Спектральные и генерационные свойства нового лазерного кристалла Cr^{3+} , Li: Mg_2SiO_4

© В.Ф. Лебедев, И.Д. Рябов*, А.В. Гайстер**, А.С. Подставкин***, Е.В. Жариков**, А.В. Шестаков***

Научный центр волоконной оптики Института общей физики им. А.М. Прохорова Российской академии наук, 119991 Москва. Россия

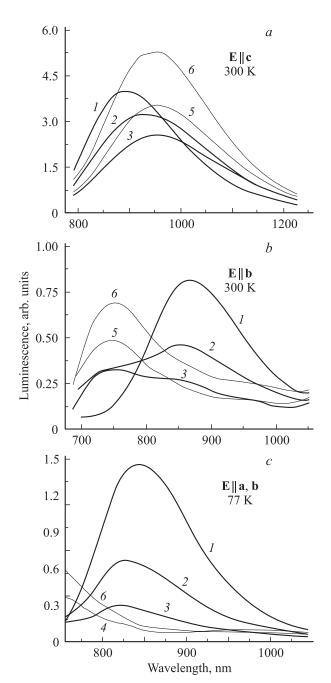
- * Геологический институт Российской академии наук,
- 119017 Москва, Россия
- ** Научный центр лазерных материалов и технологий Института общей физики им. А.М. Прохорова Российской академии наук,
- 119991 Москва, Россия
- *** Научно-производственный центр ЭЛС-94,

Москва, Россия

E-mail: vfleb@fo.gpi.ru

Впервые в результате сравнительного анализа данных люминесцентной и ЭПР-спектроскопии широкополосная люминесценция ионов Cr^{3+} в кристалле форстерита приписывается центрам вида $Cr^{3+} - V_{Mg}$, а при дополнительном легировании литием — ассоциатам вида $Cr^{3+} - Li^+$. На центрах $Cr^{3+} - Li^+$, отвечающих за широкополосную люминесценцию, впервые получена перестраиваемая лазерная генерация.

- 1. Известно, что в структуре форстерита ионы хрома в валентном состоянии Cr^{3+} , замещая ионы Mg^{2+} в двух кристаллографических позициях M1 и M2 с разной симметрией, образуют изолированные центры $Cr^{3+}(M1)$ и $Cr^{3+}(M2)$ [1] с различными спектрально-люминесцентными свойствами. Принято считать, что широкополосная люминесценция ионов Cr^{3+} в спектральном диапазоне $850-1000\,\mathrm{nm}$ как в кристаллах $Cr^{3+}:Mg_2SiO_4$, так и в кристаллах Cr^{3+} , $Li:Mg_2SiO_4$ принадлежит изолированным ионам хрома, замещающим магниевые позиции M2 с зеркальной симметрией [2,3].
- В [4] установлено, что широкополосная люминесценция ионов Cr^{3+} в кристаллах форстерита с хромом, дополнительно легированных ионами лития Cr^{3+} , $Li:Mg_2SiO_4$, является суперпозицией двух полос $\lambda_{\max} \sim 890$ и 950 nm (поляризация $\mathbf{E} \parallel \mathbf{c}$ в установке Pbnm). Причем при достижении концентрации лития в кристалле, большей некоторой величины C_{Li}^{\min} , интенсивность полосы люминесценции с $\lambda_{\max} \sim 890$ nm спадает до нуля.


Неизовалентное замещение ионов ${\rm Mg^{2+}}$ ионами ${\rm Cr^{3+}}$ требует образования в структуре форстерита точечных дефектов — зарядовых компенсаторов. Их роль в кристаллах ${\rm Cr^{3+}:Mg_2SiO_4}$ выполняют отрицательно заряженные магниевые вакансии $V_{\rm Mg}$. В то же время результаты компьютерного моделирования показывают, что ионы лития могут быть более эффективным зарядовым компенсатором. Поэтому в кристаллах ${\rm Cr^{3+}:Mg_2SiO_4}$ следует ожидать образования дополнительных центров на основе ассоциатов ${\rm Cr^{3+}-}V_{\rm Mg}$, а в кристаллах ${\rm Cr^{3+}}$, ${\rm Li:Mg_2SiO_4}$ — на основе ассоциатов ${\rm Cr^{3+}-}V_{\rm Mg}$.

2. Исследовалась серия кристаллов, легированных хромом, а также совместно хромом и литием. Концентрация хрома в расплаве составляла 0.06 ± 0.01 wt.%. Концентрация лития в расплаве менялась от 0.01 до 0.42 wt.%. Кристаллы выращивались методом

Чохральского в атмосфере особо чистого аргона $(\lg f_{\rm O_2} \sim -4)$. Для исследований лазерной генерации были выращены кристаллы с концентрацией хрома в расплаве $\sim 0.25 \pm 0.01$ wt.%.

