05.1;12 Некоторые особенности диссипации энергии в процессе пластической деформации железа и ниобия

© О.П. Максимкин, М.Н. Гусев

Институт ядерной физики, Алматы, Казахстан E-mail: root@iae.nnc.kz

Поступило в Редакцию 2 июля 2001 г.

Приведены результаты экспериментальных исследований процессов тепловыделения в ходе пластической деформации ниобия и железа технической чистоты. Установлены зависимости величины рассеянного тепла Q от степени деформации ε образцов, деформируемых в микрокалориметрической ячейке. На графике $Q(\varepsilon)$ выделены участки, характеризующиеся практически постоянной интенсивностью диссипативных процессов $(dQ/d\varepsilon \approx \text{const})$. Предполагается, что существование этих участков связано с закономерными изменениями дислокационной субструктуры и стадийностью пластической деформации железа и ниобия.

Введение. В последние годы деформируемый металлический кристалл часто рассматривают как неравновесную самоорганизующуюся систему, а пластическое течение — как эволюцию диссипативных структур, происходящую на различных масштабных уровнях [1,2]. Однако известно достаточно мало работ, где бы закономерности диссипативных процессов при пластической деформации изучались экспериментально.

В настоящей работе с использованием результатов калориметрических экспериментов выполнены количественные оценки тепла и энергии, соответственно рассеиваемого и запасаемой в процессе деформации ОЦК-металлов.

Методика проведения экспериментов. Плоские образцы железа и ниобия технической чистоты (с размерами рабочей части $10 \times 3.5 \times 0.3$ mm), отожженные в течение часа при T = 1220 K (Fe) и 1470 K (Nb), деформировали путем одноосного растяжения со скоростью $8.3 \cdot 10^{-4}$ s⁻¹ при 293 K непосредственно внутри измерительной ячейки микрокалориметра. Для этого была сконструирована и отлаже-

85

Металл,	σ_{ϵ}	σ_{p} ,	ε_{n}	ε.	Α,	0.	$E_{\rm s}$,
размер зерна	MPa	MPa	%	%	MJ/m ³	MJ/m ³	MJ/m ³
Nb, 3 μm	370	455	15	22	90	68	22
Fe, $20 \mu \text{m}$	165	270	31	35	85	71	14

Механические и энергетические характеристики ниобия и железа

на установка, совмещающая микроразрывную машину и дифференциальный калориметр Кальве, позволяющая изучать тепловые явления, сопровождающие процесс пластической деформации [3]. В результате обработки диаграмм растяжения и термограмм, построенных в координатах "усилие F — удлинение Δl " и "интенсивность тепловыделения dQ/dt — время t", соответственно определяли механические характеристики (пределы текучести σ_f и прочности σ_B , равномерное ε_p и полное ε относительное удлинение), а также энергетические характеристики (работа деформации $A = \int F dl$, рассеянное тепло $Q = \int \partial Q/\partial t \cdot dt$ и латентная энергия $E_s = A - Q$). Применение специальных программ, разработанных для обработки экспериментальных данных, позволило учесть влияние инерционности калориметра, восстановить "истинные" термограммы и в итоге получить зависимости величин A, Q, E_s от степени деформации ε [4].

Результаты и обсуждение. На рис. 1 показаны типичная диаграмма растяжения и кривые деформационных зависимостей энергетических характеристик, а в таблице приведены значения механических и интегральных энергетических характеристик $A(\varepsilon)$, $Q(\varepsilon)$, $E_s(\varepsilon)$ на момент разрушения. На рис. 1 видно, что с ростом степени деформации способность материала поглощать подводимую извне энергию значительно снижается, а скорость прироста величины Q повышается.

Анализ деформационной зависимости величины тепловыделения показал (рис. 2), что для обоих исследованных металлов на кривой $Q(\varepsilon)$ могут быть выделены несколько участков, в пределах которых скорость прироста величины тепловыделения близка к постоянной величине, т.е. $(dQ/d\varepsilon)_i = \text{const.}$ Это позволяет полагать, что экспериментальные зависимости $Q(\varepsilon)$ можно использовать для изучения эволюции дефектной структуры деформируемого кристалла и стадийности пластической деформации.

Рис. 1. Диаграмма растяжения (1) и зависимости интегральных величин A, Q, E_s (2, 3, 4 соответственно) от относительной деформации ε для армкожелеза;

Действительно, согласно [1,5,6], с увеличением степени деформации происходит закономерное изменение дислокационной структуры металлического материала, что ведет, в частности, к росту плотности дислокаций, смене механизма и величины деформационного упрочнения. В частности, при переходе от стадии к стадии изменяется длина свободного пробега дислокаций L [5], однако в пределах одной стадии $L \approx \text{ const.}$ Полагают [6], что L связана с интенсивностью диссипации энергии соотношением вида $L^{-1} = (dQ \cdot b)/(d\varepsilon \cdot 2E)$, где E — энергия линейного натяжения дислокации, b — вектор Бюргерса. Это, по-

Рис. 2. Зависимость величины рассеянного тепла Q от степени деформации для ниобия (1) и армко-железа (2). Штриховыми линиями выделены участки, соответствующие стадиям пластического течения.

видимому, является основной причиной появления на зависимости $Q(\epsilon)$ участков, близких к прямолинейным.

Логично увязать существование данных участков с эволюцией дислокационной структуры и со стадийным развитием пластической деформации ОЦК-металлов. В нашем случае первый из выявленных на кривой $Q(\varepsilon)$ участков соответствует образованию и перемещению деформационной полосы Людерса, а деформационные границы последующих участков совпадают с границами стадий, найденных по методике, предложенной в [5].

Заключение. С целью изучения стадийности пластической деформации металлов предложен новый подход, основанный на экспериментальном изучении диссипативных процессов. С его применением выявлены стадии пластического течения армко-железа и ниобия.

Список литературы

- [1] Панин В.Е., Данилов В.И., Зуев Л.Б. и др. Структурные уровни пластической деформации и разрушения. Новосибирск, 1990. 250 с.
- [2] Панин В.Е., Коротаев А.Д., Макаров П.В. и др. // Известия вузов. Физика. 1998. Вып. 7. С. 8–36.
- [3] Максимкин О.П. Препринт ФТИ НАН РК 94-02. Алматы, 1994. 32 с.
- [4] Астафьев И.В., Максимкин О.П. // Заводская лаборатория. 1994. Вып. 1. С. 44–46.
- [5] *Трефилов В.И.* Деформационное упрочнение и разрушение поликристаллических металлов. М.: Металлургия, 1989. 256 с.
- [6] *Рыбин В.В.* Большие пластические деформации и разрушение металлов. М.: Металлургия, 1986. 224 с.