопия **78**, *3*, 436 (1995).
- [14] M. Schreiber, Y. Toyozawa. J. Phys. Soc. Jap. 51, 5, 1528 (1982).
- [15] И.Х. Акопян, Б.В. Бондарев, Д.И. Громов, А.В. Куклов, Б.В. Новиков. ФТТ 29, 8, 2263 (1987).
- [16] Р. Галбадрах, В.К. Милославский, У. Майер. ЖПС 52, 12, 139 (1993).