Схема измерения поляризованных спектров люминесценции приведена в [4]. Структура и относительные концентрации различных центров Cr^{3+} определялись на основе данных ЭПР-спектроскопии по методике, подробно описанной в [6]. Для генерационных исследований в качестве накачки использовался работавший в режиме модуляции добротности одномодовый лазер на александрите (Cr^{3+} : $BeAl_2O_4$) с длиной волны генерации $\lambda_p = 750$ nm.

3. Широкополосная люминесценция ионов Cr³⁺ в кристаллах Cr: Mg₂SiO₄ поляризована преимущественно вдоль оси с. При $C_{Li} = 0$ люминесценция ионов Cr^{3+} , поляризованная вдоль оси с, имеет максимум при $\lambda \sim 890\,\mathrm{nm}$, вдоль оси **b** — при $\lambda \sim 860\,\mathrm{nm}$, вдоль оси **a** — при $\lambda \sim 850\,\mathrm{nm}$ [7]. Из рис. 1, a, b видно, что при дополнительном легировании кристаллов Cr^{3+} : Mg_2SiO_4 ионами Li^+ исходные полосы люминесценции, поляризованной вдоль кристаллографических осей ${\bf c}$ и ${\bf b}$ с максимумами $\sim 850-890\,{\rm nm}$, быстро ослабевают и при достижении концентрации лития в расплаве более $C_{
m Li}^{
m min} = 0.05\,{
m wt.}\%$ полностью исчезают. Им на смену приходят полосы с максимумами 750 nm ($\mathbf{E} \parallel \mathbf{b}$) и 950 nm ($\mathbf{E} \parallel \mathbf{c}$). Следовательно, в кристалле форстерита присутствуют центры люменесценцнии Cr³⁺, концентрация которых при определенном содержании ионов Li⁺ снижается до нуля. Наиболее отчетливо исчезновение полосы исходного центра Cr³⁺ наблюдается при регистрации люминесценции образца, охлажденного до $77 \, \mathrm{K}$ (рис. 1, c). В этом случае отсутствует сильное перекрытие полосы, принадлежащей исходному центру Cr^{3+} , и новой полосы c $\lambda_{max} \sim 750$ nm.

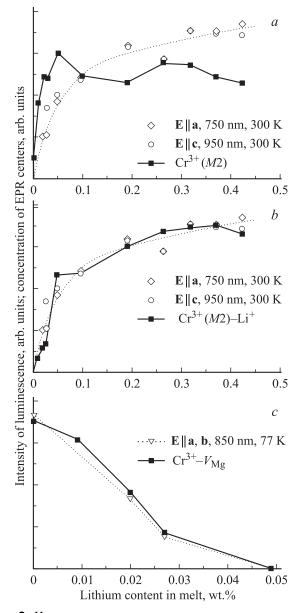


Рис. 1. Трансформация широкополосных спектров люминесценции ионов Cr^{3+} в форстерите в зависимости от содержания лития в расплаве (в wt.%): I — 0, 2 — 0.02, 3 — 0.03, 4 — 0.05, 5 — 0.10, 6 — 0.32.

В спектрах ЭПР исследуемой серии кристаллов выделены сигналы семи различных парамагнитных центров Cr^{3+} . Два из них — хорошо изученные изолированные ионы Cr^{3+} в структурно-неэквивалентных магниевых позициях M1 и M2 с локальной симметрией C_i и C_s [1]. Два других центра характерны только для кристаллов Cr^{3+} , $\mathrm{Li}:\mathrm{Mg}_2\mathrm{SiO}_4$. Сравнительный анализ угловых зависмостей линий ЭПР и параметров спин-гамильтониана рассматриваемых

центров и центров $\mathrm{Cr^{3+}}(M1)$ и $\mathrm{Cr^{3+}}(M2)$ позволил предложить для них структуру $\mathrm{Cr^{3+}}(M1)\mathrm{-Li^{+}}(M2)$ и $\mathrm{Cr^{3+}}(M2)\mathrm{-Li^{+}}(M1)$ [6]. Еще три центра присутствуют и в кристаллах $\mathrm{Cr^{3+}}:\mathrm{Mg_2SiO_4}$, и в кристаллах $\mathrm{Cr^{3+}}$, $\mathrm{Li:Mg_2SiO_4}$ [8]. При увеличении концентрации ионов $\mathrm{Li^{+}}$ в расплаве концентрация этих трех центров быстро спадает до нуля при $C_{\mathrm{Li}} > 0.05$ wt.%.

Сравнительный анализ данных люминесцентной и ЭПР-спектроскопии показывает, что характер изменения интенсивности люминесценции в полосах с мак-

Рис. 2. Изменение интенсивности широких полос люминесценции Cr^{3+} (светлые символы) и концентрации ЭПР-центров Cr^{3+} различной структуры (темные символы) в кристаллах Cr, $Li:Mg_2SiO_4$ в зависимости от содержания лития в расплаве. Нормировочные множители для кривых определены из условия минимума суммы квадратов взаимных отклонений. Пунктир — аппроксимация нормированной зависимости интенсивности люминесценции от содержания лития в расплаве.

симумами 750 и 950 nm в зависимости от величины $C_{\rm Li}$ наилучшим образом коррелирует с динамикой изменения концентрации не изолированных центров ${\rm Cr^{3+}}$ (рис. 2,a), а хром-литиевых ассоциатов ${\rm Cr^{3+}-Li^{+}}$ (рис. 2,b). Более того, концентрация изолированных центров в исследуемом диапазоне изменения $C_{\rm Li}$ возрастает в \sim 5 раз, в то время как интенсивность люминесценции в \sim 1.3 раза [4]. Исчезающим с ростом $C_{\rm Li}$ исходным центрам люминесценции можно сопоставить один из обнаруженных хром-вакансионных центров (рис. 2,c).

Таким образом, приведенные на рис. 2 данные дают основание считать, что широкополосная люминесценция в диапазоне $900-950\,\mathrm{nm}$ в кристаллах $\mathrm{Cr^{3+}:Mg_2SiO_4}$ обусловлена присутствием ассоциатов $\mathrm{Cr^{3+}-V_{Mg}}$, а в кристаллах $\mathrm{Cr^{3+},Li:Mg_2SiO_4}$ — ассоциатов $\mathrm{Cr^{3+}-Li^{+}}$. Вопреки устоявшемуся мнению изолированные центры $\mathrm{Cr^{3+}}(M2)$ не оказывают существенного влияния на формирование спектра широкополосной люминесценции.

Прямым подтверждением результатов анализа спектральных свойств исследуемых кристаллов Cr^{3+} , $Li:Mg_2SiO_4$ явились генерационные исследования. Поглощение в кристалле, соответствующее переходу ${}^{4}A_{2}-{}^{4}T_{2}$, на длине волны накачки составляло $\sim 2.5\, cm^{-1} \ (\textbf{E} \parallel \textbf{c}).$ Излучение лазерной генерации с поляризацией Е | с, перестраиваемое по длине волны в диапазоне 1030-1180 nm, наблюдалось в трехзеркальном дисперсном резонаторе с плоскими зеркалами. Выходное зеркало имело коэффициент пропускания, плавно меняющийся от 1.4% на длине волны 1000 nm до 4% на длине волны 1200 nm. Более детальные данные об эффективности лазерной генерации и возможном диапазоне длин волн ее перестройки, в том числе и в условиях непрерывной генерации, будут получены при оптимизации свойств кристалла, резонатора и условий накачки.

4. В результате проведеных исследований установлено, что дополнительное легирование литием кристалла Cr^{3+} : Mg_2SiO_4 изменяет механизм зарядовой компенсации. На основании сравнительного анализа этих данных широкополосная люминесценция при $C_{\rm Li}=0$ приписывается ассоциатам $Cr^{3+}-V_{\rm Mg}$, а при $C_{\rm Li}>C_{\rm Li}^{\rm min}=0.05$ wt.% — ассоциатам $Cr^{3+}-{\rm Li}^+$. На центрах $Cr^{3+}-{\rm Li}^+$ в кристалле форстерита впервые получена перестраиваемая лазерная генерация.

Список литературы

- [1] H. Rager. Phys. Chem. Miner. 1, 371 (1977).
- [2] R. Moncorge, G. Cormier, D.J. Simkin, J.A. Capobianco. IEEE J.Quant. Electron. 27, 114 (1991).
- [3] A. Sugimoto, Y. Nobe, T. Yamazaki, Y. Yamaguchi, K. Yamagishi, Y. Segava, H. Takei. Phys. Chem. Miner. 24, 333 (1997).
- [4] V.F. Lebedev, A.V. Gaister, S. Yu. Tenyakov, E.V. Zharikov. Proc. SPIE **5478**, 37 (2004).
- [5] В.Б. Дудникова, А.В. Гайстер, Е.В. Жариков, Н.И. Гулько, В.Г. Сенин, В.С. Урусов. Неорган. материалы **39**, *8*, 985 (2003).

- [6] И.Д. Рябов, А.В. Гайстер, Е.В. Жариков. ФТТ **45**, *1*, 51 (2003).
- [7] В.Ф. Лебедев, А.В. Гайстер, С.Ю. Теняков, Е.М. Дианов, Е.В. Жариков. Квантовая электрон. 33, 3, 197 (2003).
- [8] I.D. Ryabov, A.V. Gaister, E.V. Zharikov. Modern Development of Magnetic Resonance. Absracts of the Int. Conf. Kazan (2004). P. 157.